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Summary. We study the possibility of extending any bounded Baire-one function on
the set of extreme points of a compact convex set to an affine Baire-one function and
related questions. We give complete solutions to these questions within a class of Choquet
simplices introduced by P. J. Stacey (1979). In particular we get an example of a Choquet
simplex such that its set of extreme points is not Borel but any bounded Baire-one function
on the set of extreme points can be extended to an affine Baire-one function. We also study
the analogous questions for functions of higher Baire classes.

1. Introduction. The abstract Dirichlet problem is a question of the
following type. Let X be a compact convex subset of a locally convex space
and f be a function defined on extX, the set of all extreme points of X.
Can f be extended to an affine function on X which shares given properties
of f?
A classical theorem of Bauer (see e.g. [2, Theorem 3]) says that any

bounded continuous function on extX can be extended to a continuous affine
function on X if and only if X is a Choquet simplex and extX is closed in X.
We investigate the analogous questions for bounded Baire-one functions

(a function is Baire-one if it is a pointwise limit of a sequence of continuous
functions). IfX is a Choquet simplex and extX is Fσ inX then any bounded
Baire-one function on extX can be extended to an affine Baire-one function
on X (see e.g. [15, Theorem 37]). It was conjectured in [8] that the converse
holds as well. Recently Spurný [17, Theorem 2] proved that the converse is
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true within metrizable simplices (even in a more general context of simplicial
function spaces). However, outside metrizable spaces the converse is not true
due to [17, Example 3].
In the present paper we study this problem within a class of simplices

introduced by Stacey in [19]. As an application we show in particular that
there is a Choquet simplex X with extX non-Borel such that any bounded
Baire-one function on extX can be extended to an affine Baire-one function
on X. We also suggest the following conjecture which should replace the
previous one of [8].

Conjecture 1. Let X be a convex compact subset of a locally convex
space. The following are equivalent.

(1) X is a Choquet simplex and extX is a Lindelöf H-set.
(2) Any bounded Baire-one function on extX can be extended to an
affine Baire-one function on X.

H-sets are defined in [10, §12, II], where their basic properties are de-
scribed. Let us recall some equivalent definitions. A set A ⊂ X is an H-set
if for any nonempty B ⊂ X there is a nonempty relatively open U ⊂ B such
that either U ⊂ A or U ∩A = ∅. It is clear that the H-sets form an algebra
containing all open sets. Further, A is an H-set in X if and only if A is the
union of a scattered family of sets of the form F ∩G with F closed and G
open. Recall that a family U is scattered if it is disjoint and for each non-
empty V ⊂ U there is some V ∈ V relatively open in

⋃
V. Or, equivalently,

there are an enumeration {Uα : α < λ} of U (for a suitable ordinal λ) and
open sets Gα, α < λ, such that Uα ⊂ Gα \

⋃
β<αGβ for each α < λ.

If X is a compact metrizable space (or, more generally, a completely
metrizable space), then A ⊂ X is an H-set if and only if it is simultaneously
Fσ and Gδ. (The “if” part follows from the Baire category theorem, the
“only if” part follows from the Montgomery lemma [13, Lemma 16.2].)
It follows from [17] and the previous paragraph that our conjecture is

true within metrizable compact convex sets (recall that extX is Gδ in X
whenever X is metrizable). Further, our Theorem 3 below proves the con-
jecture within Stacey’s class of simplices.
After this paper had been finished, Spurný [18] showed that Conjecture 1

is valid within simplices with Lindelöf set of extreme points.
Another conjecture due to Spurný concerns a weaker problem.

Conjecture 2. Let X be a convex compact subset of a locally convex
space. The following are equivalent.

(1) X is a Choquet simplex and extX is Lindelöf.
(2) Any bounded continuous function on extX can be extended to an
affine Baire-one function on X.
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The implication (1)⇒(2) holds true by [8]. In our Theorem 2 we show
that the converse holds within Stacey’s class of simplices.
In the final section we study the analogous questions for functions of

higher Baire classes and show that the situation within Stacey’s class of
simplices is quite simple.
Before stating our results let us recall some terminology concerning com-

pact convex sets. All topological spaces considered in this paper are supposed
to be Hausdorff.
Let X be a compact space. By P (X) we denote the set of all Radon

probability measures on X endowed with the weak∗ topology. (Recall that
the dual space C(X)∗ is by Riesz’s theorem identified with the set of all
finite signed Radon measures on X and hence P (X) ⊂ C(X)∗.) If µ ∈ P (X)
and f : X → R is a µ-measurable function we set µ(f) =

T
X
f dµ.

Now suppose that X is a compact convex subset of a locally convex
space. A point x ∈ X is a barycenter of µ ∈ P (X) if f(x) = µ(f) for
each affine continuous function f : X → R. Any µ ∈ P (X) has a unique
barycenter which we denote by r(µ). A function f : X → R is said to satisfy
the barycentric formula if it is universally measurable and µ(f) = f(r(µ))
for each µ ∈ P (X).
If x ∈ X, we say that a measure µ ∈ P (X) is a representing measure for

x if x = r(µ). The classical Choquet–Bishop–de Leeuw theorem (see e.g. [1,
Theorem I.4.8]) says that for any x ∈ X there is a measure representing x
which is maximal in the Choquet ordering. (Recall that µ ≺ ν in the Choquet
ordering if µ(f) ≤ ν(f) for each convex continuous function f : X → R.) If
this maximal representing measure is unique for each x ∈ X, the set X is
called a Choquet simplex (or, briefly, a simplex). In this case we denote by δx
the unique maximal measure representing x. The Dirac measure supported
at x is denoted εx.
If f satisfies the barycentric formula, it is clearly affine. Conversely, affine

continuous functions satisfy the barycentric formula by the definition of
barycenter. Further, any affine Baire-one function on X is bounded and
satisfies the barycentric formula (see e.g. [1, Theorem I.2.6]). This is not the
case for general affine functions (even for Baire-two functions).

2. Stacey simplices. We start by defining the class of simplices we will
investigate. This class was introduced in [3, Section VII] to show that the set
of extreme points of a convex compact space can have very bad descriptive
properties. Later Stacey [19, Theorem 3] showed that these compact convex
sets are in fact Choquet simplices.
Let K be any compact space and A any subset of K. Further, for any

a ∈ A let Ta be a locally compact space consisting of at least two points.
For formal reasons suppose that Ta ∩K = ∅ and set Tk = ∅ for k ∈ K \ A.
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Let

K# =
⋃

k∈K

{k} × ({k} ∪ Tk).

Similarly, for any M ⊂ K define

M# =
⋃

k∈M

{k} × ({k} ∪ Tk).

We equip K# with the following topology. If a ∈ A and t ∈ Ta, then a
neighborhood bases of (a, t) is formed by the sets {a} × U where U is a
neighborhood of t in Ta. A neighborhood base of (k, k) for k ∈ K is formed
by the sets

(U \ {k})# ∪ {k} × ({k} ∪ Tk \H)

where U is a neighborhood of k in K and H ⊂ Tk is compact. With this
topology K# is compact.
The set {(k, k) : k ∈ K} is a subset of K# homeomorphic to K. We will

identify these sets. We will also identify any M ⊂K with {(k, k) : k ∈M}.
Further notice that {k} × Tk is canonically homeomorphic to Tk and
{k} × ({k} ∪ Tk) is compact for each k ∈ K.
For each a ∈ A fix a non-Dirac Radon probability measure µa on {a}×Ta

with compact support. Set

A = {f ∈ C(K#) : (∀a ∈ A)(f((a, a)) = µa(f))}

and

X = {ξ ∈ A∗ : ‖ξ‖ = 1 & ξ(1) = 1}.

Then X is a convex weak∗ compact set. Moreover, it is a Choquet simplex
by [19, Theorem 3]. In fact, in [19] this simplex was defined in a different
way. Let us show that our definition is equivalent.
For x ∈ K# \A set µx = εx. It is shown in [19] that for any f ∈ C(K

#)
the set {x ∈ K# : f(x) 6= µx(f)} is countable and hence x 7→ µx(f) is a
Borel function. Moreover, it is shown that the subspace

M =
{
ν ∈ C(K#)∗ : (∀f ∈ C(K#))

( \
K#

µx(f) dν(x) = 0
)}

is weak∗ closed in C(K#)∗, and if πM denotes the quotient mapping of
C(K#)∗ onto C(K#)∗/M , then πM (P (K)) is a Choquet simplex. To see
that this simplex is our X it is enough to show thatM = A⊥. The inclusion
“⊂” is obvious. The other one follows by the bipolar theorem asM is weak∗

closed and M⊥ = A.
Indeed, the inclusion “⊃” is obvious. The opposite one follows from the

fact that εa − µa ∈M for each a ∈ A. To see it let f ∈ C(K
#) be arbitrary.

We have
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K#

µx(f) d(εa − µa)(x) =
\
K#

µx(f) dεa(x)−
\
K#

µx(f) dµa(x)

= µa(f)−
\
K#

εx(f) dµa(x)

= µa(f)−
\
K#

f(x) dµa(x) = 0,

where we used the fact that µx = εx for x ∈ suppµa.
Finally, it is proved in [19] that K# is canonically embedded in X and

in this embedding we have extX = K# \A and δx = µx for x ∈ K
#.

The notation introduced in this section will be used in what follows.
A simplexX constructed in the described way will be called a Stacey simplex
associated to the pair (K,A).

3. Main results. We study mainly the following questions: When any
continuous (bounded Baire-one) function on X can be modified to an affine
Baire-one function coinciding with the original one on extX; and when any
bounded continuous (Baire-one) function on extX can be extended to an
affine Baire-one function on X? These properties are characterized, within
Stacey simplices, by the properties of the pair (K,A) and the spaces Ta.

Theorem 1. Let K be a compact space, A ⊂ K and X be a Stacey sim-
plex associated to the pair (K,A). The following assertions are equivalent.

(1) Any point of A is Gδ in K and Ta is σ-compact for each a ∈ A.
(2) For any f : X → R continuous there is an affine Baire-one function

g : X → R with g|extX = f |extX .

Theorem 2. Let K be a compact space, A ⊂ K and X be a Stacey sim-
plex associated to the pair (K,A). The following assertions are equivalent.

(1) extX is Lindelöf.
(2) K \ A is Lindelöf , any compact subset of A is countable and Ta is
σ-compact for any a ∈ A.

(3) For any bounded continuous function f : extX → R there is an

affine Baire-one function g : X → R with f = g|extX .

Moreover , if these conditions are satisfied , then each point of A is Gδ in K
and extX is hereditarily Baire.

Theorem 3. Let K be a compact space, A ⊂ K and X be a Stacey sim-
plex associated to the pair (K,A). The following assertions are equivalent.

(1) extX is a Lindelöf H-set.
(2) A is scattered , each point of A is Gδ in K and Ta is σ-compact for
each a ∈ A.
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(3) For any bounded Baire-one function f : extX → R there is an affine

Baire-one function g : X → R with f = g|extX .
(4) For any bounded Baire-one function f : X → R there is an affine

Baire-one function g : X → R with g|extX = f |extX .

Recall that A is scattered if the family {{a} : a ∈ A} is scattered.
The above theorems define three classes of Stacey simplices. The follo-

wing theorem shows that these classes are different and do not cover all
Stacey simplices. In the last section we show that by considering functions
of higher Baire classes we get no more classes of Stacey simplices.

Theorem 4. There are Choquet simplices X1, . . . , X4 satisfying the fol-
lowing conditions.

• There is a continuous function f1 : X1 → R such that no affine Baire-

one function on X1 coincides with f1 on extX1. Moreover , extX1 can
be discrete (and uncountable).
• extX2 is an uncountable discrete space and , moreover ,

(i) for each continuous f : X2 → R there is an affine Baire-one

function on X2 which coincides with f on extX2;
(ii) there is a bounded continuous function on extX2 which cannot be
extended to an affine Baire-one function on X2.

• extX3 is Lindelöf and , moreover ,

(i) each bounded continuous f : extX3 → R can be extended to an

affine Baire-one function on X3;
(ii) there is a bounded Baire-one function f3 : X3 → R such that no

affine Baire-one function on X3 coincides with f3 on extX3.

• extX4 is not Čech analytic (in particular it is not Borel) but any
bounded Baire-one function f : extX4 → R can be extended to an

affine Baire-one function on X4.

All these examples are Stacey simplices. The simplex X1 does not satisfy
the equivalent conditions of Theorem 1, X2 satisfies the conditions of The-
orem 1 but not those of Theorem 2, X3 satisfies the conditions of Theorem 2
but not those of Theorem 3.
Note that X1 and X2 can be chosen such that extX1 and extX2 are

homeomorphic. Hence we cannot add to the equivalent conditions of The-
orem 1 another one which would be a topological property of extX.
Further note that for X3 assertion (i) follows from Theorem 2 and that

the existence of a Choquet simplex (not from Stacey’s class) with the same
properties as X3 is a known fact. Due to [17, Theorem 2] it is enough to
take any metrizable simplex whose set of extreme points is not Fσ.
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The example X4 strengthens [17, Example 3] where a Choquet simplex
X is described such that any bounded Baire-one function on extX can
be extended to an affine Baire-one function but extX is not Fσ. However,
extX is Borel. In our example extX4 is not even Čech analytic. (Recall that
a subset of a compact space is Čech analytic if it is a result of the Suslin
operation applied to Borel sets.)

4. Auxiliary results. Recall that a subset A of a topological space X
is called a zero set if A = f−1(0) for a continuous function f : X → R. By
a Zσ-set we will mean a countable union of zero sets. If X is compact, then
a subset of X is a zero set if and only if it is a closed Gδ-set.
The following lemma characterizes Baire-one functions on compact spa-

ces. For the proof see [12, Exercise 3.A.1].

Lemma 1. Let X be a compact space and f : X → R. Then the following

assertions are equivalent.

(a) f is a Baire-one function.
(b) f−1(U) is Fσ in X for each U ⊂ R open.

(c) f−1(U) is Zσ in X for each U ⊂ R open.

The next lemma is a special case of an abstract reduction principle (see
the proof of [10, §26, II, Theorem 1], cf. [9, Proposition 27]).

Lemma 2. Let {Fn : n ∈ N} be a cover of a topological space X by
Zσ-sets. Then there is a partition {Hn : n ∈ N} of X into Zσ-sets such that
Hn ⊂ Fn for each n.

Proposition 3. Let X be a compact convex subset of a locally convex
space. Then the following assertions are equivalent.

(a) For any bounded Baire-one function f : X → R there is an affine

Baire-one function g : X → R with g|extX = f |extX .
(b) X is a simplex and the mapping x 7→ δx(f) is Baire-one for any
bounded Baire-one function on X.

(c) X is a simplex and the mapping x 7→ δx(A) is Baire-one for any
A ⊂ X which is simultaneously Fσ and Gδ.

(d) X is a simplex and the mapping x 7→ δx(U) is Baire-one for any
open Fσ-set U ⊂ X.

Proof. The equivalence (a)⇔(b) is proved in [17, Corollary 1]. The im-
plication (b)⇒(d) is trivial as χU is Baire-one whenever U is open Fσ.
(d)⇒(c). Let A ⊂ X be simultaneously Fσ and Gδ. It follows by Lem-

ma 1 that χA is Baire-one and hence both A and X \ A are Zσ. Then
A =

⋃
n∈NAn where each An is a closed Gδ and An ⊂ An+1 for each n.
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Hence for any constant c we have

{x ∈ X : δx(A) > c} =
⋃

n∈N

{x ∈ X : δx(An) > c}

=
⋃

n∈N

{x ∈ X : δx(X \An) < 1− c}.

This set is clearly Fσ. The same can be done for X \ A in place of A and
hence

{x ∈ X : δx(A) < c} = {x ∈ X : δx(X \ A) > 1− c}

is Fσ as well. It follows by Lemma 1 that x 7→ δx(A) is Baire-one.
(c)⇒(b). Let f : X → R be a bounded Baire-one function. Fix n ∈ N.

For k ∈ Z put Un,k = f
−1((k−1

n
, k+1
n
)). Then each Un,k is a Zσ-subset of X

(by Lemma 1), the sets Un,k, k ∈ Z, cover X and Un,k 6= ∅ only for finitely
many k’s. By Lemma 2 there are Zσ-sets Vn,k ⊂ Un,k which are pairwise
disjoint and cover X. Set hn =

∑
k∈Z(k/n)χVn,k .

Then clearly the sequence hn converges uniformly to f .
Further, the function x 7→ δx(hn) is Baire-one. Indeed, we have

δx(hn) =
∑

k∈Z

k

n
δx(Vn,k),

Vn,k is simultaneously Fσ and Gδ, and Vn,k is nonempty only for a finite
number of k’s.
Finally, the function x 7→ δx(f) is a uniform limit of functions from the

previous paragraph and hence it is also a Baire-one function.

Lemma 4. Let K be a compact space and A ⊂ K an arbitrary subset.
If each compact subset of A is Gδ in K, then K \A is Lindelöf.

Proof. Let {Ua : a ∈ I} be a covering of K \ A consisting of relatively
open sets. We are going to show that there is a countable subcover.
If there is a finite subcover, we are done. Otherwise we set Fa =

(K \ A) \ Ua for a ∈ I and remark that the family {Fa : a ∈ I} has the
finite intersection property and hence F =

⋂
a∈I F a 6= ∅ where the closures

are taken in K. But each Fa is relatively closed in K \ A and
⋂
a∈I Fa = ∅

(as the Ua’s cover K \ A). Therefore F ⊂ A and hence F is Gδ in K.
Fix a sequence Gn of open subsets of K with F =

⋂
n∈NGn. For each

n ∈ N there is a finite set Jn ⊂ I with
⋂
a∈Jn Fa ⊂ Gn. If we set J =⋃

n∈N Jn then J is a countable subset of I satisfying
⋂
a∈J Fa = ∅ and hence⋃

a∈J Ua = K \ A.

Lemma 5. Any compact scattered space for which each point is Gδ
(i.e., which is first countable) is countable.

Proof. Recall that the Cantor–Bendixson derivative is defined as follows:
L(0) = L, L(α+1) is the set of all accumulation points of L(α), and L(λ) =
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⋂
α<λ L

(α) if λ is a limit ordinal. The Cantor–Bendixson height of L is the

minimal α such that L(α) = ∅.
Suppose that there is an uncountable scattered first countable compact

space. Let L be such a space with the minimal possible Cantor–Bendixson
height and α be this height. Then clearly α is not limit and hence α = β+1
for some ordinal β. Then L(β) is finite and hence Gδ. So its complement
is Fσ, i.e.

L \ L(β) =
⋃

n∈N

Ln

with each Ln compact. As L is uncountable, there is n ∈ N such that Ln
is uncountable. Then Ln is a scattered uncountable first countable compact
space with Cantor–Bendixson height less than α (as clearly (Ln)

(β) = ∅),
which contradicts the minimality of α.

Lemma 6. Let K be a compact space and C ⊂ K a countable scattered
set such that each point of C is a Gδ-point of K. Then C is Gδ in K.

Proof. As C is countable and scattered, there are a well-ordering
{cα : α < ξ} of C (where ξ is a countable ordinal) and open Fσ-sets
{Uα : α < ξ} with cα ∈ Uα \

⋃
β<α Uβ.

Then U =
⋃
α<ξ Uα is an open Fσ-set. Further set Vα = Uα \

⋃
β<α Uβ

for α < ξ. Then each Vα is simultaneously Fσ and Gδ and U =
⋃
α<ξ Vα. As

each cα is a Gδ-point, each Vα \ {cα} is Fσ. Therefore

C = U \
⋃

α<ξ

(Vα \ {cα})

is Gδ.

Lemma 7. Let X be a topological space with countable tightness which
is not scattered. Then there is a nonempty countable set C ⊂ X without
isolated points.

Proof. As X is not scattered, there is a nonempty subset B ⊂ X without
isolated points. Choose b ∈ B, set C0 = {b} and construct by induction
countable sets Cn, n = 1, 2, . . . , in the following manner.
Let C ′n ⊂ B \Cn−1 be a countable set such that C

′
n contains all isolated

points of Cn−1 (such a set exists as Cn−1 is countable, B has countable
tightness and has no isolated points) and Cn = Cn−1 ∪ C

′
n. Then C =⋃∞

n=0Cn is a nonempty countable set without isolated points.

Proposition 8. Let X be a Choquet simplex and f : extX → R be a

bounded Baire-one function. Define the function g : X → R by the formula

g(x) = δx(f), x ∈ X.

Then g satisfies the barycentric formula. Moreover , g is Baire-one if (and
only if ) g|extX is Baire-one.
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Proof. Let us first show that g satisfies the barycentric formula. This
follows from the proof of [11, Proposition 6.1]. However, the cited result is
stated for metrizable simplices, so we give the proof.
First suppose that f is a convex continuous function defined on X. Then

by [11, Lemma 2.3] we have

(∗) g(x) = inf{h(x) : h is continuous and affine on X, h ≥ f on X},

x ∈ X.

Let µ ∈ P (X) be arbitrary. Then

µ(g) = inf{µ(h) : h is continuous and affine on X, h ≥ f on X}.

This follows from [6, Theorem 9.11] as the set

{h affine continuous on X : h ≥ f}

is downward directed (i.e. for any h1, h2 in this set there is h in the set such
that h ≤ min{h1, h2}) due to Edwards’s separation theorem [4, Theorem 3].
Further, for any h affine continuous on X we have µ(h) = h(r(µ)), hence

µ(g)= inf{h(r(µ)) : h is continuous and affine on X, h≥f on X}=g(r(µ))

by (∗). Thus g satisfies the barycentric formula if f is any continuous convex
function on X.
Notice that the family

{f : X→R universally measurable : (∀µ∈P (X))(
T
δx(f) dµ(x) = δr(µ)(f))}

is a linear space closed under pointwise limits of bounded sequences (due
to the Lebesgue dominated convergence theorem). We have already shown
that it contains all convex continuous functions. As differences of convex
continuous functions form a lattice containing the constants and separating
points of X, they are, due to the Stone–Weierstrass theorem, uniformly
dense in C(X). Hence our family contains all continuous functions and thus
also all bounded Baire-one functions.
If f is a bounded Baire-one function on extX, it can be extended to a

bounded Baire-one function on X (see e.g. [9, Theorem 13 or Remark 17]).

As any maximal measure is supported by extX, we get the first part.
The second part now follows immediately from [16, Theorem 3.3].

5. Proofs of the main results

Proof of Theorem 1. (2)⇒(1). Let a ∈ A be arbitrary. Then suppµa is

a compact subset of {a}# not containing (a, a). Choose a relatively open

set U ⊂ {a}# containing (a, a) such that U ∩ suppµa = ∅. By Urysohn’s
lemma there is a continuous function f0 : {a}

# → [0, 1] with f0|suppµa = 1
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and f0|U = 0. Define f1 : K
# → [0, 1] by

f1(x) =

{
f0(x), x ∈ {a}

#,

0, x ∈ K# \ {a}#.

Then f1 is continuous on K
# and hence it can be (due to Tietze’s theorem)

extended to a continuous function f : X → [0, 1]. Let g be a function
satisfying the barycentric formula such that g coincides with f on extX.
Then

g(x) =





1, x = (a, a),

0, x ∈ K# \ {a}#,

0, x ∈ U \ {a, a}.

If g is Baire-one, then (a, a) is a Gδ-point of K
# by Lemma 1. Hence clearly

a is a Gδ-point of K and Ta is σ-compact.
(1)⇒(2). Let f : X → R be continuous. Put g(x) = δx(f). By Proposi-

tion 8 it is enough to check that g is Baire-one on K#. Note that

g(x) =

{
µx(f), x ∈ A,

f(x), otherwise.

It follows easily from the continuity of f that

{x ∈ A : |f(x)− µx(f)| > c}

is finite for each c > 0. Hence the sets

{x ∈ K# : f(x)− g(x) > c} and {x ∈ K# : f(x)− g(x) < c}

are Fσ for each c ∈ R. Indeed, the first set is finite for c > 0 and countable
for c = 0. For c < 0 it is the complement of a finite subset of A, hence it is
also an Fσ-set (as it follows from (1) that any point of A is Gδ in K

#). The
proof for the second set is analogous.
Hence (f − g)|K# is Baire-one by Lemma 1. Finally, g|K# = f |K# −

(f − g)|K# is Baire-one.

Proof of Theorem 2. (1)⇒(2). Suppose extX is Lindelöf. Then K \A is
also Lindelöf, being a closed subset of extX. Further, if F ⊂ A is compact,
then F# \F is closed in extX and hence it is also Lindelöf. Since {a}× Ta,
a ∈ F , is a partition of F#\F into nonempty open sets, F must be countable.
Finally, for each a ∈ A the set {a}×Ta is a closed subset of extX and hence
it is Lindelöf. As Ta is locally compact and Lindelöf, it is σ-compact.
(2)⇒(1). Let U be a family of basic open sets in K# covering extX. As

K \ A is Lindelöf, there is a countable subfamily U1 ⊂ U covering K \ A.
We can suppose that any element of U1 intersects K \ A. In this case any
U ∈ U1 is of the form

U = (GU \ {kU})
# ∪ {kU} × ({kU} ∪ TkU \HU ),
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where kU ∈ K, GU is an open neighborhood of kU in K and HU ⊂ TkU is
compact. Then GU , U ∈ U1, cover K \A and hence F = K \

⋃
{GU : U ∈ U1}

is a compact subset of A. Thus F is countable. Therefore U1 covers extX
except for the σ-compact set (F# \ F ) ∪

⋃
U∈U1{kU} ×HU . It follows that

we can add further countably many elements of U to U1 to get a countable
subcover of extX.
(1)⇒(3). This implication holds for general simplices and is proved in [8].
(3)⇒ (2 & each point of A is Gδ in K). It follows from Theorem 1 that

each point of A is Gδ in K and Ta is σ-compact for each a ∈ A.
Further, if F ⊂ A is compact and B ⊂ F , then B# \ B is a clopen

subset of extX. Let f be the characteristic function of B# \ B. By our
assumption it can be extended to an affine Baire-one function g : X → R.
Then necessarily

g((k, k)) =

{
1, k ∈ B,

0, k ∈ K \B.

So B is Gδ in K by Lemma 1.
Hence, in particular, any compact subset of A is Gδ in K and therefore

K \A is Lindelöf by Lemma 4.
Finally, if F ⊂ A is compact, then any subset of F is Gδ in F . We claim

that F is necessarily countable.
Let us first show that F is scattered. If not, we get by Lemma 7 a

nonempty countable C ⊂ F without isolated points (note that F is first
countable and thus has countable tightness). Hence C is meager in itself.
However, C is Gδ in F , so it is Čech complete and thus a Baire space. This
is a contradiction.
Then, by Lemma 5, F is countable.
(2) ⇒ (extX is hereditarily Baire). It is clearly enough to show that

K \A is hereditarily Baire. Suppose not. Then there is H ⊂ K \A relatively
closed which is meager in itself. Let F be the closure of H in K. Then
F \ H = F ∩ A has no isolated points and contains a dense Gδ-subset
of F . (Indeed, let Hn, n ∈ N, be relatively closed nowhere dense subsets
of H covering H. Then Hn is nowhere dense in F and F \

⋃
n∈NHn is a

dense Gδ-subset of F contained in F \ H.) Hence A contains a nonempty
Čech complete subset without isolated points. But any such set contains an
uncountable compact subset, a contradiction.

Proof of Theorem 3. (1)⇒(2). It follows from Theorem 2 that each point
of A is Gδ in K, Ta is σ-compact for each a ∈ A and any compact subset of
A is countable. As extX is an H-set and K\A is closed in extX, we see that
K \A is an H-set in K, hence A is also an H-set. Suppose A is not scattered.
Then there is a nonempty relatively closed subset F ⊂ A without isolated
points. Then F is also an H-set and hence contains a dense locally compact
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subset. (Note that F is dense in the compact space F and hence, by the very
definition of an H-set, there is a dense relatively open subset of F contained
in F . This set is clearly locally compact.) But any nonempty locally compact
subset without isolated points contains an uncountable compact subset. This
is a contradiction showing that A is scattered.
(2)⇒(1). If A is scattered, then extX is clearly an H-set. If each point

of A is Gδ in K, then each compact subset of A is countable by Lemma 5
and each countable subset of A is Gδ in K by Lemma 6. Hence, any compact
subset of A is Gδ in K and so K \A is Lindelöf by Lemma 4. Finally, extX
is Lindelöf by Theorem 2.
(4)⇒(2). It follows from Theorem 1 that each point of A is Gδ in K and

Ta is σ-compact for each a ∈ A.
Further, let C ⊂ A be countable. Then χC#\C is a bounded Baire-one

function on K#. Let f be a bounded Baire-one function on X extending
χC#\C (such a function exists due to [9, Theorem 13]). Let g be an affine

Baire-one function on X coinciding with f on extX. Then g((k, k)) = χC(k)
for each k ∈ K. Hence C is Gδ in K by Lemma 1.
We have shown that each countable subset of A is Gδ in K. We will

deduce that A is scattered. Suppose it is not. As A is first countable, we get
by Lemma 7 a nonempty countable set C ⊂ A without isolated points. Then
C is meager in itself and simultaneously Gδ in K and hence Čech complete,
a contradiction.
(2)⇒(4). By Proposition 3 it is enough to show that x 7→ δx(U) is Baire-

one whenever U ⊂ X is open Fσ. By Proposition 8 it suffices to prove that
this mapping is Baire-one on K#.
So let U ⊂ K# be open Fσ. Then

U =
⋃

n∈N

({ln} × Vn)

∪
⋃

n∈N

(Un \ {kn})
# ∪ {kn} × ({kn} ∪ Tkn \Hn)

where ln ∈ A, Vn is an open σ-compact subset of Tln , kn ∈ K, Un is an open
Fσ subset of K, and Hn is a compact subset of Tkn which is Gδ in {kn}

#

for n ∈ N.
The set U is thus written as W1 ∪W2. We claim that we can without

loss of generality suppose W1 ∩W2 = ∅. To see this it is enough to show
that, without loss of generality, {ln : n ∈ N} ∩

⋃
n∈N Un = ∅. Suppose that,

for some m,n ∈ N we have lm ∈ Un. If lm 6= kn, then {lm} × Vm ⊂ W2 and
hence it can be omitted from W1. If lm = kn, we can omit {lm} × Vm and
replace Hn by Hn \ Vm.
Therefore, as the sum of two Baire-one functions is Baire-one, it is enough

to consider two cases:
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(i) U =
⋃
n∈N({ln} × Vn). Then

δx(U) =





1, x ∈
⋃
n∈N({ln} × Vn),

µx({ln} × Vn), x = ln, n ∈ N,

0, otherwise.

The set
⋃
n∈N({ln} × Vn) is open Fσ in K

#, each subset of {ln : n ∈ N}
is simultaneously Fσ (being countable) and Gδ (by Lemma 6) in K

#. (We
use the fact that each point of A is Gδ in K

#. This follows easily from the
assumptions of (2).) Now it is clear that

{x ∈ K# : δx(U) > c} and {x ∈ K
# : δx(U) < c}

are Fσ in K
# for each c ∈ R. It follows by Lemma 1 that the function

x 7→ δx(U) is Baire-one on K
#.

(ii) U =
⋃
n∈N(Un \ {kn})

# ∪ {kn} × ({kn} ∪ Tkn \ Hn). Then we have
U = G# \

⋃
n∈N{hn} ×Hn for an open Fσ-set G ⊂ K and suitable hn ∈ A

and Hn ⊂ Thn closed Gδ in {hn}
#. Then

δx(U) =





1, x ∈ U \ {hn : n ∈ N}),

1− µhn({hn} ×Hn), x = hn, n ∈ N,

0, otherwise.

As U is open Fσ and each subset of {hn : n ∈ N} is simultaneously Fσ and
Gδ in K

# (Lemma 6), it easily follows from Lemma 1 that x 7→ δx(U) is
Baire-one on K#.
The implication (3)⇒(4) is trivial.
(2)⇒(3). Let (2) hold and f : extX → R be a bounded Baire-one func-

tion. By the already proved implication (2)⇒(1) we know that extX is
Lindelöf. Therefore there is, due to [9, Theorem 30], a bounded Baire-one

function f̃ : X → R extending X. So we can conclude by using the already
proved implication (2)⇒(4).

Proof of Theorem 4. All the examples will be Stacey simplices associated
to suitable pairs (K,A) such that Ta is a two-point set for each a ∈ A. In this
case each Ta is automatically σ-compact. For µa we can take, for example,
1
2(ε(a,t1) + ε(a,t2)) where {t1, t2} = Ta.

• To define X1 take K = A where K is any compact space which is
not first countable. Then extX1 is uncountable discrete and some point of
A is not a Gδ-point in K. The required properties follow from Theorem 1.
As concrete examples, we can take K to be the ordinal interval [0, α] with
α ≥ ω1 or the one-point compactification of an uncountable discrete space.
• To construct X2 take K = A whereK is an uncountable first countable

compact space. Then extX2 is uncountable and discrete. Property (i) follows
from Theorem 1, property (ii) from Theorem 2. As a concrete example we
can take K = [0, 1].
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• To define X3 we can choose K = [0, 1] and A to be an uncountable
subset of [0, 1] which contains no uncountable closed set. This is the case,
for example, if A is an uncountable perfectly meager set [10, III, §40, II
and III] or a Bernstein set [13, Theorem 5.3]. The properties then follow
from Theorems 2 and 3 (note that an uncoutable subset of the real line
cannot be scattered).
• To find X4 set K = [0, ω1] and let A ⊂ [0, ω1) be a stationary and co-

stationary set (i.e. both A and its complement intersect any closed unbound-
ed set in [0, ω1)). Such a set exists by [5] and it follows from [7, Lemma 7]
that it is not Čech analytic. Hence extX4 is not Čech analytic. Finally, K
and A satisfy (2) of Theorem (3). This completes the proof.

6. Functions of higher Baire class. It is natural to ask what happens
for functions of a higher Baire class. Recall that functions of Baire class α
are pointwise limits of sequences of functions of Baire class less than α. Baire
functions are functions of Baire class α for some α (where it is enough to
consider α < ω1).
The situation for higher classes may be different from the first class

case. While affine Baire-one functions satisfy the barycentric formula, affine
Baire-two functions need not.
For example, if X = P ([0, 1]), then the function assigning to each µ the

number µd([0, 1]) where µd is the discrete part of µ is an affine Baire-two
function not satisfying the barycentric formula. For the sake of completeness
we give the proof of this folklore fact.
The function is clearly affine. To see that it does not satisfy the barycen-

tric formula, consider the measure Λ on X defined by Λ(A) = λ({x ∈ [0, 1] :
εx ∈ A}), where λ denotes the Lebesgue measure. It is easy to check that the
barycenter of Λ is λ. Further, λd([0, 1]) = 0, while

T
X
µd([0, 1]) dΛ(µ) = 1.

It remains to show that our function is Baire-two. For n ∈ N define

fn(µ) = µ({x ∈ [0, 1] : µ({x}) ≥ 1/n}), µ ∈ X.

Then µd([0, 1]) = limn→∞ fn(µ) for each µ ∈ X. It suffices to show that each
fn is Baire-one. As X is metrizable, it is enough to show that fn is upper
semicontinuous, i.e. {µ ∈ X : fn(µ) < c} is open for each c > 0.
Let µ ∈ X be such that fn(µ) < c. Denote by H the set of all x ∈ [0, 1]

with µ({x}) ≥ 1/n. Then H is finite and hence closed. Let d be the maximal
measure of a singleton in [0, 1] \H. Then d < 1/n. Chose ε > 0 such that
ε < 13(1/n− d) and ε <

1
2(c− fn(µ)).

There is a compact set K ⊂ [0, 1]\H such that µ(K) > µ([0, 1]\H)−ε =
1−fn(µ)−ε. As each singleton in K has measure less than d+ε, we can find
open sets V1, . . . , Vk disjoint from H and covering K such that µ(Vi) < d+ε
for i = 1, . . . , k. Set Wj = Vj \

⋃
i<j Vi for j = 1, . . . , k. Choose compact
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subsets Fj ⊂ Wj such that
∑k
j=1 µ(Fj) > µ([0, 1] \ H) − ε. Finally, choose

pairwise disjoint open sets U0, U1, . . . , Uk such thatH ⊂U0 and Fj ⊂ Uj ⊂ Vj
for each j = 1, . . . , k. Then the set

{
ν ∈ X : ν(Uj) > µ(Uj)−

ε

k + 1
for j = 0, . . . , k

}

is an open subset of X (see e.g. [20, Theorem 8.1]) containing µ. If ν belongs
to this set, it can be easily calculated that ν(Ui) < 1/n for i = 1, . . . , n, and
ν([0, 1] \

⋃n
i=1 Ui) < c. Therefore fn(ν) < c. This completes the proof.

However, if we consider only functions satisfying the barycentric formula,
we obtain within Stacey simplices the following results.

Theorem 5. Let X be a Stacey simplex. If for each continuous function
f on X there is a Baire function satisfying the barycentric formula and
coinciding with f on extX, then the equivalent assertions of Theorem 1
hold. Moreover , in this case the following hold.

(i) For each bounded Baire-one function f on X there is a Baire-two
function satisfying the barycentric formula and coinciding with f on
extX.

(ii) If α ≥ 2 and f is a bounded function of Baire class α on X then
there is a function of the same Baire class α satisfying the barycentric
formula and coinciding with f on extX.

Proof. The validity of assertion (1) of Theorem 1 can be proved in the
same way as (2)⇒(1) of Theorem 1 if we notice that the characteristic
function of a singleton is a Baire function if and only if the corresponding
point is Gδ.
Let us further show that assertion (1) of Theorem 1 implies (i) and (ii). If

f is a bounded Baire function on X, then the function g(x) = δx(f) satisfies
the barycentric formula (this follows easily from Proposition 8). Due to [16,
Theorem 3.3] it is enough to prove that f − g is Baire-two on K#. But
{x ∈ K# : f(x) − g(x) 6= 0} is a countable subset of A (by the proof
of (1)⇒(2) in Theorem 1 this is true if f is continuous, hence it clearly
holds for all Baire functions). Let us enumerate the elements of this set as
{an : n ∈ N}. As each an is Gδ in K

#, the function χ{a1,...,an} · (f − g) is,
for each n ∈ N, a Baire-one function by Lemma 1. Moreover, this sequence
converges pontwise to f − g, therefore f − g is Baire-two. This completes
the proof.

Theorem 6. Let X be a Stacey simplex. If for each bounded continuous
function f : extX → R there is a Baire function satisfying the barycentric

formula and extending f , then the equivalent assertions of Theorem 2 hold.
Moreover , in this case the following hold.
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(i) Any bounded Baire-one function on extX can be extended to a Baire-
two function satisfying the barycentric formula.

(ii) If α ≥ 2, then any bounded function of Baire class α on extX can
be extended to a function of the same Baire class α satisfying the
barycentric formula.

Proof. Let us first show that under our assumptions assertion (2) of
Theorem 2 holds. We will proceed similarly to the proof of (3)⇒(2) in The-
orem 2. By Theorem 5 we know that each point of A is Gδ in K and that Ta
is σ-compact for each a ∈ A. Let F ⊂ A be compact. Then, as in the proof
of Theorem 2, χB is a Baire function on K for each B ⊂ F . It follows that
F is Gδ in K. Thus K \ A is Lindelöf by Lemma 4. Further, each subset of
F is Borel, so F is scattered. (If F is not scattered, it is easy to construct a
closed subset C ⊂ F and a continuous surjection ϕ : C → {0, 1}N and hence
C contains a non-Borel set by [14, Lemma 2].) As F is first countable, F is
countable by Lemma 5.
Further, let us show that assertion (2) of Theorem 2 implies (i) and (ii).

Let f : extX → R be a bounded Baire function of class α. Extend f to a
function g : K# → R by setting g((a, a)) = µa(f). We claim that g is of
Baire class max{α, 2}.
Let us show it first for α = 2. We remark that there is a σ-compact set

H ⊂ A such that g|(K#\H) is Baire-two. Indeed, if f is continuous, then g is

clearly continuous at each point of K# \K and it is easy to check that it is
also continuous at each point of K \A. Further, the set of continuity points
is Gδ, hence there is H ⊂ A σ-compact with g|K#\H continuous. Now the
claim easily follows.
As H is countable and each point of H is Gδ in K

#, the function χH · g
is Baire-two on K# (this can be proved by the method used in the proof of
Theorem 5 above). Further, the function χK#\H · g is Baire-two as well.

We already know that g is Baire-two onK#\H. Hence there is a sequence

h̃n of Baire-one functions on K
# \ H converging to g. The set K# \ H is

simultaneously Gδ and Fσδ in K
#. Thus it is a Lindelöf Gδ-set. It follows

from [9, Theorem 10] that each h̃n can be extended to a Baire-one function

on K#. We will denote this extension by hn.
Enumerate H = {an n ∈ N}. As each an is Gδ, there is, for each n ∈ N,

a Baire-one function un : K
# → [0, 1] such that

un|K#\H = 1 and un|{a1,...,an} = 0

(see e.g. [9, Proposition 2]). Then unhn is a sequence of Baire-one functions
pointwise converging to χK#\H · g, which is therefore Baire-two.
As g = χH · g+ χK#\H · g we conclude that g is Baire-two. This finishes

the proof for the case α = 2.
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The case α = 1 follows from the case α = 2. The case of general α ≥ 2
follows easily by transfinite induction.
Hence g is of Baire class max{α, 2} whenever f is of Baire class α.

Now the function x 7→ δx(g) is the required extension (where we again use
[16, Theorem 3.3]).

Let us finish by asking the following natural questions.

Questions.

(1) Which of Theorems 1, 2, 3, 5, 6 have an analogue for general Choquet
simplices?

(2) Suppose that each Baire-two function on X can be modified to an
affine Baire-two function coinciding with the original one on extX.
Can one choose such a modification to satisfy the barycentric for-

mula?

(3) Suppose that each Baire-two function on extX can be extended to
an affine Baire-two function. Can the extension be chosen to satisfy

the barycentric formula?

Added in proof. J. Spurný and the author recently proved that Conjecture 1 is true
in general.
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