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Summary. We show:

(i) The statement P(ω) = “every partition of R has size ≤ |R|” is equivalent to the
proposition R(ω) = “for every subspace Y of the Tychonoff product 2P(ω) the
restriction B|Y = {Y ∩B : B ∈ B} of the standard clopen base B of 2P(ω) to Y
has size ≤ |P(ω)|”.

(ii) In ZF, P(ω) does not imply “every partition of P(ω) has a choice set”.
(iii) Under P(ω) the following two statements are equivalent:

(a) For every Boolean algebra of size ≤ |R| every filter can be extended to an
ultrafilter.

(b) Every Boolean algebra of size ≤ |R| has an ultrafilter.

1. Notation and terminology. LetX = (X,T ) be a topological space.
We shall denote topological spaces by boldface letters and underlying sets
by lightface letters.

X is said to be compact iff every open cover U of X has a finite sub-
cover V. Equivalently, X is compact iff every family G of closed subsets of X
with the finite intersection property, fip for abbreviation, has a non-empty
intersection.

A subset A of X is called a regular open set if A = int(A). It is known
that the set of all regular open sets of X forms a Boolean algebra under the
following set of operations:

• 1 = X and 0 = ∅,
• U ∧ V = U ∩ V,
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• U ∨ V = int(U ∪ V ),
• U ′ = X \ U .

Given a set X, we introduce the following notions and notations:

1. BPI(X): Every filter of X is included in an ultrafilter of X.
2. UF(X): There is a free ultrafilter on X.
3. P(X): Every partition of P(X) has size ≤ |P(X)|.
4. A family A of subsets of X is called independent iff for any two non-

empty finite, disjoint subsets C,B ⊆ A the set
⋂
C ∩

⋂
{Bc : B ∈ B} is

infinite.
5. A family A = {Ai : i ∈ I} ⊆ P(X) is almost disjoint iff each Ai is

infinite and for all i, j ∈ I, i 6= j, |Ai ∩Aj | < ℵ0.
6. 2X denotes the Tychonoff product of the discrete space 2 (2 = {0, 1})

and
B(X) = {[p] : p ∈ Fn(X, 2)},

where Fn(X, 2) is the set of all finite partial functions from X into 2,
and

[p] = {f ∈ 2R : p ⊂ f}
will denote the standard (clopen) base for the product topology on 2X .

7. F(X) will denote the set of all filters of X together with the topology
TF generated by the family

CX = {[A] : A ∈ P(X)}, where [A] = {F ∈ F(X) : A ∈ F}.
Since the function H : P(X) → CX , H(A) = [A], is clearly 1 : 1 and
onto it follows that |CX | = |P(X)|.

8. S(X) will denote the Stone space of the Boolean algebra of all subsets
of X, i.e., the set of all ultrafilters on X together with the topology it
inherits as a subspace of F(X).
Even though [A] for A ∈ P(X) may not be a closed set in F(X) (if
a ∈ A, b ∈ Ac and C = {a, b} then HC /∈ [A] where HC is the filter
of all supersets of C; since for every basic neighborhood [H] of HC ,
the filter H{a} of all supersets of {a} is in [A]∩ [H], it follows that [A]
is not closed), it turns out that the restriction [A] ∩ S(X) is a closed
subset of S(X) and, in addition,

BX = {[A] ∩ S(X) : A ∈ P(X)}
is a (clopen) base for S(X).

9. S∗(X) will denote the subspace of all free ultrafilters of S(X) and

B∗X = {〈A〉 = [A] ∩ S∗(X) : A ∈ P(X)}, where 〈A〉 = [A] ∩ S∗(X),

is the restriction of the base BX to S∗(X). We point out here that
¬UF(X) implies S∗(X) = ∅ and consequently B∗X = ∅. Hence, B∗X 6= ∅
↔ UF(X).
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10. ∼ will denote the equivalence relation on P(X) given by: A ∼ B iff
|A4B| < ℵ0, where 4 denotes the operation of symmetric difference,
and P(X)/fin stands for the quotient set of ∼. For every A ∈ P(X),
(A) will denote the ∼ equivalence class of A, i.e., (A) = {B ∈ P(X) :
|A4B| < ℵ0}.

11. BF(X): For every Y ⊆ F(X), |{[A] ∩ Y : A ∈ P(X)}| ≤ |P(X)|.
12. BPI (Boolean Prime Ideal Theorem, Form 14 in [6]): Every Boolean

algebra has a prime ideal.

2. Introduction and preliminary results. There is a plethora of
characterizations of BPI in several branches of mathematics. For most of
these characterizations we refer the reader to the book by P. Howard and
J. E. Rubin [6]. Well-known equivalents related to Boolean algebras are listed
in the next theorem:

Theorem 1. The following are equivalent:

(i) BPI.
(ii) Every ideal J of a Boolean algebra B is a subset of a prime ideal I

of B.
(iii) Every Boolean algebra has an ultrafilter.
(iv) Every filter H of a Boolean algebra B is a subset of an ultrafilter F

of B.
(v) For every set X, BPI(X).

We recall here that for the proof of (i)→(ii) one applies BPI to the
quotient B/J to get a prime ideal P of B/J . Then the inverse image I of P
under the canonical homomorphism is a prime ideal including J .

For X = ω the following characterizations of BPI(ω) have been estab-
lished in [3] and [8] respectively.

Theorem 2 ([3]). “S(ω) is compact” iff BPI(ω).

Theorem 3 ([8]). The following are equivalent:

(i) BPI(ω).
(ii) The product 2R is compact.
(iii) In a Boolean algebra B of size ≤ |R| every filter extends to an ultra-

filter.

Proof. (iii)→(i) is straightforward. For a proof of (ii)↔(i) different than
the one given in [8] see [3].

To complete the proof of the theorem, fix a Boolean algebra (B,0,1,+, ·)
of size ≤ |R| (the operations + and · of B denote symmetric difference and
join, respectively). Let H be a filter of B. By our hypothesis the Tychonoff
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product 2B is compact. We claim that for every b ∈ B the set

Gb = {f ∈ 2B : 0 /∈ f−1(1) ∧ (∀a, c ∈ f−1(1), f(a.c) = 1)

∧ (f(b) = 1 ∨ f(1 + b) = 1) ∧H ⊆ f−1(1)}
is closed. Indeed, fix h ∈ Gc

b. We consider the following cases:

• h(0) = 1. Clearly, V = [{(0, 1)}] is a neighborhood of h missing Gb.
• ∃a, c ∈ h−1(1), h(a · c) = 0. Clearly, V = [{(a, 1), (b, 1), (a · c, 0)}] is

a neighborhood of h disjoint from Gb.
• h(b) = 0 and h(1+b) = 0. It is easy to see that V = [{(b, 0), (1+b, 0)}]

is a neighborhood of h avoiding Gb.
• There exists a ∈ H with h(a) = 0. In this case, V = [{(a, 0)}] is a

neighborhood of h with V ∩Gb = ∅.
It is straightforward to verify that the family G = {Gb : b ∈ B} has the fip.

Thus, by the compactness of 2B,
⋂
G 6= ∅. Clearly, for every g ∈

⋂
G, g−1(1)

is an ultrafilter of B including H.
In view of Theorems 1 and 3, the most natural question which pops up

at this point, is the following question which was also asked in [8]:

Question 1. Can the statement: WBPI(ω) = Every Boolean algebra B
of size ≤ |R| has an ultrafilter be added to the list of Theorem 3?

Remark 4. (i) In [5] it has been shown that there exists a ZF model
N [Γ ] which is an extension of the basic Cohen modelM satisfying UF(ω)
but not BPI(ω). Thus, in N [Γ ] the Boolean algebra B = (P(ω),4,∩), has
free ultrafilters but there is a filter of B which is not a subset of any ultrafilter
of B.

(ii) Regarding Question 1, we point out here that we cannot use the argu-
ment with the quotient Boolean algebra following Theorem 1. Indeed, B/J is
a partition of B and since |B| ≤ |R|, we may consider B/J as a partition
of R. Hence, if P(ω) holds true, then |B/J | ≤ |R| and BPI(ω) is equiva-
lent to WBPI(ω). However, P(ω) is unprovable in ZF as the forthcoming
Theorem 13 shows.

The research in this paper is motivated by Question 1. Using a different
technique than the one outlined after Theorem 1, we will prove in Theorem
11 that under BF(ω) the statements BPI(ω) and WBPI(ω) are equivalent.
Surprisingly enough, we will see in Theorem 13 thatBF(ω) is just a disguised
form of P(ω).

3. Compactness of certain subspaces of F(ω) in ZF. It is very well
known that in ZFC the subspaces S(ω) and S∗(ω) of F(ω) are compact. S(ω)
is homeomorphic to the Čech–Stone compactification β(ω) of the discrete
space ω, and S∗(ω) = S(ω) \ {ω} is a closed subspace of S(ω). However,
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in ZF, S(ω) need not be compact. So, one may ask whether it could be the
case that in some model M of ZF, S∗(ω) is compact but S(ω) fails to be
compact.

Surprisingly enough, the question has a trivial answer. Indeed, suppose
ω has no free ultrafilters (that is, UF(ω) fails), In this case, S∗(ω) is empty,
hence compact. Furthermore, BPI(ω) must fail in this case, so S(ω) is not
compact, by Theorem 2. (One model of ZF + ¬UF(ω) is Feferman’s model
M2 in [6].)

However, the next theorem says that the possibility of S∗(ω) = ∅ is in fact
the only impediment to the equivalence of compactness of S∗(ω) and S(ω).

Theorem 5.

(i) “S∗(ω) is compact” iff ¬UF(ω) ∨ “S(ω) is compact”.
(ii) UF(ω) ∧ “S∗(ω) is compact ” iff “S(ω) is compact”.
(iii) UF(ω) does not imply “S∗(ω) is compact”.
(iv) “S∗(ω) is compact” 9 UF(ω).

Proof. (i) We show (→) as the converse is straightforward (recall that
S∗(ω) is a closed subspace of S(ω)). If UF(ω) fails there is nothing to show.
AssumeUF(ω) ∧ “S∗(ω) is compact”. We shall prove that “S(ω) is compact”.
To this end, it suffices by Theorem 2 to show that BPI(ω) holds true. Let
H be a free filter of ω. Clearly, UF(ω) implies that

{〈H〉 : H ∈ H}

is a family of non-empty sets of the clopen base Bω with the fip. Hence, by
the compactness of S∗(ω),

W =
⋂
{〈H〉 : H ∈ H} 6= ∅.

It is easy to see that every F ∈W is an ultrafilter of ω extending H.
(ii) (→) is immediate from (i). For (←), use Theorem 2, which implies

that “S(ω) is compact” implies UF(ω).
(iii) It is known that in the model N [Γ ] (see Remark 4), UF(ω) holds

but BPI(ω) fails. Hence, by (i) and Theorem 2, “S∗(ω) is compact” fails
in N [Γ ].

(iv) Note that in any modelM of ZF and ¬UF(ω), “S∗(ω) is compact”
holds true.

4. The size of |B∗ω| and |P(ω)/fin| in ZF. If UF(ω) fails then B∗ω = ∅
and there is nothing to say about |B∗ω|. Regarding P(ω)/fin however, we
observe that in ZF,

(1) |P(ω)/fin| ≥ |R|.
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Indeed, if A = {Ai : i ∈ R} is an almost disjoint family of ω (one can
easily define such families in ZF), then, for all distinct i, j ∈ R, we have
(Ai) 6= (Aj) and the function T : R → P(ω)/fin given by T (i) = (Ai) is
easily seen to be 1 : 1.

We point out here that the inequality given in (1) can consistently be
strict in ZF. Indeed, A. Blass has shown in [1, Proposition 3.2, p. 745 and
Proposition 3.7, p. 748] that in his modelM[R0], UF(ω) fails but P(ω)/fin
has a free ultrafilter. Since UF(ω) is equivalent to saying that R has a free
ultrafilter (see [5] for a proof), we see that possibly |P(ω)/fin| 6= |R|. Thus,
in view of (1),M[R0] satisfies |P(ω)/fin| > |R|. With no free ultrafilters on
ω in this model, |B∗ω| = 0. In particular,

M[R0] � |B∗ω| < |R| < |P(ω)/fin|.

In ZF + UF(ω) things are different. We observe that for every A ∈
P(ω), 〈A〉 6= ∅, and for every A,B ∈ P(ω),

(2) 〈A〉 = 〈B〉 iff (A) = (B) (iff |A4B| < ℵ0).

To see (→) assume that 〈A〉 = 〈B〉 but |A4B| = ℵ0. Then either |A\B| = ℵ0
or |B \ A| = ℵ0. Assume that |A \ B| = ℵ0 and let, by UF(ω), U be a free
ultrafilter of A \ B. Clearly, the filter F of ω generated by U is easily seen
to be a free ultrafilter on ω such that F ∈ 〈A〉 \ 〈B〉, a contradiction. Thus,
|A4B| < ℵ0.

To see (←) assume that |A 4 B| < ℵ0 and 〈A〉 6= 〈B〉. Clearly, either
〈A〉 \ 〈B〉 6= ∅ or 〈B〉 \ 〈A〉 6= ∅. Assume 〈A〉 \ 〈B〉 6= ∅ and fix F ∈ 〈A〉 \ 〈B〉.
Clearly, A,Bc ∈ F . Hence, A ∩Bc ∈ F and since F is free, it follows easily
that |A ∩Bc| = ℵ0. Thus, |A4B| = ℵ0, a contradiction.

Hence, by (2), the function f : P(ω)/fin → B∗ω given by the formula
f(G) =

⋃
{〈A〉 : A ∈ G} is well defined, 1 : 1 and onto. Thus, UF(ω) implies

|B∗ω| = |P(ω)/fin|. The converse also holds, since if |B∗ω| 6= 0 then UF(ω).
Thus

(3) UF(ω) iff |B∗ω| = |P(ω)/fin|.

Hence, in view of (3) and (1), we have a proof of part (i) of the next theorem.

Theorem 6.

(i) |P(ω)/fin| ≤ |R| ∧UF(ω) iff |B∗ω| = |R|.
(ii) “P(ω)/fin is well-orderable” iff “P(ω) is well-orderable”. Hence,

“P(ω)/fin is well-orderable” implies |B∗ω| = |P(ω)/fin| = |R|.

Proof. (ii) (→) If P(ω)/fin is well-orderable, then by (1), R is well-
orderable. Hence, P(ω)/fin has a choice set, and UF(ω) holds true.

(←) This is straightforward.
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Remark 7. Since P(ω)/fin is a partition of P(ω), it follows that if
“P(ω)/fin has a choice set” then |P(ω)/fin| ≤ |R|. Thus, “P(ω)/fin has a
choice set” ∧ UF(ω) → |P(ω)/fin| = |B∗ω| = |R|.

Next we show that the size of each of the bases Cω and Bω is equal to |R|.
Theorem 8. |Cω| = |Bω| = |R|.
Proof. The functions T : P(ω) → Cω, T (A) = [A], and H : P(ω) → Bω,

H(A) = [A] ∩ S(ω), are clearly 1 : 1 and onto. Indeed, if A 6= B then either
A\B 6= ∅ or B \A 6= ∅. Assume A\B 6= ∅. Then the filter F of all supersets
of A \B is in [A] \ [B], and the fixed ultrafilter Fx generated by any element
x ∈ A \ B is in [A] ∩ S(ω) but not in [B] ∩ S(ω). Hence, T (A) 6= T (B) and
H(A) 6= H(B).

Question 2.

(a) Does UF(ω) imply |B∗ω| ≤ |R|?
(b) What is the status of the implications between “|B∗ω| = |R|” and

“P(ω)/fin has a choice set”?

Remark 9. Regarding Question 2(a), we note that |[R]ω| = |R| (Form
368 in [6]) implies the inequality |B∗ω| ≤ |R|. However, the status of the
implication between UF(ω) and “|[R]ω| = |R|” is unknown to us. It is also
indicated as unknown in [6].

In [4] it has been shown, in ZF, that the function

T : S(ω)→ 2P(ω), T (F) = χF ,

is 1 : 1, onto, continuous and such that for every A ∈ P(ω),

T ([A]) = [{(A, 1)}] ∩ T (S(ω)).

If UF(ω) holds true, then for every A ∈ P(ω), 〈A〉 6= ∅ and consequently
the restriction T ∗ : S∗(ω)→ 2P(ω) of T to S∗(ω) is an embedding such that

T ∗(〈A〉) = [{(A, 1)}] ∩ T ∗(S∗(ω)).

Hence,

|B∗ω| ≤ |R| iff |{[p] ∩ T ∗(S∗(ω)) : p ∈ Fn(P(ω), 2)}| ≤ |R|.
Thus,UF(ω) andR(ω) (= For everyH ⊂ 2P(ω), |{[p]∩H : p ∈ Fn(P(ω), 2)}|
≤ |R|) together imply |B∗ω| = |R|.

We shall come back again to R(ω) in Section 6, where we will show that
R(ω), BF(ω) and P(ω) are all equivalent.

5. BPI(ω) and WBPI(ω) are equivalent in ZF+BF(ω). Before we
state and prove the main result of this section, we need to establish some
auxiliary results.
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Proposition 10.

(i) Cω(= {[A] : A ∈ P(ω)}) is a base for TF of size P(ω).
(ii) Let A ∈ P(ω). Then F ∈[A] iff F ∪ {A} has the fip.
(iii) For all A ∈ P(ω), [A] is a regular open set.

Proof. (i) Clearly Cω is closed under finite intersections (F ∈ [A] ∩ [B]
iff A,B ∈ F iff A ∩ B ∈ F iff F ∈ [A ∩ B]) and covers F(ω). The second
assertion follows from Theorem 8.

(ii) Fix A ∈ P(ω). We have: F ∈ [A] iff ∀F ∈ F , [F ] ∩ [A] 6= ∅ iff
∀F ∈ F , [F ∩ A] 6= ∅ iff ∀F ∈ F , F ∩ A 6= ∅ (→ of the last equivalence is
straightforward, and for the other implication note that the filter G generated
by F ∪ {A} satisfies G ∈ [A∩F ]; hence [A∩F ] 6= ∅) iff F ∪ {A} has the fip.

(iii) Fix A ∈ P(ω). Obviously, [A] ⊆ int([A]). To show int([A]) ⊆ [A], let
[B] be any basic open set such that [B] ⊆ [A]. It suffices to show [B] ⊆ [A].
Suppose [B] 6⊆ [A]. Then B 6⊆ A, so let F be the filter generated by {B \A}.
Then F ∈ [B], but by (ii), F /∈ [A], a contradiction.

Theorem 11. Assume BF(ω). The following are equivalent:

(i) In every Boolean algebra of size ≤ |R| every filter can be extended
to an ultrafilter.

(ii) Every Boolean algebra of size ≤ |R| has an ultrafilter.
(iii) BPI(ω).

Proof. In view of Theorem 3 and the obvious implication (i)→(ii), it
suffices to show that (ii) implies (iii). Fix a free filter H of ω and consider
the subspace H(ω) = {F ∈ F(ω) : H ⊆ F} of F(ω).

Claim. For every A ∈ P(ω), [A]∩H(ω) is a regular open subset of H(ω).

Proof of the Claim. Fix A ∈ P(ω). Clearly, intH(ω)([A] ∩H(ω)) =

intH(ω)([A] ∩ H(ω)). We show that this set is equal to [A] ∩ H(ω). Since
[A] ∩H(ω) ⊆ [A] ∩H(ω), it follows that

(4) [A] ∩H(ω) ⊆ intH(ω)([A] ∩H(ω)).

For the reverse inclusion, we relativize the proof of Proposition 10(iii). As-
sume [B] ∩ H(ω) ⊆ [A] ∩ H(ω). Let F ∈ [B] ∩ H(ω), and suppose toward
a contradiction that F /∈ [A]. Since A /∈ F , the collection F ∪ {B \ A} has
the fip, so it generates a filter G. But then G ∈ [B] ∩ H(ω) and G /∈ [A], a
contradiction. Thus F ∈ [A] ∩H(ω), and

(5) intH(ω)([A] ∩H(ω)) ⊆ [A] ∩H(ω).

From (4) and (5) we have intH(ω)([A] ∩H(ω)) = [A] ∩H(ω) as required.

By the claim, A = {[A] ∩ H(ω) : A ∈ P(ω)} is a family of regular open
sets of H(ω) and by BF(ω), |A| ≤ |R|.
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Let B be the Boolean algebra of all regular open sets of H(ω) generated
by the family A. Clearly, |B| ≤ |R|. Let, by our hypothesis, U be an ultrafilter
of B and put

F = {A ∈ P(ω) : [A] ∩H(ω) ∈ U}.
To complete the proof of the theorem it suffices to show:

Claim. F is an ultrafilter of ω and H ⊆ F .
Proof of the Claim. Since, for every H ∈ H, [H] ∩ H(ω) = H(ω) and U

is a filter, it follows that H ∈ F , and consequently H ⊆ F . Since ω ∈ H, it
follows that ω ∈ F . Furthermore, it is trivially true that ∅ /∈ F .

We next show that F is a filter. Fix A,B ∈ F . Then, [A] ∩ H(ω), [B] ∩
H(ω) ∈ U , and consequently [A]∩H(ω)∩ [B]∩H(ω) = [A∩B]∩H(ω) ∈ U .
Thus, A ∩B ∈ F .

Fix A ∈ F and B ∈ P(ω) with A ⊆ B. We show that B ∈ F . Clearly,
[A] ∩ H(ω) ∈ U and [A] ∩ H(ω) ⊆ [B] ∩ H(ω). Thus, [B] ∩ H(ω) ∈ U and
B ∈ F as required.

Next we show that F is maximal. Fix A ∈ P(ω). For every filter G ∈
H(ω), one of G ∪ {A} or G ∪ {Ac} has the fip, so G ∈ [A] ∪ [Ac]. It follows
that ([A] ∩H(ω)) ∪ ([Ac] ∩H(ω)) = H(ω), and hence [A] ∨ [Ac] = 1 in the
regular open algebra B. Thus either [A] ∈ U or [Ac] ∈ U , and either A ∈ F
or Ac ∈ F .

Remark 12. Let H(ω) and A be as in the proof of Theorem 11. Clearly,
for every A,B ∈ P(ω) satisfying

(6) ∃H ∈ H such that H ∩ (A \B) = H ∩ (B \A) = ∅
we have [A] ∩ H(ω) = [B] ∩ H(ω). Furthermore, the binary relation ∼ on
P(ω) given by

A ∼ B iff ∃H ∈ H satisfying (6)

is easily seen to be an equivalence relation on P(ω). Hence, if P(ω) holds
true, then |A| = |P(ω)/∼| ≤ |R|, and the conclusion of Theorem 11 goes
through if we replace the hypothesis BF(ω) with P(ω).

6. Some equivalents of BF(ω). Remarks 9 and 12 indicate that the
statements BF(ω), R(ω) and P(ω) might be equivalent. We show next that
this is the case.

Theorem 13. The following are equivalent:

(a) BF(ω).
(b) R(ω): For every H ⊂ 2P(ω), |{[p] ∩H : p ∈ Fn(P(ω), 2)}| ≤ |P(ω)|.
(c) P(ω): Every disjoint family of subsets of P(ω) has size ≤ |P(ω)|.

In particular, “every partition of R has a selector” implies BF(ω).
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Proof. (a)→(b). Fix an independent family A of subsets of ω of size |R|
(such a family is known to exist in ZF) and let H ⊆ 2A. We will show that
|{H ∩ [p] : p ∈ Fn(A, 2)}| ≤ |R|.

Let S = {Fh : h ∈ H} where, for every h ∈ H, Fh is the filter on ω
generated by the filterbase

Wh = {B0 ∩ · · · ∩Bn−1 : 0 < n < ω and ∀i ∈ n (h(Bi) = 1 or h(Bc
i ) = 0)}.

It is straightforward to verify that for all h, f ∈ H, f 6= h ↔ Ff 6= Fh.
Hence, |H| = |S|.

For every p ∈ Fn(A, 2) let

Ap =
⋂
{B ∈ A : p(B) = 1 or p(Bc) = 0}.

By our hypothesis,

(7) |{S ∩ [Ap] : p ∈ Fn(A, 2)}| ≤ |{S ∩ [A] : A ∈ P(ω)}| ≤ |R|.

Claim. For every h ∈ H and p ∈ Fn(A, 2), Fh ∈ [Ap]↔ h ∈ [p].

Proof of the Claim. To see (→) we assume that Fh ∈ [Ap] but h /∈ [p].
This means that there exists A ∈ Dom(p) such that h(A) 6= p(A). We
consider the following cases:

• h(A) = 1 and p(A) = 0. Since Fh ∈ [Ap] and h(A) = 1 we have
Ap ∈ Fh and A ∈ Fh. Since p(A) = 0 we infer that Ac ⊇ Ap, hence Ac ∈ Fh,
a contradiction.
• h(A) = 0 and p(A) = 1. Since h(A) = 0 we have Ac ∈ Fh. Since

p(A) = 1 we see that A ⊇ Ap, hence A ∈ Fh, a contradiction.

Hence, h ∈ [p].
To see (←) assume that h ∈ [p]. Clearly, Ap ∈ Wh, and consequently

Ap ∈ Fh. Hence, Fh ∈ [Ap] as required, finishing the proof of the claim.

In view of the claim, it follows that for every p, q ∈ Fn(A, 2),

S ∩ [Ap] = S ∩ [Aq] ↔ H ∩ [p] = H ∩ [q].

Hence, the function f : {H ∩ [p] : p ∈ Fn(A, 2)} → {S ∩ [Ap] : p ∈ Fn(A, 2)}
given by

f(H ∩ [p]) = S ∩ [Ap]

is well defined and 1 : 1. Hence, by (7), |{H ∩ [p] : p ∈ Fn(A, 2)}| ≤ |R| as
required.

(b)→(c). Fix a partition P = {Pi : i ∈ I} of P(ω) and let S = {χPi :
i ∈ I}. Let B = {p ∈ Fn(P(ω), 2) : Dom(p) = p−1(1) ⊂ Pi for some
i ∈ I}. Clearly, for every p ∈ B, Dom(p) ⊂ Pi, [p] ∩ S = {χPi} and, by our
hypothesis, |P| = |S| = |{[p] ∩ S : p ∈ B}| ≤ |{[p] ∩ S : p ∈ Fn(P(ω), 2)}|
≤ |R| as required.
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(c)→(a). Fix S ⊆ F(ω). It is easy to see that the binary relation ≈ on Cω
given by P ≈ Q iff P ∩ S = Q∩ S is an equivalence relation. Since Cω/≈ is
a partition of Cω and Cω in view of Theorem 8(i) has size |R|, it follows by
our hypothesis that |Cω/≈| ≤ |R|. Since |{[A] ∩ S : A ∈ P(ω)}| = |Cω/≈|,
the conclusion of BF(ω) for the set {[A] ∩ S : A ∈ P(ω)} is satisfied.

Remark 14. (i) We point out here that for every infinite set X, BF(X)
and P(X) are equivalent.

To see BF(X) → P(X), fix a partition P = {Ai : i ∈ I} of X and let
Y = {Fi : i ∈ I}, where for every i ∈ I, Fi is the filter generated by {Ai}.
By BF(X) we have |{[A] ∩ Y : A ∈ P(X)}| ≤ |X|. Since [Ai] ∩ Y = {Fi}
for every i ∈ I, it follows that the function f : I → {[A] ∩ Y : A ∈ P(X)},
f(i) = {Fi}, is 1 : 1. Thus, |P | ≤ |X|.

To see that P(X) → BF(X), fix Y ⊆ F(X) and define an equivalence
relation ∼ on P(X) by requiring: A ∼ B iff [A] ∩ Y = [B] ∩ Y . Clearly,
|{[A] ∩ Y : A ∈ P(X)}| = |P(X)/∼| ≤ |X|.

(ii) We do not know whether for every infinite set X, R(X) and P(X) are
equivalent. Under the extra assumption LIF(X) = “X has an independent
family of size |P(X)|” the proof of Theorem 13 goes through with X in
place of ω. However, it is consistent with ZF that there exist sets having no
independent families. e.g., sets which do not split into two infinite sets. For
the relative strength of ∀X,LIF(X) we refer the reader to [2].

7. Independence results

Theorem 15.

(i) P(ω) implies “every family A = {Ai : i ∈ R} of 2-element sets of
P(R) has a choice set”. In particular, P(ω) is not provable in ZF.

(ii) UF(ω) does not imply P(ω). In particular, UF(ω) does not imply
“every partition of R has a choice set” (Form 203 in [6]).

(iii) P(ω) does not imply “every partition of R has a choice set”.

Proof. (i) Fix a family A = {Ai : i ∈ R} of 2-element sets of P(R).
Without loss of generality we may assume that

⋂
Ai = ∅ for all i ∈ R (if

A,B ∈ Ai and A ⊆ B then we choose A, otherwise if A\B 6= ∅ and B\A 6= ∅
then we replace A by A\B and B with B \A). Fix a 1 : 1 and onto function
f : R × R→ R and for every i ∈ R, let fi : R→ R × {i} be the function
given by fi(x) = (x, i). Clearly, {{fi(X) : X ∈ Ai} : i ∈ R} is a family of
subsets of P(R × R) such that

⋃
{{fi(X) : X ∈ Ai} : i ∈ R} is a family

of disjoint subsets of R × R. Hence, H = {f(fi(X)) : i ∈ R, X ∈ Ai} is
a family of disjoint subsets of R. Thus, by our hypothesis, we can identify
H with a subset of R and consequently we may consider A as a family of
2-element subsets of R. Hence, we may choose from each member of A its
largest element.
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The second assertion follows from the fact that the statement “every
family A = {Ai : i ∈ R} of 2-element sets of P(R) has a choice set” fails in
the second Cohen Model, ModelM7 in [6]. So, P(ω) fails inM7.

(ii) It is shown in [5] that there is a model of ZF+UF(ω) in which there
is a family of 2-element members of P(R) with no choice set. Thus P(ω) is
false in this model by (i).

(iii) Let N denote the Basic Cohen Model. We recall that N is a sym-
metric model obtained by adding first a countable number of generic reals
along with the set A containing them to a ground modelM of ZFC + CH
and then retracting to a model N ⊂M[G] which contains the set A but no
well-ordered enumeration of any infinite subset of A. We recall the following
additional facts about N ,M[G] and the set A:

(a) M and M[G] have the same cardinal numbers. In particular, in N
we have ℵ1 < |R| (ℵ1 = |P(ω)M| and P(ω)M ⊂ P(ω)N imply ℵ1 <
|P(ω)N | = |R|).

(b) For any X ∈ N , there is an ordinal α and a function f ∈ N such
that f : X → [A]<ω × α is one-to-one (see Lemma 5.25 in [7]).

(c) The set A is dense in R.
Clearly, in view of (c), P = {Pn ∩ A : n ∈ N} ∪ {R \ A}, where Pn =

(n, n+ 1) ∩A, is a (countable) partition of R without a choice set.
We show next that every partition of R in N has size ≤ |R|. To see

this, fix some P ∈ N which is a partition of R. By (b), let k be the least
well-ordered cardinal number α for which there is a 1 : 1 function f ∈ N ,
f : P → α× [A]<ω. InM[G], where P has a choice function, we have |P| ≤
|R| = ℵ1 by (a). Thus there is no onto function from P to ℵ2, inM[G] or in
N . It follows that k ≤ ℵ1, and so in N , |P| ≤ |ℵ1×[A]<ω|. Since (ℵ1 < |R|)N
by (a) and |[A]<ω| ≤ |R|, we have |P| ≤ |R|.
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