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Summary. E. Pannwitz showed in 1952 that for any n > 2, there exist continuous maps
@:8" — S™and f:S™ — R? such that f(z) # f(¢(x)) for any z € S™. We prove that,
under certain conditions, given continuous maps ¥, ¢ : X — X and f : X — R?, although
the existence of a point € X such that f(¢(z)) = f(¢(x)) cannot always be assured,
it is possible to establish an interesting relation between the points f(wv(x)), f(p?(x))
and f(¢?(x)) when f(p(z)) # f((x)) for any x € X, and a non-standard version of the
Borsuk—Ulam theorem is obtained.

1. Introduction. Let X be a topological space. An involution on X is
a continuous map ¢ : X — X which is its own inverse. A classical example
is the antipodal map A : S™ — S™, A(z) = —=z, where S™ denotes the
n-dimensional sphere; the points x and A(z) are said to be antipodal points.
The classical Borsuk—Ulam theorem [1] states that every continuous map f
from S™ into R™ collapses at least a pair of antipodal points, that is, there
exists a point x € S™ such that f(x) = f(A(z)).

Several generalizations of this theorem, in various directions, are well
known. In some of these generalizations the sphere is replaced by a more gen-
eral space X and the antipodal map is replaced by an involution 7" : X — X
which is free, that is, T(x) # x for any = € X. In this direction see, for
example, the references |2, 8, 9.

Let us now replace the domain S™ by a topological space X and the
identity and the antipodal map on S™ by a pair of any continuous maps v, ¢
on X. A question that naturally arises is whether or not for every continuous
map f: X — R” there exists a point z € X such that f(i(z)) = f(¢(x)).
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We first consider the one-dimensional case. If X is a compact and con-
nected space, then for every continuous map f : X — R it is possible to
show that there exists a point « € X such that

(1.1) f((x)) = flp(x)).

The proof is elementary. However, for n = 2, X = S* and ¢ = Idg« the
answer is negative. E. Pannwitz proved in [7] that for any k& > 2, there exist
continuous maps ¢ : S¥ — S¥ and f : S¥ — R? such that f(z) # f(p(x))
for any = € S*.

In this paper, our objective is to show that, under certain conditions, for
a given continuous map f : X — RZ?, although the existence of a point z € X
such that (1.1) holds cannot always be assured, it is possible to establish an
interesting relation between the points

(1.2) u=fe(@), v=[(¢'), w=[f*)
when f(¢(x)) # f(¢(x)) for any x € X. In general, such points are vertices
of a triangle in R? and we prove that this triangle degenerates to a closed
line segment determined by the vertices v and w for, at least, a point x in
a special subset of X. The existence of such a subset is ensured when X
is a complete metric space and ¢ is an a-contraction on X, where « is the
measure of noncompactness.

When 1 is the identity map and ¢ is a free involution on X, we obtain
a version of the Borsuk-Ulam theorem in the two-dimensional case.

We denote by [v,w] the closed line segment in R? joining the points v
and w. We will specifically prove the following

THEOREM 1.1. Let X be a Hausdorff space and A a compact, connected
and locally pathwise connected subset of X. Let 1, : X — X be continuous
maps such that A is invariant under ¢ and ¢, that is, Y(A) C A and
©(A) C A. Suppose that

(i) Ys — s 1 i(H1(A,Q)) — i (H1(A,Q)) is a surjective map;

(ii) (Y op)(x) = (po)(z) for any x € A.
Then for every continuous map f : X — R2, either there exists a point
x € X such that f(p(x)) = f((x)) or there exists a point x € A such that
Flev() € [f(¢*(2)), f(¥*(2))].

2. Proof of Theorem 1.1. For the proof of Theorem 1.1, we need the
following

LEMMA 2.1. Let X be a connected space and K # () a compact subset
of X. Let g1,92 : X — R be continuous maps such that g1(K) C go(K).
Then there exists a point x € X such that g1(z) = ga2(x).
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Proof. Consider the continuous map h : X — R given by h(zx) =
g2(x) — g1(x) for any x € X. Since K is compact, there exist zg, x; € K such
that

(2.1) g2(z0) < g2(x) < ga(w1)

for any = € K. Furthermore, gi(z) € g2(K) for any x € K and it follows
from (2.1) that

g2(w0) < g1(x) < g2(x1), Vo€ K,

which implies that h(zg) < 0 < h(z1) and consequently there is an x € X
such that h(xz) = 0, that is, g1(x) = g2(x). =

As a direct consequence we obtain the following

COROLLARY 2.2. Let X be a connected space and K a compact subset
of X. Let ¥, : X — X be continuous maps such that 1(K) C ¢(K). Then
for every continuous map g : X — R there exists a point x € X such that

9(¥(x)) = g(p(x)).

LEMMA 2.3. Let X be a topological space and let f,g : X — S™ be
continuous maps. Suppose that there exists u € Hy,(X,7Z) such that f.(u) #
(—=1)"*Lg.(u). Then there exists * € X such that f(z) = g(x).

Proof. Suppose that f(x) # g(z) for any x € X. Then the line segment
in R"*! from f(x) to —g(x) does not pass through the origin, since otherwise
these points would be antipodal and consequently f(x) = g(z). Hence we
can define a map F' : X x [ — S™ by

Q- Dga) @)
@2 Fe) =0Ty S+ fwp oD eX D

which is a homotopy between f and —g = A o g, where A : S — S"
denotes the antipodal map, whose degree is (—1)"*!. It follows that for any
u€ H'(X,Z), fo(u) = (=1)""gu(u). =

Proof of Theorem 1.1. Suppose that f(p(z)) # f(¢(x)) for any z € X.
Then we can define a continuous map h : X — S! by
F(b) ~ Flole)
1 (@ () = fe())]
Let g : A — S! be the restriction of h to A. It suffices to show the existence
of a point x € A such that g(¢(x)) = g(¢(x)) or equivalently,

)
fWe@) — f(¢*(@) _  fW* ) = flep(x))
I @We(@) = Fle* @Dl If (@2 (@) — fled@)I
)

In fact, for any z € A set u = f(Yp(z)) = f(pv(z)), v = f(¢*(x)) and

h(z) =

/
(2.3) ;
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w = f(¢*(x)). Then (2.3) is equivalent to
u—v w—u

lu =l Jlw—ul’

o (et (e,
o=+ Jw—u] o=+ Jfw =l )*

that is, u = f(b¢(z)) belongs to the line segment in R? from v = f(¢?(z))
to w = f(¢*(2)).

Let hy : H1(X,Q) — H1(S',Q). There are two cases to consider:

(1) there exists v € i,(H1(A,Q)) such that h.(v) # 0,

(2) hi(v) =0 for any v € i, (H1(A,Q)).
In the first case, since 1), — @, is surjective, there exists u € i, (H;(A,Q))
such that v = 1, (u) — p«(u). Then
ha(0) = B (P () =i (1)) = gu (P (1) =p(u)) = (go1) (1) = (g0p)s (1) # O,
which implies that (go).(u) # (g0 ®)«(u). It follows from Lemma 2.3 that
there exists z € A such that g(¢(x)) = g(¢(x)).

Now suppose that h,(v) =0 for any v € i, (H1 (A, Q)) and let u€ Hi (A, Q);
then i, (u) = v € i, (H1(A,Q)) and thus

ha(v) = hu(ix(u)) = (B 0 0)u(u) = gu(u) = 0,

that is, g« : H1(A,Q) — H1(S', Q) is the zero map, which implies that
g« : Hi(A,Z) — H{(S',Z) is also trivial.

It follows from the commutative diagram

7T1(A) 9 7T1(Sl)

L

Hy(A,Z) -2~ H,(S',7)

where the vertical arrows denotes the Hurewicz homomorphism, that
g« : m(A) — m(S') is the zero map. Since A is Hausdorff and locally
pathwise connected, by the lifting theorem (see, for example, [5, p. 89] and
[4, p. 26, Theorem 6.1]) there exists § : A — R such that the diagram

R

o L

A—g>Sl

and so

is commutative, where p : R — S' is the universal covering. On the other
hand, since A is invariant under ¢, we obtain the sequence {¢"(A)},en of
subsets of A such that
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e CP(A) Ce"THA) - pH(A) C p(A) C A
We consider the following compact subset of A:
(2.6) K= () ¢"(4),
neN

and we observe that )(K) C K = ¢(K). In fact, by hypothesis A is invariant
under 9 and ¢. Furthermore, @ 0 1) =1 o ¢ on A. Thus

v =0 1 ¢"@) o) € N et < (¢4 = K.
neN neN neN neN

It follows from Corollary 2.2 that there exists a point x € A such that

9(p(x)) = g(¢(x)). Then p o g(p(z)) = po g(¥(xr)), which implies that

g(e(x)) = g(¥(x)), and the result follows. =

We have the following immediate corollary:

COROLLARY 2.4. Let X be a Hausdorff space and A a compact, con-
nected and locally pathwise connected subset of X. Let ¢ : X — X be a
free involution such that p(A) C A. Suppose that Id, — ¢y : i (H1(A4,Q)) —
i«(H1(A,Q)) is a surjective map. Then for every continuous map f : X — R?
there exists x € X such that f(z) = f(e(x)).

REMARK 2.5. When A = X = S? and ¢ is the antipodal map, we obtain
the classical Borsuk—Ulam theorem in the two-dimensional case.

We observe that when i.(H;(A,Q)) is the trivial group, the homomor-
phism ¥, — @, must be surjective. Example 2.6 illustrates this case.

EXAMPLE 2.6. Let T,, = Tf--- 4T be the n-fold connected sum of tori,
which is embedded in R? symmetrically with respect to the origin. Let ¢ :
T, — T, be the antipodal map. If n is even, there exists a loop A in T},
homologous to zero, which separates 7;, into two components symmetrical
with respect to the origin such that ¢(A) = A, as indicated in Figure 1.

Fig. 1
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The group i.(H1(A,Q)) is trivial, and so by Corollary 2.4, for every
continuous map f : T, — R? there exists a point x € T}, such that f(z) =
f(e(x)). If n is odd, one can show that this is not true.

REMARK 2.7. The referee remarked that it is possible to show the exis-
tence of a point = € T), such that f(z) = f(p(z)) by using the Yang-Smith
index.

REMARK 2.8. In [8, Theorem A], we prove that if (X, T) is a free involu-
tion and X is pathwise connected such that H,(X,Zs) =0for 1 <r <n-—1,
then for every continuous map f : X — R* with k < n there exists a point
x € X such that f(xz) = f(T'(x)). We observe that the above example cannot
be obtained from that theorem, since Hy(7T,,Z2) # 0.

THEOREM 2.9. Let X be a Hausdorff space and A a compact, connected
and locally pathwise connected subset of X. Let ¢ : X — X be a contin-
uous map such that ¢(A) C A. Suppose that Id. — s @ ix(H1(A4,Q)) —
i«(H1(A,Q)) is a surjective map. Then for every continuous map g : X — R
there exists x € X such that

9(z) < g(p(x)) < 9(*(2)) < g(¢°(2)) or
9(x) = g(p(2)) = g(9*(x)) = g(¢’(x)).
Proof. Consider the continuous map f : X — R? given by

f(@) = (9(z),9(p(x))), VeeX.

By Theorem 1.1, there exists © € X such that f(¢(x)) belongs to the closed
line segment in R? from f(p?(x)) to f(z). Suppose that f(p(z)) = f(x);
this implies that

g
g

9(x) = g(p(x)) = g(¥*(2)).

)
Since g(p?(x)) < g(¢?(x)) or g(p?(x)) > ( 3(z)), the result follows. The
proof remains the same when f(p(z)) = f(¢%(x)).

Now, suppose that f(p(z) # f(z) and f(p(z)) # f(¢*(x)). Then
f(o(z)) belongs to the open line segment in R? from f(¢?(z)) to f(z), that
)~

t
is, there exists 0 < A < 1 such that f(p(x)) = f(x) + M(f(¢*(2)) — f(2)).
Thus,

gp(@) = g(x) + Mg¢® () — g(x)),
9¢° () = gp(x) + Ag¢®(x) — gp(2)),
which implies the required alternative of inequalities. m

We have the following immediate corollary:

COROLLARY 2.10. Let X be a Hausdorff space and A a compact, con-
nected and locally pathwise connected subset of X. Let ¢ : X — X be a
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continuous map such that o(A) C A and ¢* = Idx. Suppose that

s a surjective map. Then for every continuous map g : X — R there exists
a point x € X such that g(z) = g(p(x)) = g(©?(x)).

EXAMPLE 2.11. Let S® be the 3-dimensional standard sphere in complex
2-space C2. Let ¢ : S3 — S3 be the transformation defined by

90(20721) _ (62771'/320762771'/321)’

where zp, z1 are complex numbers with Zil:(] |zi| = 1. Then ¢ acts freely on
S3 and generates the cyclic group Zs.

Since H1(S3,Q) = 0, we see that Id, — ¢, is surjective. It follows from
Corollary 2.10 that for every continuous map ¢ : S® — R there exists z € S3

such that g(z) = g(e(z)) = g(¢*(x)).

3. The particular case that ¢ is an a-contraction. In the proof of
Theorem 1.1, since A is a compact subset of X, it was possible to construct
a compact subset K of A such that ¢(K) C ¢(K) (see (2.6)). In Lemma 3.4,
we prove that even if A is not compact, it is possible to ensure the existence
of such a subset, provided X is a metric space, A is complete and ¢ is an
a-contraction. Consider the following

DEFINITION 3.1. Let X be a normed linear space. For any bounded
subset A C X, we define the measure a(A) of noncompactness of A to be

a(A) = inf{k > 0: A has a finite covering by sets of diameter < k}.

Some important properties of o are given in the following proposition
(for more details see, for example, [3] and [6]).

PROPOSITION 3.2. Suppose A, B are bounded subsets of X and k € R.
Then:

(1) A C B implies a(A) < a(B);
(2) a(AU B) = max{a(A),a(B)};
(3) a(A+ B) < a(A) + a(B);

(4) a(kA) = [k|a(A);
(5) af
(6) (A
(7

2

Co A) = a(A), where Co A denotes the convex hull of A;
A) = a(A), where A denotes the closure of A;
) =0 if and only if A is totally bounded.

Q

(0%

) a4

DEFINITION 3.3. Suppose A is a subset of X and ¢ : A — X is a
continuous map. The map ¢ is said to be an a-contraction if there exists an
r, 0 <r < 1, such that a(¢(B)) < ra(B) for any bounded subset B of A.
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LEMMA 3.4. Let M be a metric space and A a bounded and complete
subset of M. Let ¢, : M — M be continuous maps such that A is invariant
under ¢ and ¢ and () 0 p)(a) = (p 0 ¥)(a) for any a € A. Then if o is
an a-contraction on A, there exists a compact subset K C A such that
Y(K) Cp(K) =K.

Proof. Let K be the intersection of subsets K, of A inductively defined
by K1 = ¢(A) and K, 1 = ¢(K,). We will show that a(K) = 0, which
implies by Proposition 3.2(7) that K is totally bounded, and since A is

complete we conclude that K is compact. In fact, for any n € N, since ¢ is
an a-contraction, from Proposition 3.2(1) and (6) we have

(3.1) a(Kn) = a(p(Kn-1)) = a(p(Kn-1)) < ra(Kn-1)
<r?a(K, o) < --- <1 la(K)) < raA).

Since K = () K, we have K C K, for any n € N. It follows from Proposi-
tion 3.2(1) and from (3.1) that

(3.2) a(K) < a(K,) <r"a(A), VneN.

Since 0 < r < 1, we have lim,,_,, 7 = 0 and from (3.2) we conclude that
a(K) = 0.

Now, we will show that K = p(K). It is easy to see that ¢(K) C K. On
the other hand, K C (k) for any n € N. Let x € K. Then = = ¢p(z,,) for
some x, € K,. Let S = {z1,22,...} and observe that «(S) = 0; thus S is
compact and so (z,,)nen has a subsequence converging to some y € K. Then
x = ¢(y) and thus K C ¢(K). The condition (K) C K = ¢(K) follows
from the commutativity of the maps ¢ and ) on A. u

As a consequence of Lemma 3.4 we have the following version of Theo-
rem 1.1 in the case that ¢ is an a-contraction.

THEOREM 3.5. Let M be a metric space and let A be a bounded, com-
plete, connected and locally pathwise connected subset of M. Let i, p :
M — M be continuous maps such that A is invariant under ¢ and .
Suppose that

(i) ¥w = @u 1 i (H1(A, Q) — ix(H1(A, Q)) is a surjective map;

(ii) (Y op)(@) = (pov)(z) for any x € A.
Then for every continuous map f : X — R2, either there exists a point
x € X such that f(p(z)) = f((x)) or there exists a point x € X such that

Flev(@)) € [f(* (@), f(#*(2))].

Proof. The arguments are similar to those used in the proof of Theo-
rem 1.1: just observe that the existence of a compact subset K of A such
that ¥(K) C ¢(K), as in (2.6), is ensured by Lemma 3.4. m
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