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Summary. Let K be a field and let L = K[ξ] be a finite field extension of K of degree
m > 1. If f ∈ L[Z] is a polynomial, then there exist unique polynomials u0, . . . , um−1 ∈
K[X0, . . . , Xm−1] such that f(

Pm−1
j=0 ξjXj) =

Pm−1
j=0 ξjuj . A. Nowicki and S. Spodzieja

proved that, if K is a field of characteristic zero and f 6= 0, then u0, . . . , um−1 have no
common divisor in K[X0, . . . , Xm−1] of positive degree. We extend this result to the case
when L is a separable extension of a field K of arbitrary characteristic. We also show that
the same is true for a formal power series in several variables.

1. Introduction. Throughout the paper, K is a field and L = K[ξ] is
a finite field extension of K of degree m > 1. For j = 1, . . . , n let Xj =
(Xj,0, . . . , Xj,m−1) denote a system of variables and set

[Xj ] = Xj,0 + ξXj,1 + · · ·+ ξm−1Xj,m−1.

If n = 1, then we write briefly X = (X0, . . . , Xm−1) instead of X1 =
(X1,0, . . . , X1,m−1). If f ∈ L[Z1, . . . , Zn] is a polynomial, then there exist
unique polynomials u0, . . . , um−1 ∈ K[X1, . . . ,Xn] such that

f([X1], . . . , [Xn]) = u0 + ξu1 + · · ·+ ξm−1um−1.

This representation is called the imaginary decomposition of f relative to ξ,
and the polynomials u0, . . . , um−1 are the imaginary parts of f (see [1]).

Assume that

φ(t) = tm − am−1t
m−1 − · · · − a1t− a0, where a0, . . . , am−1 ∈ K,

is the minimal polynomial of ξ over K and let u = (u0, . . . , um−1) be a
sequence of polynomials belonging to K[X]. Denote by u = (u0, . . . , um−1)
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the sequence of polynomials defined by

u0 = a0um−1, u1 = a1um−1 + u0, . . . , um−1 = am−1um−1 + um−2.

We say that u is a ξ-sequence if u satisfies the following generalized Cauchy–
Riemann equations introduced in [1]:

∂u

∂Xi
=

∂u

∂Xi−1
, i = 1, . . . ,m− 1.

In 2003, A. Nowicki and S. Spodzieja proved the following theorem.

Theorem 1 ([1, Theorem 3.8]). Let K be a field of characteristic zero
and let L = K[ξ] be a finite field extension of K of degree m > 1. The
following two conditions are equivalent :

(i) u is a ξ-sequence.
(ii) There exists f ∈ L[Z] such that u0, . . . , um−1 are the imaginary parts

of f .

As a consequence of Theorem 1, A. Nowicki and S. Spodzieja also proved
the following curious theorem.

Theorem 2 ([1, Theorem 5.3]). If under the assumptions of Theorem 1,
u0, . . . , um−1 are the imaginary parts of f ∈ L[Z1, . . . , Zn] \ {0}, then
gcd(u0, . . . , um−1) = 1.

The assumption that charK = 0 played an essential role in the proof
of Theorem 2. The aim of this paper is to extend this theorem to the case
when L is a separable extension of a field K of arbitrary characteristic. More
precisely, our main result is the following.

Theorem 3. Let K be a field and let L = K[ξ] be a finite separable
extension of K of degree m > 1. If u0, . . . , um−1 are the imaginary parts of
f ∈ L[Z1, . . . , Zn] \ {0}, then gcd(u0, . . . , um−1) = 1.

Additionally, in Section 4 we generalize Theorems 1–3 to formal power
series (Propositions 4–6, respectively).

2. Some auxiliary results. To prove Theorem 3 we need several known
simple facts (see [1]).

Proposition 1. If u0, . . . , um−1 are the imaginary parts of a homoge-
neous polynomial f ∈ L[Z1, . . . , Zn] of degree s, then ui is zero or a homo-
geneous polynomial of degree s for i = 0, . . . ,m− 1.

Proposition 2. If the polynomials u0, . . . , um−1 ∈ K[X1, . . . ,Xn] are
not relatively prime, then their homogeneous components of the highest degree
are also not relatively prime.



Polynomial Imaginary Decompositions 11

Let d, n ∈ Z, d, n ≥ 2. Consider the Kronecker substitution (cf. [2, 1.6,
Definition 5]), i.e. the L-automorphism κd of L[Z1, . . . , Zn] defined by

κd(Zj) =
{
Z1 if j = 1,
Zj + Zdj−1

1 if j = 2, . . . , n.
Proposition 3 ([1, Proposition 5.1]). Let f ∈ L[Z1, . . . , Zn], and let

d > maxj=1,...,n degZj
f > 0. Then

κd(f) = aZN
1 + terms of degrees lower than N, N ≥ 1, a ∈ L \ {0}.

Let Pj = κd(Zj) ∈ L[Z1, . . . , Zn] for j = 1, . . . , n and

Pj([X1], . . . , [Xn]) = vj,0 + ξvj,1 + · · ·+ ξm−1vj,m−1, vj,i ∈ K[X1, . . . ,Xn].

Let γ : K[X1, . . . ,Xn] → K[X1, . . . ,Xn] be the homomorphism such that
γ(Xj,i) = vj,i.

Lemma 1 ([1, Lemma 5.2]). γ is a K-automorphism of K[X1, . . . ,Xn].

3. Proof of Theorem 3. A crucial role in the proof is played by the
following lemma.

Lemma 2. If under the assumptions of Theorem 3, u0, . . . , um−1 are the
imaginary parts of f(Z) = a0Z

s, a0 ∈ L \ {0}, then gcd(u0, . . . , um−1) = 1.

Proof. Let φ be the minimal polynomial of ξ over K and let M be a
decomposition field of φ. Then K[ξ] = K(ξ) ⊂ M and deg φ = m > 1.
Consequently, since ξ is a simple root of φ, there exists b ∈ M , b 6= ξ,
such that φ(b) = 0. There is a K-isomorphism ϕ : K(ξ) → K(b) such that
ϕ(ξ) = b.

Suppose that there is a polynomial v ∈ K[X] of positive degree which is
a common divisor of u0, . . . , um−1 in K[X], and so also in L[X]. Since L[X]
is a UFD and X0 + ξX1 + · · ·+ ξm−1Xm−1 is irreducible in L[X], there exist
l ∈ Z, l ≥ 1, and a ∈ L \ {0} such that

v(X0, . . . , Xm−1) = a(X0 + ξX1 + · · ·+ ξm−1Xm−1)l.

Then v(−ξ, 1, 0, . . . , 0) = 0, and so, since v ∈ K[X], we get

a(−b+ ξ)l = v(−b, 1, 0, . . . , 0) = ϕ(v(−ξ, 1, 0, . . . , 0)) = 0,

a contradiction.

Using the facts in Section 2 we will extend Lemma 2 so as to obtain
Theorem 3.

Proof of Theorem 3. Suppose that u0, . . . , um−1 have a common divisor
in K[X1, . . . ,Xn] of positive degree. Denote by f (s) the homogeneous part
of the highest degree of f and let u(s)

0 , . . . , u
(s)
m−1 be the homogeneous parts

of the highest degree of u0, . . . , um−1, respectively. By Proposition 3 and
Lemma 1 one can assume that f (s)(Z1, . . . , Zn) = a0Z

s
1 , a0 ∈ L \ {0}, and
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so f (s) ∈ L[Z1]. By Propositions 1 and 2, u(s)
0 , . . . , u

(s)
m−1 are the imaginary

parts of f (s) and they are not relatively prime. This contradicts Lemma 2
and ends the proof.

The following example, due to the referee, shows that the assumption of
Theorem 3 concerning separability of the extension L of K is necessary.

Example 1. Let K = F2(t2), L = F2(t) and let ξ = t. Consider the
polynomial f(Z) = Z2. Then

f(X0 + ξX1) = X2
0 + t2X2

1 ∈ K[X0, X1].

Hence u0 = X2
0 + t2X2

1 and u1 = 0 are the imaginary parts of f and they
are not relatively prime.

4. Generalizations to formal power series. In this section we gen-
eralize Theorems 1–3 to formal power series.

Let f ∈L[[Z1, . . . , Zn]] be a formal power series of the form f=
∑∞

r=d f
(r),

where f (r) is zero or a homogeneous polynomial of degree r for r ≥ d,
and let u0, . . . , um−1 ∈ K[[X1, . . . ,Xn]] be formal power series of the form
uj =

∑∞
r=d u

(r)
j , where u(r)

j is zero or a homogeneous polynomial of degree r
for r ≥ d, j = 0, . . . ,m− 1. By Proposition 1 we get immediately

Corollary 1. u(r)
0 , . . . , u

(r)
m−1 are the imaginary parts of f (r) for r ≥ d

if and only if

f([X1], . . . , [Xn]) = u0 + ξu1 + · · ·+ ξm−1um−1.

We call this representation the imaginary decomposition of f relative
to ξ, and the power series u0, . . . , um−1 the imaginary parts of f .

Similarly to Lemma 3.5 in [1] we obtain a version of that lemma for power
series.

Lemma 3. (u0, . . . , um−1) is a ξ-sequence if and only if (u(r)
0 , . . . , u

(r)
m−1)

is a ξ-sequence for r ≥ d.
Now we show the following generalizations of Theorems 1 and 2.

Proposition 4. Under the assumptions of Theorem 1 on K and L, if
u0, . . . , um−1 ∈ K[[X]] are power series, then the following two conditions
are equivalent :

(i) (u0, . . . , um−1) is a ξ-sequence.
(ii) There exists f ∈ L[[Z]] such that u0, . . . , um−1 are the imaginary

parts of f .

Proof. By Lemma 3 and Theorem 1, (u0, . . . , um−1) is a ξ-sequence if
and only if there exist f (d), f (d+1), . . . ∈ L[Z] such that u(r)

0 , . . . , u
(r)
m−1 are

the imaginary parts of f (r) for r ≥ d. By Corollary 1 this is equivalent to
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the fact that u0, . . . , um−1 are the imaginary parts of f :=
∑∞

r=d f
(r). Thus,

the proof is finished.
Proposition 5. Under the assumptions of Theorem 1 on K and L, if the

power series u0, . . . , um−1 are the imaginary parts of f ∈ L[[Z1, . . . , Zn]]\{0},
then gcd(u0, . . . , um−1) = 1.

Proof. If u0, . . . , um−1 have a common divisor in K[[X1, . . . ,Xn]] of pos-
itive order, then by Corollary 1, u(d)

0 , . . . , u
(d)
m−1 are the imaginary parts of

f (d) and they have a common divisor in K[X1, . . . ,Xn] of positive degree.
This contradicts Theorem 2 and ends the proof.

Analogously we obtain the following generalization of Theorem 3.
Proposition 6. Under the assumptions of Theorem 3 on K and L, if the

power series u0, . . . , um−1 are the imaginary parts of f ∈ L[[Z1, . . . , Zn]]\{0},
then gcd(u0, . . . , um−1) = 1.
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