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Summary. It is proved that the Kéthe-Bochner function space F(X) has property 3 if
and only if X is uniformly convex and E has property 3. In particular, property 3 does
not lift from X to E(X) in contrast to the case of Kéthe-Bochner sequence spaces.

1. Introduction. The geometry of K6the-Bochner spaces F(X) of vec-
tor-valued functions has been intensively developed during the last years (see
for example [2], [3], |9], [14], [16], [21], [22] and [27]). A survey of geometry
in Kéthe-Bochner spaces can be found in [23]. E(X) are generalizations of
Lebesgue-Bochner and Orlicz—Bochner spaces. One of the principal problems
in these spaces is the question whether or not a geometric property lifts from
X and E to E(X). The answer is often the same in the case of function and
sequence Kothe-Bochner spaces. However, the really peculiar situation is
when the relevant criteria are different. This is the case for the Kadec—Klee
property (KK for short), uniform Kadec—Klee property (UKK) and nearly
uniform convexity (NUC).

Property KK is also known as the Radon—Riesz property ([10]). It has
been intensively studied in Kéthe-Bochner spaces, and shown to lift from
X to E(X) when FE is a Kothe sequence space, but not necessarily if E is a
Kothe function space ([2], [16], [22] and [27]).

Properties UKK and NUC have been introduced by Huff in [10]. He
proved that a Banach space is nearly uniformly convex if and only if it has
the uniform Kadec—Klee property and is reflexive. The criteria for UKK and
NUC of Kéthe-Bochner sequence spaces have been proved in [14] and [21].
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It turns out that the function and sequence cases are essentially different
with regard to these properties (see [23] and also Theorem 1 below).

In the whole paper, considering a property A in the class of Banach
spaces, we denote by (A) the class of spaces with property A.

In this paper we study property 8 in Kéthe-Bochner function spaces.
This property was introduced by Rolewicz in [26]. He proved the implica-
tions UC = B = NUC, where UC denotes uniform convexity. Moreover,
the class of spaces with an equivalent norm with property 3 coincides neither
with that of superreflexive spaces ([18] and [25]) nor with the class of nearly
uniformly convexifiable spaces ([17]). It is known that in Orlicz sequence
spaces property B3 coincides with reflexivity, and in Orlicz—Lorentz function
spaces property 8 and uniform convexity are equivalent ([4] and [13]). More-
over, if a Banach space X has property 3, then both X and X™* have the
fixed point property (FPP for short) for nonexpansive self-maps on closed,
bounded, convex and nonempty sets. For X, this follows from the theorem
that if X € (NUC), then X € (FPP) ([11]). Moreover, property 3 implies
normal structure of the dual space ([20]). Since normal structure implies
weak normal structure and they coincide in the class of reflexive spaces, and
property @3 implies reflexivity, it follows that property @ implies the fixed
point property for the dual space.

Denote by N, R and R, the sets of natural, real and non-negative real
numbers, respectively. We will let (T, X, i) be a o-finite, complete measure
space. By L = L%(T) we denote the set of all p-equivalence classes of
real-valued measurable functions defined on T

A Banach space E = (E, || - ||g) is said to be a Kdthe space if E is linear
subspace of L" and:

(i) ifx € B,y € LY |y| < |z| p-a.e. in T, then y € E and ||y||g < ||z||E,
(ii) there exists a function x in E that is positive on the whole T" (see
[12] and [24]).

Every Kothe space is a Banach lattice under the obvious order (z > 0
if z(t) > 0 for p-a.e. t € T). In particular, if we consider the space E over
the non-atomic measure space (7, X, i), then we shall say that E is a Kdthe
function space. If we replace the measure space (T, X, ) by the counting
measure space (N, 2, m), then E is a Kéthe sequence space.

A Kothe space E is said to be uniformly monotone (E € (UM)) if for
every q € (0,1) there exists p € (0, 1) such that for all 0 < y < x satisfying
lz||lz =1 and ||ly||g > ¢, we have

[z =ylle <1-p

(see [7]). Then the modulus p(-) of uniform monotonicity of E is defined as
follows:

p(g) = mf{l —flz —ylz - zlle =1, llylle > ¢, 0 <y < z}.
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A Kothe space E is called order continuous (E € (OC)) if for every
x € E and every sequence (x,,) C E such that 0 < z,, < |z| and z,,, — O
p-a.e. in T, we have ||z, || — 0 (see [12] and [24]).

For a real Banach space (X, | -|x), B(X) and S(X) stand for the closed
unit ball and the unit sphere of X, respectively. For any subset A of X, we
denote by conv(A) the convex hull of A.

A Banach space (X, | - ||x) is said to be uniformly conver (X € (UC))
if for each £ > 0 there is 0 > 0 such that for any x,y € S(X) the inequality
|z — y||x > e implies ||z + y||x < 2(1 —9).

We say that for a given € > 0 a sequence {z,} C X is e-separated if

sep{xn}x = inf{||z, — zm|lx : n #m} > e.
Although the original definition of property 3 uses the Kuratowski measure

of noncompactness (see [26]), the following equivalent formulation given by
Kutzarova in [19] is more convenient for our considerations.

LEMMA 1. A Banach space X has property B if and only if for every
e > 0 there exists 6 = d(¢) > 0 such that for each x € B(X) and each
sequence (xy,) in B(X) with sep{z,}x > € there is an index k for which
o+ 2 /2lx < 1-6

A Banach space X is said to be nearly uniformly convex (X € (NUC))
if for every € > 0 there exists 0 € (0, 1) such that for every sequence {x,} C
B(X) with sep{z,}x > &, we have conv({z,}) N (1 — §)B(X) # (. This
property has been independently introduced and studied by Goebel and
Sekowski using the Kuratowski measure of noncompactness ([11]).

A Banach space X is said to have the uniform Kadec-Klee property (X €
(UKK) for short) if for every e > 0 there exists § € (0,1) such that ||z|x <
1 — § whenever (z,) C B(X), 2, — z and sep{z,}x > €.

Now, let us define the type of spaces to be considered in this paper. For a
real Banach space (X, || -||x), denote by M (T, X), or just M (X), the family
of strongly measurable functions = : 7' — X, where functions which are equal
p-almost everywhere are identified. Define

() =|z()||lx and E(X)={ze M(X):%ec E}.

Then E(X) equipped with the norm ||z| = ||Z||g becomes a Banach space
that is called a Kéthe—Bochner space.

2. Auxiliary lemmas. Define r A s = min{r, s} and r V s = max{r, s}
for r,s € R.

LEMMA 2 ([9, Lemma 1]). Let z,y € X \ {0}. Set ¥ = z/||z| x.
(i) If 7 = yllx = € and |[zllx Allyllx = n{llellx Vylx}, then
lz+yllx < (1 —ndx(e)(lzllx + lyllx),
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where dx (+) is the modulus of convezxity of the space X, i.e.
Sx(e) =inf {1 —3llz+ylx:z,yeSX),|z—ylx >c}
(ii) We have
[z +yllx <lllzllx = lyllx| + {ll=lx Allyllx ]z + ¥l x).

A geometric property, called orthogonal uniform convezxity, is essential in
studying property 3 in Kéthe-Bochner spaces ([8]). It has been introduced
in [13] in order to investigate property 3 in Banach lattices.

DEFINITION 1. We say that a Koéthe space (E,| - ||g) is orthogonally
uniformly conver (E € (UCY)) if for each ¢ > 0 there is § = d(g) > 0
such that for z,y € B(FE) the inequality ||zxa,, |z V [[yXx4,,|lE > € implies
that |[(z +v)/2||g < 1 — 9, where A;, = suppx +suppy and A + B =
(A\B)U(B\ A).

Obviously, if E € (UC), then E € (UC™). It is known that any uniformly
convex Kothe space is uniformly monotone (|7]). Moreover, the following
stronger result is true.

LEMMA 3 ([13, Lemma 3]). Let E be a Kéthe space. If E € (UCY), then
E € (UM).

It is known that in K&the sequence spaces one has the implications UC =
UC" = 3 and none of them can be reversed in general ([15]). On the other
hand, the implications

(1) UC = 8= UC*

hold in Kéthe function spaces and the last one cannot be reversed ([13], [15]
and [26]).

3. Results

THEOREM 1. Suppose that (T, X, ) is a measure space which is not
purely atomic. Let X be a real Banach space. Assume that X is separable or

X* has the Radon—Nikodym property. If E(X) has the uniform Kadec—Klee
property, then X is uniformly convexz.

Proof. We apply some techniques from the proof of Theorem 3.5 in [2]
and Theorem 3.4.9 in [23]. Since (7', X, ) is not purely atomic, there exists
A € Y such that 0 < p(A) < oo and A has no atoms. Define the family of sets
A(5,2%), for j =1,2,...,2F and k = 1,2,..., by the following iteration. We
divide A into two disjoint subsets A(1,2) and A(2,2) such that u(A(1,2)) =
1(A(2,2)). Suppose that for a fixed k the sets A(j,2%) (1 < j < 2F) are
already defined. To obtain A(j,2F!) (1 < j < 2F1) we divide every set
A(4,2%) (1 < j < 2%) into two disjoint subsets A(2j—1,2F1) and A(27, 2F+1)
such that u(A(2j — 1,2+1)) = u(A(24,2%+1)). Define
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2k 2k
Ay =JA@i-1,2%) and A7 =] A(2,2%) fork=12,....
=1 =1

Define the kth Rademacher function on A by
1 for t € A},
Tk (t) = 2

Suppose for contradiction that E(X) € (UKK) and X ¢ (UC). Then there
exists a number € > 0 and sequences (z,)5° ; and (y,)22, in B(X) satisfying

(2) [2n —ynllx > and ||z +ynllx >2(1—1/n)
for each n € N. Let

n 1
fk (t) - (xTLXAl (t)+ynXA2(t)) for k = 1727"'7
Ixalle k k

for every n € N. Then

180 = T Ml + sl < T eag + gl = 1
for all n,k € N. Analogously, we conclude that f* € B(E(X)) for every
n € N. We will show that for each n € N we have f}’ 2 fras k — oo in
E(X). Let f* be a continuous linear functional on E(X). Note that from the
implications E(X) € (UKK) = E € (UKK) = E € (KK) it follows that
E € (0C), because KK = OC in any Ké&the space (|5]). Hence, applying

Theorem 5.3 from [6] or the corresponding result from [1]|, we can write this
functional in the form

() =V(f®),9(t))du  for any f € B(X),
T

where (z,x*) stands for the value of z* € X* at x € X, and g € E'(X*),
that is, ¢ is a strongly measurable function from T to X* and E' is the Kothe
dual of E equipped with the norm defined by

bl =sup { | IF@Oh@dn: £ < B, 17z < 1)
T
for any h € M(R). Hence for any fixed n € N and f* € (E(X))*, we have
(3)  Jim fA(f = f") = Tim J((FE = )(8), 9(1)) dp

T

= Scalip A, 3 PHOK@n — ). g (0) di =0,
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This follows from the facts that ((x, —yn),g(+)) x4 is a real integrable func-
tion, the set of simple functions is dense in L', and limy_.« § , 7 (£)b(¢) dp
= 0 for every simple function b defined on A.

Define h}! = fi! — f" for all n,k € N. By (3) we conclude that h} 2 0as
k — oo in E(X) for every n € N. Moreover, by (2), we get

”ajn_ynHX ”yn_fanX

X 1
2| xallp 2||xalle

for all n,k € N. Then, applying the Hahn—Banach theorem, it is easy to
prove that for each n € N there exists a subsequence ()72, of (h})32,
such that sep{z}} g(x) > /4. Denote this subsequence still by (h})7,. Since
sep{hi}e(x) = sep{f{ } B(x), for every n € N we can find an element f" €
B(E(X)) and a sequence (f;!)72; C B(E(X)) such that sep{f}'} p(x) > /4
and f! = f" as k — oo in F(X). On the other hand, ||f*|| > 1 — 1/n for
every n € N. This means that E(X) does not have the uniform Kadec-Klee
property.

uwnz\

2 > —
AkE—Q

THEOREM 2. Let E be a Kothe function space and X be a Banach space.
If X is uniformly convex and E has property B, then E(X) has property (.

Proof. Let ¢ € (0,2). Note that property 3 can be equivalently consid-
ered on the unit sphere instead of the unit ball ([8]). Take z,z, € S(E(X)),
n = 1,2,..., such that sep{z,}gx) > €. By Lemma 3 and (1) we con-
clude that E € (UCt) and E € (UM). Denote by p(:) the modulus of
uniform monotonicity of F, by dx(-) the modulus of convexity of X defined
in Lemma 2, by §g(-) the function 6(-) used for E in Lemma 1, and by 5 (-)
the function J(-) from Definition 1 for E. We define some constants:

61 = 65(g/32) >0, 0<a<d/8Ae/224,
0<b<a,

) (1—-¢/16)V (1 —ab/4) <u<1, 52:6E<%> > 0,
p1 = p(4abdx (e/32)) > 0, p2 = p(a?b?6x(c/32)/2) > 0.

For any n # m set
Apm = {t € T zn(®)llx Allzm@)llx < u(len®)llx V llzm(®)llx)}
and A2, =T\ Al,,. We divide the proof into two parts.

I. Suppose that for any n # m we have (2, —2m)x a1 | > ab/2. Notice
that for any z,y € X satisfying [|z||x A |ly]|x < u(||z||x V ||yllx) we have

2u
(5) Hx—ﬂxSHWM—WMM<L% ).

1—u
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It lz[x = llyllx, then [lz]lx —[lyllx = (1/u = 1)|lyllx. Hence

lz = yllx < llzllx + llyllx = llzllx = llyllx +2llyllx

lllx = llyllx
1—

= (Il x = llyllx) (1 + 12—uu)

In the case when ||z||x < |ly||x, the proof is analogous. Applying (5) and

< [lzllx = llyllx + 2u

the definition of the set Al . we get
2
ab/2 < [an ~ 2m) g < (14 o YMlenCs = lom Ol

for any n 7 m. Set g(-) = [lz(-)l|lx and gn(-) = [[zn(-)]|x. Then [|g][z =
llgnllz = 1 and sep{gn}r > ab(l —u)/2(1 + u). By property 3 of E we
conclude that there exists k € N such that ||g+ gr||z < 2(1 —02), where 09 is

defined in (4). Finally, [|z+ax|| = ||| (z42) ()l x|| ; < lg+gelle < 2(1—62).
II. Assume that for some n # m we have
(6) [(@n — m)xay,, | < ab/2.

Set AL = Al A2 = A% ie.

A ={teT: lan®)lx Allem®)llx > ullza@®lx V llzm®)llx)}-
Then |[(y, — Tm)xa2|l > € —ab/2 > ¢/2. Let

A = {t € A lzn(t) — 2m(®)llx > /8(lza()llx V llzm(8)]1x)},

A% = {t e A |lzn(t) — 2m(®)llx <e/8(lza®)llx V lzm(®)lx)}.
It is easy to see that
(7) [(@n = zm)xa2]| > €/4.
Indeed, if not, then ||(z, — 2m)xa22|| > /4. Hence, applying strict mono-
tonicity of E, we get £/4 < ||(zn—2m)xa22|| < 2¢/8, which is a contradiction.
For x € X \ {0} set ¥ = z/||z||x. We will prove that
(8) [2n(t) — 2m(t)]x > /16
for every t € A?'. We claim that for any y,z € B(X) satisfying ||y|x A
Izllx = u(llyllx V llzllx) and [ly — 2] x > /8, we have

(9) 1y = Zllx > &/16.
By Lemma 2(ii), we get
e/8 < |ly —zlx <Illyllx = llzlx|+ (lyllx Alzllx) [y =2l x)
<l—u+|y—=lx,

which proves the claim in view of (4). Then, to deduce (8) it is enough to
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apply the definition of the sets A2, A%! and (9) with
[zn ()]l x V [|lzm ()l x [z (®)]lx V l|lzm (t) ]l x

for each t € A%L. Moreover, by (4), (7) and the definition of the set A?, it
follows that

and z(t) =

(10) lxixa2t||lg > ¢€/16  for i =n,m.

Define
B ={tesuppz: [|z(t)|x Allen(®)][x = b([z(@)[|x V lzn(t)]x)},
C =suppz\ B,

B'={teB:|z,() - z(t)|x > ¢/32}, B?=B\B,

Ct={teC:|z)lx = lz@®lx Allza(®)]x},  C*=C\C!
and

D' ={te B*: lam(t)|x Allza(t)llx = ab(lzm®)|x V llza(t)[x)},

D? = B\ D!,

E'={t € D' : |lza(t) — zm(D)]|x > /16},

E*=D"\ E.

IT.1. Suppose that |[|[zxp1|| > 8a. Applying Lemma 2(i), we get

1@+ 2n) ()l xxpr < (1= box(2/32))([[2() | x + l2n()llx) x5

Consequently,

w+96n H < MzOllx + llza()llx b5x(€/32)
2

Hence, applying uniform monotonicity of E, we get ||(z + z,)/2]| < 1 — p1,
where p; is defined in (4).
I1.2. Let

(11) lzx g < 8a.

(2 ()llx + llen()llx)xpr-

We divide the proof into two parts.
a. Assume that ||z, X g | > «. For every t € E' we have

lzm @)]x Allz(t)]x = ab?(Jzm (@) x V [l2(t)]|x)-
It follows by the definition of E' and B? that
[m (5) = 2(B)l|x = [ (£) — () — (2(8) — 2 ()| x > /32
for every t € E'. Applying Lemma 2(i) we get

1+ 2m) lxxer < (1= ab?0x(e/32)) ([2()llx + [l2m ()] x)xE-
Consequently,
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l"i‘xm(‘)H < 2Olx + llzm ()]l x
2 v 2
ab 5X(€/32)

(2l + llzm ()l x)x e

Hence, similarly to case II.1, we Conclude that ||(z 4+ 2,)/2|| < 1—p2, where
p2 is defined in (4).

b. Suppose that ||z, x gt || < . First we will show that
(12) [ lznC)llx = lzm (x| 5 < ab.

In view of (6), we get || [[|lzn(-)|lx — [|@m (- HX|XA1HE < ab/2. Moreover, by
the definition of the set A2, we get || |||z (-)llx — lzm ()|l x |x 42| 5 < 2(1—w).
Consequently, by (4),

H “|~’En()”X |z () |X‘ HE < ab/2+2(1 —u) < ab.
Note that if ||zxc1]] > «, then ||z,| > ||znxcr || = (1/b)a > 1. Hence
(13) lexer || < e
Furthermore ||, xc2|| < b < a. Consequently, if ||z, xc2|| > 2a, then
[Hlzn(llx = lzmOlx[xez| g = o > ab,
but this contradicts inequality (12). Thus
(14) [zmxce |l < 2a.
Moreover, we will show that
(15) [mxp2|l < 4ab.
Suppose conversely that ||z, xpz2| > 4ab and let
D' ={te D*: lzm(®)|x = lzm(®)lx Allza(®)x},  D* = D>\ D

If |xmxp2t|| > 2ab, then |zp,xp2i|| > 2. But =, € B(E(X)). Hence
|xmxp22| > 2ab. On the other hand, |x,Xxp22| < ab. Consequently,
[z ()l x — ||:Em()||XHE > ab, which contradicts (12), so inequality (15)
is proved.

Then, by (14) and (15), we get

(16) lxmXxczup2urp || < 3o+ 4ab < Ta.

Notice that, in view of inequality (8) and the definition of E?, we get
A2l N E? = (). Furthermore, inequality (10) yields ||z, X 421 ||z > €/16. Con-
sequently, by (4) and (16), we obtain

13 3
(A7) Nlzmxam (B2uc2) | = [[Tmx a2\ (p2uEtuEzuc?) | > 6~ Ta > 32"

Let z1 = ||z(*)||xXB2uc? and z2 = ||z ()| x. Define G = supp 21 =+ supp za.
Then, by (17), we get ||zoxg||E > €/32. Since E € (UC), so |21 + 2||p <
2(1 — 01), where 07 is defined in (4). Thus, by (4), (11) and (13), we obtain
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T+ T lz()llxxB2uce + 20) [ xX7\(B20C2) + [[2m ()l X
2 || = 2 .
9
<20 AR s 16 < 1-36,/8.
2 2 ||,

Combining all of the cases, we get |[(z + zx)/2||[g < 1 — A for some k € N,
where A = min{ds, p1, p2,391/8}, which finishes the proof. =

It is known that if X is reflexive, then X* has the Radon-Nikodym
property. Moreover, E is embedded isometrically into E(X) and property
A3 is inherited by subspaces. Consequently, as an immediate consequence of
Theorems 1 and 2, we get

COROLLARY 1. Let X be a real Banach space and E be a Kéthe function
space. Then E(X) has property B if and only if X is uniformly conver and
FE has property 8.

Let us collect results concerning property 8 in Kéthe-Bochner sequence
spaces. If X is an infinite-dimensional Banach space and F is a Kothe se-
quence space, then E(X) has property 3 if and only if X has property 3 and
E is orthogonally uniformly convex ([8]). If X is a finite-dimensional Banach
space, then F(X) € (B) if and only if E € (B) (|8]).

The Orlicz-Lorentz function space Ag ,, is a generalization of Orlicz func-
tion space. On the other hand, Ag, is a special Calderén-Lozanowskil space
(see [7] and [13] for the definition and bibliography). Applying the results
from [9], [13] and Corollary 1, we get the following

COROLLARY 2. Let Ag,, be an Orlicz—Lorentz function space over the

finite or infinite non-atomic measure space. Let X be a real Banach space.
Then Ap ,(X) € (UC) if and only if As,(X) € (8).
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