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Summary. For a prime p > 2, an integer a with gcd(a, p) = 1 and real 1 ≤ X, Y < p, we
consider the set of points on the modular hyperbola

Ha,p(X, Y ) = {(x, y) : xy ≡ a (mod p), 1 ≤ x ≤ X, 1 ≤ y ≤ Y }.

We give asymptotic formulas for the average valuesX
(x,y)∈Ha,p(X,Y )

x 6=y

ϕ(|x− y|)
|x− y| and

X
(x,y)∈Ha,p(X,X)

x 6=y

ϕ(|x− y|)

with the Euler function ϕ(k) on the differences between the components of points of
Ha,p(X, Y ).

1. Introduction. For a prime p > 2, an integer a with gcd(a, p) = 1
and real X and Y with 1 ≤ X,Y < p we consider the set

Ha,p(B) = Ha,p ∩ B
of points on the modular hyperbola

Ha,p = {(x, y) : xy ≡ a (mod p), 1 ≤ x < p, 1 ≤ y < p}.
inside of the half-open box

(1) B = [U,U +X)× [V, V + Y )

with some integers 0 ≤ U < U +X ≤ p, 0 ≤ V < V + Y ≤ p.
Various properties, such as largest value and the number of distinct

values, of the differences x − y for points (x, y) ∈ Ha,p(B) have recently
been considered (see [2, 4, 6] and references therein).
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Here we continue to investigate arithmetic properties of these differences
and obtain asymptotic formulas for the average values

Sa,p(B) =
∑

(x,y)∈Ha,p(B)
x 6=y

ϕ(|x− y|)
|x− y|

and Ta,p(B) =
∑

(x,y)∈Ha,p(B)
x 6=y

ϕ(|x− y|)

where, as usual, ϕ(k) denotes the Euler function of k ≥ 1.
We remark that it would be interesting to extend our results to solutions

of congruences xy ≡ a (mod m) modulo arbitrary integers m, as well as to
solutions of more general polynomial congruences. It seems that both such
extensions need some additional ideas.

Throughout the paper, all the implied constants are absolute.

2. Background on the discrepancy. Let I be the family of half-open
aligned boxes I = [0, α)× [0, β) ⊆ [0, 1)2. For a set W ⊆ [0, 1)2 of N points
we define the discrepancy as

D(W ) = sup
I∈I

∣∣∣∣#(W ∩ I)
N

− |I|
∣∣∣∣

where |I| = αβ is the area of I.
We use the Erdős–Turán–Koksma inequality (see [1, Theorem 1.21]) for

the discrepancy of a set of points of [0, 1)2, which we present in the following
form.

Lemma 1. For any integer L ≥ 1, for the discrepancy of a set

W = {(u1, v1), . . . , (uN , vN )} ⊆ [0, 1)2

of N points the bound

D(W ) = O

(
1
L

+
1
N

∑
0<|r|+|s|≤L

1
(|r|+ 1)(|s|+ 1)

|σr,s(W )|
)

holds, where the sum is taken over all integer points (r, s) ∈ Z2 with 0 <
|r|+ |s| ≤ L and

σr,s(W ) =
N∑

n=1

exp (2πi(run + svn)) .

3. Sum Sa,p(B)

Theorem 2. For gcd(a, p) = 1 and a box B given by (1), we have

Sa,p(B) =
6
π2

XY

p
+O(p1/2(log p)2 + min{X,Y }p−1/4 log p).
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Proof. Without loss of generality we assume that X ≤ Y .
We recall that

ϕ(k)
k

=
∑
d|k

µ(d)
d

,

where µ(d) is the Möbius function (see [3, Equation (1.36)]).
Therefore,

(2) Sa,p(B) =
∑

(x,y)∈Ha,p(B)
x 6=y

∑
d|x−y

µ(d)
d

=
p∑

d=1

µ(d)
d

Na,p(d,B),

where
Na,p(d,B) =

∑
(x,y)∈Ha,p(B)

d|x−y
x 6=y

1.

Writing y = x + zd we see that Na,p(d,B) is the number of solutions (x, z)
to the congruence

(3) x(x+ dz) ≡ a (mod p)

with

(4) U ≤ x < U +X and
V − x
d
≤ z < V + Y − x

d
.

We fix some positive integer K, put Z = X/K and split the interval
[U,U +X) into K smaller intervals

Jk = [(k − 1)Z, kZ),

where k = 1, . . . ,K.
Let Na,p(k, d,B) be the number of solutions to (3) with

x ∈ Jk and
V − x
d
≤ z < V + Y − x

d
.

Thus

(5) Na,p(d,B) =
K∑

k=1

Na,p(k, d,B).

Moreover,

(6) La,p(k, d,B) ≤ Na,p(k, d,B) ≤ Ua,p(k, d,B),

where La,p(k, d,B) and Ua,p(k, d,B) are the numbers of solutions to (3) with

x ∈ Jk and
V − (k − 1)Z

d
≤ z < V + Y − kZ

d
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and

x ∈ Jk and
V − kZ

d
≤ z < V + Y − (k − 1)Z

d
,

respectively.
Let W be the set of fractions (x/p, z/p) taken over all solutions (x, z)

to (3) with 0 ≤ x, z < p. We note that (3) can be written as

z ≡ d−1(ax−1 − x) (mod p).

Clearly the rational functions f(x) = x and g(x) = d−1(ax−1−x) are linearly
independent modulo p. Hence the Weil bound on Kloosterman sums (see [3,
Theorem 11.11]) applies to their nontrivial linear combinations modulo p,
that is, we have

p−1∑
x=1

exp
(

2πi
rx+ sd−1(ax−1 − x)

p

)

=
p−1∑
x=1

exp
(

2πi
(r − d−1s)x+ ad−1sx−1

p

)
= O(p1/2)

uniformly over all integers r and s with gcd(r, s, p) = 1. Hence, by Lemma 1,
we get the bound D(W ) = O(p−1/2(log p)2) on the discrepancy of W .

Therefore,

La,p(k, d,B) =
(Y − Z)Z

dp
+O(p1/2(log p)2),

Ua,p(k, d,B) =
(Y + Z)Z

dp
+O(p1/2(log p)2).

Substituting these bounds in (6), we get

Na,p(k, d,B) =
Y Z

dp
+O(p1/2(log p)2 + Z2d−1p−1)

=
XY

Kdp
+O(p1/2(log p)2 +X2K−2d−1p−1).

Thus, from (5), we get

Na,p(d,B) =
XY

dp
+O(Kp1/2(log p)2 +X2K−1d−1p−1).

We now put K = dXp−3/4d−1/2(log p)−1e, which leads to the bound

Na,p(d,B) =
XY

dp
+O(p1/2(log p)2 +Xp−1/4d−1/2 log p).
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Finally, using (2), we deduce

Sa,p(B) =
XY

p

p∑
d=1

µ(d)
d2

+O

(
p1/2(log p)2

p∑
d=1

1
d

+Xp−1/4 log p
p∑

d=1

1
d3/2

)

=
XY

p

∞∑
d=1

µ(d)
d2

+O
(
p1/2(log p)3 +Xp−1/4 log p

)
= ζ−1(2)

XY

p
+O(p1/2(log p)3 +Xp−1/4 log p)

=
6
π2

XY

p
+O(p1/2(log p)3 +Xp−1/4 log p),

where ζ(s) is the Riemann zeta-function (see [3, Equation (1.15)]).

Corollary 3. For gcd(a, p) = 1 and a box B given by (1), we have

Sa,p(B) =
6
π2

XY

p
+O(X1/2Y 1/2p−1/4(log p)3/2).

Proof. Since #Ha,p(B) = XY/p+O
(
p1/2(log p)2

)
(which can be derived

similarly to the bounds on La,p(k, d,B) and Ua,p(k, d,B) in the proof of
Theorem 2) we see that for XY ≤ p3/2(log p)3 the result is trivial. Assuming
that XY > p3/2(log p)3 and also using the inequalities

min{X,Y } ≤ X1/2Y 1/2 ≤ X1/2Y 1/2(log p)1/2,

we see that

p1/2(log p)3 +Xp−1/4 log p = O(X1/2Y 1/2p−1/4(log p)3/2),

which concludes the proof.

4. Sum Ta,p(B). For simplicity we only consider the case U = V = 0
and X = Y , that is, when B is a cube with the origin as one of the vertices.
The general case can be considered along the same lines, but the elementary
part of evaluation of the main term becomes more tedious and leads to a
more cluttered expression.

Theorem 4. For gcd(a, p) = 1 and a box B given by (1) with U = V = 0
and X = Y , we have

Ta,p(B) =
2
π2

X3

p
+O(X8/3p−3/4(log p)1/2).

Proof. We fix some positive integer K, put Z = X/K and split B into
K2 smaller aligned cubes

Bh,k = [(h− 1)Z, hZ)× [(k − 1)Z, kZ),
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where h, k = 1, . . . ,K. In particular,

(7) Ta,p(B) =
K∑

h,k=1

Ta,p (Bh,k) .

For (x, y) ∈ Bh,k, we have

x− y = hZ − kZ +O(Z) = (h− k)Z +O(Z).

Thus, applying Corollary 2, we derive

Ta,p(Bh,k) =
∑

(x,y)∈Ha,p(Bh,k)
x 6=y

ϕ(|x− y|)
|x− y|

|x− y|

= (|h− k|Z +O(Z))Sa,p(Bh,k)

= (|h− k|Z +O(Z))
(

6
π2

Z2

p
+O(Xp−1/4(log p)3/2)

)
=

6
π2

|h− k|Z3

p
+O(Z3p−1 +X2p−1/4(log p)3/2).

Substituting this bound in (7), we obtain

Ta,p(B) =
6
π2

Z3

p

K∑
h,k=1

|h− k|+O(K2Z3p−1 +X2p−1/4(log p)3/2)

=
12
π2

Z3

p

K∑
h=1

h−1∑
k=1

(h− k) +O(X3K−1p−1 +K2X2p−1/4(log p)3/2)

=
6
π2

Z3

p

K∑
h=1

h(h− 1) +O(X3K−1p−1 +K2X2p−1/4(log p)3/2)

=
2
π2

Z3

p
(K3 +O(K2)) +O(X3K−1p−1 +K2X2p−1/4(log p)3/2)

=
2
π2

X3

p
+O(X3K−1p−1 +K2X2p−1/4(log p)3/2).

Taking K = dX1/3p−1/4(log p)−1/2e, we conclude the proof.

5. Final remarks. It is clear that Theorems 2 and 4 are nontrivial
whenever XY ≥ p3/2+ε and X ≥ p3/4+ε, respectively, where ε > 0 is arbi-
trary and p is large enough. We remark that beyond this range even that
Ha,p (B) 6= ∅ is unknown (see [4]) and thus it can be hard to improve the
range of applicability of Theorems 2 and 4 without getting principally new
insight on the distribution of points on Ha,p. On the other hand, it is quite



Euler Function on Modular Hyperbolas 7

possible that using the approach of [5] one can get better results “on aver-
age” over a.

Studying average values of other arithmetic functions on the points of
Ha,p (B) is of interest as well. For example, it would be interesting to obtain
bounds or asymptotic formulas for the sums∑

(x,y)∈Ha,p(B)

µ(xy),
∑

(x,y)∈Ha,p(B)

(
x

y

)
,

∑
(x,y)∈Ha,p(B)

ω(|x− y|),

where µ(k) is the Möbius function, (k/m) is the Jacobi symbol of k modulo
m, which we also extend to even values of m by simply putting (k/m) = 0,
and ω(k) is the number of distinct prime divisors of k.
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