MEASURE AND INTEGRATION

Narrow Convergence in Spaces of Set-Valued Measures

by

Kenny Koffi SIGGINI

Presented by Czesław RYLL-NARDZEWSKI

Summary. We prove an analogue of Topsøe's criterion for relative compactness of a family of probability measures which are regular with respect to a family sets. We consider measures whose values are compact convex sets in a locally convex linear topological space.

Introduction. Let T be an abstract set, K a family of subsets of T, and (E, F) a dual pair of real vector spaces, with E endowed with the weak topology $\sigma(E, F)$. Let $\operatorname{cc}(E, F)$ be the set of all convex compact non-empty subsets of E, and $\widetilde{M}_+(T, K, \operatorname{cc}(E, F))$ the set of K-inner regular positive set-valued measures defined on a σ -field \mathcal{B} of subsets of T and with values in $\operatorname{cc}(E, F)$. We denote by $M_+(T, K)$ the set of K-inner regular non-negative measures defined on \mathcal{B} provided with the topology of weak convergence. Prokhorov [11] has proved that if T is a Polish space and \mathcal{B} the set of Borel subsets, then the relatively compact subsets of $M_+(T, K)$ are precisely the tight ones. But this result is not valid for all topological space (see e.g. [5], [10], [18]). In [16] Topsøe has characterized the relatively compact subsets of $M_+(T, K)$ in general situations. Before and after Topsøe's paper there were others (e.g. [1], [3], [18], [5]–[10]). In this paper we generalize to the space $\widetilde{M}_+(T, K, \operatorname{cc}(E, F))$ the criterion of Topsøe (Theorem 2.1). In addition, we prove a result (Theorem 3.3) analogous to Theorem 8.1 in [17, p. 40].

1. Preliminaries

1.1. We denote by T an abstract set; \mathcal{G} and \mathcal{K} are families of subsets of T. We let \mathcal{B} denote the smallest σ -field containing every set $A \subseteq T$ for

²⁰⁰⁰ Mathematics Subject Classification: Primary 28B20.

 $[\]it Key\ words\ and\ phrases$: weak set-valued measure, set-valued measure, narrow convergence.

which $K \cap A \in \mathcal{K}$ for all $K \in \mathcal{K}$. The family \mathcal{K} is said to be *semicompact* if every countable subfamily of \mathcal{K} with the finite intersection property has a non-empty intersection. We shall say that \mathcal{G} separates the sets in \mathcal{K} if for any pair K, K' of disjoint sets in \mathcal{K} we can find a pair G, G' of disjoint sets in \mathcal{G} such that $K \subset G$ and $K' \subset G'$.

Let \mathcal{G}' be a family of subsets of T such that $\mathcal{G}' \subseteq \mathcal{G}$. We shall say that \mathcal{G}' dominates \mathcal{K} and write $\mathcal{G}' \succ \mathcal{K}$ if for any $K \in \mathcal{K}$ there exists $G' \in \mathcal{G}'$ such that $K \subseteq G'$.

- **1.2.** Nets on T. Let X be a non-empty subset of T and $(x_i)_{i \in I}$ be a net on T. We say that $x_i \in X$ eventually if there exists $i \in I$ such that $x_j \in X$ for every $j \in I$ with $j \geq i$. A net $(x_i)_{i \in I}$ on T is universal if, for every subset $X \subset T$ either $x_i \in X$ eventually or $x_i \in T \setminus X$ eventually.
- **1.3.** The space cc(E, F). Let (E, F) be a dual pair of real vector spaces, with E and F endowed with the weak topologies $\sigma(E, F)$ and $\sigma(F, E)$ respectively. If X and Y are subsets of E, we denote by X + Y the subset of E consisting of all elements of the form x + y, where $x \in X$ and $y \in Y$. The closed convex hull of X is denoted by $\overline{co} X$, the polar of X by X, and the closure of X by C and C by C and C is the map

$$\delta^*(\cdot|X): F \to [-\infty, +\infty], \quad y \mapsto \delta^*(y|X) = \sup\{y(x); x \in X\}.$$

We denote by cc(E, F) the set of all $\sigma(E, F)$ -compact non-empty convex subsets of E. We equip cc(E, F) with the Hausdorff topology. Let $C \in cc(E, F)$, $\beta(o)$ a base of neighbourhoods of o in $E, V \in \beta(o)$, and $\varepsilon > 0$. The set

$$W_{(V,\varepsilon,C)} = \{C' \in \operatorname{cc}(E,F); \sup_{y \in \mathring{V}} |\delta^*(y|C) - \delta^*(y|C')| < \varepsilon\}$$

is a neighbourhood of C. The family $\{W_{(V,\varepsilon,C)}; V \in \beta(o) \text{ and } \varepsilon > 0\}$ is a base of neighborhoods of C. The space $\operatorname{cc}(E,F)$ is a completely regular topological space ([2, Theorem II.19]).

1.4. Set-valued measures. Let M be a map from \mathcal{B} to $\mathrm{cc}(E,F)$. The map M is called additive if $M(A \cup B) = M(A) + M(B)$ for any disjoint sets A, B in \mathcal{B} ; monotone if $M(\emptyset) = \{o\}$ and $M(A) \subseteq M(B)$ for all A and B in \mathcal{B} such that $A \subseteq B$; and positive if $M(\emptyset) = \{o\}$ and $o \in M(A)$ for all $A \in \mathcal{B}$. We say that M is a weak set-valued measure if M is additive and for every $y \in F$ the map $A \mapsto \delta^*(y|M(A))$ from \mathcal{B} to \mathbb{R} is a σ -additive measure. A positive weak set-valued measure is \mathcal{K} -inner regular if for every $A \in \mathcal{B}, M(A) = \overline{\operatorname{co}} \bigcup \{M(K); K \subset A, K \in \mathcal{K}\}$. Note that a positive additive map $M : \mathcal{B} \to \operatorname{cc}(E,F)$ is monotone. Indeed, if $A, B \in \mathcal{B}$ and $A \subseteq B$, then $M(B) = M(A) + M(B \setminus A)$. Hence $M(A) = M(A) + \{o\} \subset M(B)$ since $o \in M(B \setminus A)$.

- **1.5.** Set-valued integral. An integration theory for positive weak set-valued measures is developed in [15]. Let us only recall the following definitions and results. Assume that $M: \mathcal{B} \to \mathrm{cc}(E,F)$ is a positive weak set-valued measure. If h is a positive simple function defined on T (i.e. $h = \sum_{i=1}^{n} \alpha_i 1_{A_i}$ where $\alpha_i \geq 0$, $A_i \in \mathcal{B}$ and $\{A_1, \ldots, A_n\}$ is a partition of T) then the integral of h with respect to M is defined by $\int hM = \sum_{i=1}^{n} \alpha_i M(A_i)$. If f is a positive measurable function with respect to \mathcal{B} and the Borel field of \mathbb{R} , there exists an increasing sequence (h_n) of simple functions such that $f = \sup\{h_n; n \in \mathbb{N}\}$. The integral of f is defined by $\int fM = \overline{\mathrm{co}} \bigcup \{\int h_n M; n \in \mathbb{N}\}$. We have $\delta^*(y|\int fM) = \int f\delta^*(y|M(\cdot))$ for every $y \in F$. If f is bounded we have $\int fM \in \mathrm{cc}(E,F)$. If f and g are measurable functions and $f \leq g$ then $\int fM \subseteq \int gM$.
- **1.6.** Topologies on $\widetilde{M}_+(T, \operatorname{cc}(E, F))$. We denote by $\widetilde{M}_+(T, \operatorname{cc}(E, F))$ the set of all positive weak set-valued measures from \mathcal{B} to $\operatorname{cc}(E, F)$ and by $\widetilde{M}_+(T, \mathcal{K}, \operatorname{cc}(E, F))$ the subset of $\widetilde{M}_+(T, \operatorname{cc}(E, F))$ consisting of all \mathcal{K} -inner regular elements. In $\widetilde{M}_+(T, \operatorname{cc}(E, F))$ we define the following topologies.

The weak narrow topology (wn-topology) on $M_+(T, \operatorname{cc}(E, F))$ is the weakest topology for which the map $M \mapsto M(T)$ is continuous and all maps $M \mapsto \delta^*(y|M(G))$ are lower semicontinuous for every $G \in \mathcal{G}$ and $y \in F$.

The strong narrow topology (sn-topology) on $\widetilde{M}_+(T, \operatorname{cc}(E, F))$ is the weakest topology for which the map $M \mapsto M(T)$ is continuous and all maps $M \mapsto M(G)$ are lower semicontinuous for every $G \in \mathcal{G}$.

Let $M \in \widetilde{M}_+(T, \operatorname{cc}(E, F))$ and let $(M_i)_{i \in I}$ be a net on $\widetilde{M}_+(T, \operatorname{cc}(E, F))$. Then (M_i) converges to M in the wn-topology if and only if $(M_i(T))$ converges to M(T) in $\operatorname{cc}(E, F)$ and $\liminf_i \delta^*(y|M_i(G)) \geq \delta^*(y|M(G))$ for all $y \in F$ and $G \in \mathcal{G}$; and (M_i) converges to M in the sn-topology if and only if $(M_i(T))$ converges to M(T) in $\operatorname{cc}(E, F)$ and for every $G \in \mathcal{G}$ and every open subset O of E such that $M(G) \cap O \neq \emptyset$ there exists $i_0 \in I$ such that $M_i(G) \cap O \neq \emptyset$ for every $i \in I$ with $i \geq i_0$. The subset $\widetilde{M}_+(T, \mathcal{K}, \operatorname{cc}(E, F))$ will be considered as a subspace of $\widetilde{M}_+(T, \operatorname{cc}(E, F))$.

Consider now the following axioms on \mathcal{K} and \mathcal{G} , introduced by Topsøe [16].

- (i) \mathcal{K} is closed under finite unions and countable intersections, and $\emptyset \in \mathcal{K}$.
- (ii) \mathcal{G} is closed under finite unions and finite intersections, and $\emptyset \in \mathcal{G}$.
- (iii) For every $K \in \mathcal{K}$ and every $G \in \mathcal{G}, K \setminus G \in \mathcal{K}$.
- (iv) \mathcal{G} separates the sets in \mathcal{K} .
- (v) \mathcal{K} is semicompact.

Note that (i) and (iv) imply that \mathcal{G} dominates \mathcal{K} .

1.7. Topological case. Assume now that T is a Hausdorff topological space. We then denote by $\mathcal{K}(T)$, $\mathcal{G}(T)$ and $\mathcal{B}(T)$ the families of compact subsets, open subsets, and Borel subsets of T, respectively. Now $\widetilde{M}_+(T,\operatorname{cc}(E,F))$ denotes the set of positive weak set-valued measures defined on $\mathcal{B}(T)$. The wn-topology and sn-topology are defined by means of $\mathcal{G}(T)$. Generally $\mathcal{K}(T)$, $\mathcal{G}(T)$, $\mathcal{B}(T)$ replace \mathcal{K} , \mathcal{G} and \mathcal{B} respectively. We denote by $C_+(T)$ the set of non-negative bounded continuous functions defined on T. In view of [17, Theorem 8.1 p. 40] if T is a completely regular space then a net (M_i) on $\widetilde{M}_+(T,\operatorname{cc}(E,F))$ converges in the wn-topology to M if and only if $(M_i(T))$ converges to M(T) in $\operatorname{cc}(E,F)$ and for every $y \in F$ and every $f \in C_+(T)$, $(\int f \delta^*(y|M_i(\cdot)))$ converges to $\int f \delta^*(y|M(\cdot))$. It follows that if T is a completely regular space, the wn-topology in $\widetilde{M}_+(T,\mathcal{K}(T),\operatorname{cc}(E,F))$ is a uniform topology. The uniformity is generated by the families of pseudometrics $\{p_V; V \in \mathcal{B}(o)\}$ and $\{p_{f,y}; y \in F, f \in C_+(T)\}$, defined as follows: for every M and M' in $\widetilde{M}_+(T,\mathcal{K}(T),\operatorname{cc}(E,F))$

$$p_V(M, M') = \sup_{y \in \mathring{V}} |\delta^*(y|M(T)) - \delta^*(y|M'(T))|,$$

$$p_{f,y}(M, M') = \left| \int f \delta^*(y|M(\cdot)) - \int f \delta^*(y|M'(\cdot)) \right|.$$

It is evident that $\widetilde{M}_+(T,\mathcal{K}(T),\mathrm{cc}(E,F))$ endowed with this uniform topology is a Hausdorff space.

Let us introduce another topology. The *simple topology* (s-topology) on $\widetilde{M}_+(T, \operatorname{cc}(E, F))$ is the weakest topology for which all maps $M \mapsto M(f)$ are continuous for every $f \in C_+(T)$.

2. Main results. The following theorem was proved by Topsøe ([16, Theorem 4, p. 202]) for non-negative scalar measures.

THEOREM 2.1. Let \mathcal{G} and \mathcal{K} be families of subsets of a set T which satisfy axioms (i)–(v) and let H be a subset of $\widetilde{M}_+(T,\mathcal{K},\operatorname{cc}(E,F))$ endowed with the wn-topology. Then the following conditions (1) and (2) are equivalent:

- (1) Every net on H has a convergent subnet in $\widetilde{M}_{+}(T, \mathcal{K}, \operatorname{cc}(E, F))$.
- (2) (a) The set $\{M(T); M \in H\}$ is relatively compact in cc(E, F).
 - (b) For every $y \in F$, every subclass \mathcal{G}' of \mathcal{G} which dominates \mathcal{K} , and every $\varepsilon > 0$ there exists a finite subclass \mathcal{G}'' of \mathcal{G}' such that

$$\sup_{M \in H} \inf_{G \in \mathcal{G}''} \delta^*(y|M(T \setminus G)) < \varepsilon.$$

Proof. Assume that (1) is satisfied. It is obvious that (a) holds. If (b) failed we would find $y \in F$, $\varepsilon > 0$, $\mathcal{G}' \subseteq \mathcal{G}$ with $\mathcal{G}' \succ \mathcal{K}$ such that for any finite subfamily \mathcal{G}'' of \mathcal{G}' there exists $M_{\mathcal{G}''} \in H$ such that $\inf\{\delta^*(y|M_{\mathcal{G}''}(T \setminus G)); G \in \mathcal{G}''\} \geq \varepsilon$. We then obtain a net $(M_{\mathcal{G}''})_{\mathcal{G}'' \subset \mathcal{G}'}$, where the family of all

finite subsets of \mathcal{G}' is directed by \supset . According to (1), the net $M_{\mathcal{G}''}$ has a subnet convergent in $\widetilde{M}_+(T,\mathcal{K},\operatorname{cc}(E,F))$. We denote this subnet again by $(M_{\mathcal{G}''})$; let M be its limit. Then

$$\begin{split} &\lim_{\mathcal{G}''} \delta^*(y|M_{\mathcal{G}''}(T)) \\ &= \delta^*(y|M(T)) = \sup_{K \in \mathcal{K}} \delta^*(y|M(K)) \leq \sup_{K \in \mathcal{K}} \inf_{G \in \mathcal{G}', K \subset G} \delta^*(y|M(G)) \\ &\leq \sup_{K \in \mathcal{K}} \inf_{G \in \mathcal{G}', K \subset G} \liminf_{\mathcal{G}''} \delta^*(y|M_{\mathcal{G}''}(G)) \\ &= \sup_{K \in \mathcal{K}} \inf_{K \subseteq G, G \in \mathcal{G}'} \liminf_{\mathcal{G}''} [\delta^*(y|M_{\mathcal{G}''}(T)) - \delta^*(y|M_{\mathcal{G}''}(T \setminus G))] \\ &= \sup_{K \in \mathcal{K}} \inf_{K \subseteq G, G \in \mathcal{G}'} [\lim_{\mathcal{G}''} \delta^*(y|M_{\mathcal{G}''}(T)) - \limsup_{\mathcal{G}''} \delta^*(y|M_{\mathcal{G}''}(T \setminus G))] \\ &\leq \lim_{G''} \delta^*(y|M_{\mathcal{G}''}(T)) - \varepsilon, \end{split}$$

a contradiction.

Let us now prove the converse. Assume that (2) is satisfied. It suffices to prove that every universal net $(M_i)_{i\in I}$ on H converges in $\widetilde{M}_+(T,\mathcal{K},\operatorname{cc}(E,F))$. Because of (2a), $(M_i(T))_{i\in I}$ is convergent in $\operatorname{cc}(E,F)$. Put $\lim_i M_i(T) = C$. The set $\bigcup \{M(T); M \in H\}$ is bounded in E. So is $\bigcup \{M(A); M \in H\}$ for every $A \in \mathcal{B}$ because $M(A) \subset M(T)$. Then for each $y \in F$ and $A \in \mathcal{B}$ the universal net $(\delta^*(y|M_i(A)))_{i\in I}$ is convergent in \mathbb{R} . Put $p_y(A) = \lim_i \delta^*(y|M_i(A))$. Let $G \in \mathcal{G}$. Define $S_G : F \to \mathbb{R}$ by $S_G(y) = p_y(G)$. One has $S_G(y + y') \leq S_G(y) + S_G(y')$ and $S_G(\alpha y) = \alpha S_G(y)$ for all $\alpha \geq 0$ and $y, y' \in F$, and $|S_G(y)| \leq \delta^*(y|\widetilde{C})$ where \widetilde{C} is the absolutely convex hull of C. We have $C \in \operatorname{cc}(E,F)$ ([7, p. 242]). This proves that S_G is $\sigma(F,E)$ -continuous. By the Hahn–Banach theorem ([4, p. 62]) we have $S_G(y) = \sup\{l_G(y); l_G : F \to \mathbb{R} \text{ linear and } l_G \leq S_G\}$. The relation $l_G \leq S_G$ shows that l_G is also $\sigma(F,E)$ -continuous. Hence we may put $l_G(y) = y(x_G)$ where $x_G \in E$. Denote by $\operatorname{cf}(E,F)$ the set of all convex closed non-empty subsets of E and consider the map

$$M: \mathcal{G} \to \mathrm{cf}(E), \quad G \mapsto M(G) = \mathrm{cl}\{x_G; x_G \in E, \forall y \in F \ y(x_G) \leq S_G(y)\}.$$

One has $S_G(y) = \delta^*(y|M(G))$. Since $S_G(y) \leq \delta^*(y|\widetilde{C})$ for every $y \in F$ we have $M(G) \in \operatorname{cc}(E, F)$. Moreover, M is positive, monotone and subadditive. In view of [12, Theorem 2] the map \widetilde{M} from \mathcal{B} to $\operatorname{cf}(E, F)$ defined by

$$\widetilde{M}(A) = \overline{\operatorname{co}} \bigcup_{K \subseteq A} \bigcap_{G \supseteq K} M(G)$$

is a positive weak set-valued measure. It is \mathcal{K} -inner regular and $\widetilde{M}(G) \subseteq M(G)$ for every $G \in \mathcal{G}$. Since $M(G) \subseteq \widetilde{C}$ for all $G \in \mathcal{G}$, we have $\widetilde{M}(A) \in \mathrm{cc}(E,F)$ for all $A \in \mathcal{B}$.

Let us prove that $(M_i)_{i\in I}$ converges to \widetilde{M} . By the definition of M, we have $\lim_i \delta^*(y|M_i(G)) = \delta^*(y|M(G))$. Since $\widetilde{M}(G) \subseteq M(G)$,

$$\forall y \in F, \forall G \in \mathcal{G}, \quad \lim_{i} \delta^{*}(y|M_{i}(G)) \geq \delta^{*}(y|\widetilde{M}(G)).$$

It remains to show that $\lim_i M_i(T) = \widetilde{M}(T)$. First let us prove that $\lim_i \delta^*(y|M_i(T)) = \delta^*(y|\widetilde{M}(T))$ for all $y \in F$. Note that

$$\delta^*(y|\widetilde{M}(T)) = \sup_{K \in \mathcal{K}} \inf_{G \supseteq K} \delta^*(y|M(G))$$

([12, Lemmas 1-3]). Therefore we have to prove that

$$\forall y \in F \quad \inf_{K \in \mathcal{K}} \sup_{K \subset G} \lim_{i} \delta^{*}(y|M_{i}(T \setminus G)) = 0.$$

If this were not so we would find $\varepsilon > 0$ and $y \in F$ such that for every $K \in \mathcal{K}$ there exists $G_K \in \mathcal{G}$ with $G_K \supset K$ and $\delta^*(y|M_i(T \setminus G_K)) > \varepsilon$ eventually. Put $\mathcal{G}' = \{G_K; K \in \mathcal{K}\}$; then \mathcal{G}' dominates \mathcal{K} and for every finite subfamily \mathcal{G}'' of \mathcal{G}' we have $\inf\{\delta^*(y|M_i(T \setminus G_K)); G_K \in \mathcal{G}''\} > \varepsilon$ eventually. This contradicts condition (b) of (2). Therefore $\lim_i \delta^*(y|M_i(T)) = \delta^*(y|\widetilde{M}(T))$ for all $y \in F$.

On the other hand, the net $(M_i(T))$ converges to C in cc(E, F). It follows that $\delta^*(y|C) = \delta^*(y|\widetilde{M}(T))$ for all $y \in F$ and therefore $\widetilde{M}(T) = C$.

REMARK. If in condition (2)(b) we only take subclasses \mathcal{G}'' of \mathcal{G}' consisting of one set then we obtain the following condition:

(3) For all $y \in F$, all $\mathcal{G}' \subset \mathcal{G}$ with $\mathcal{G}' \succ \mathcal{K}$ and all $\varepsilon > 0$ there exists $G \in \mathcal{G}'$ such that

$$\sup\{\delta^*(y|M(T\setminus G));\,M\in H\}<\varepsilon.$$

In view of [14, Lemma 7] this condition is equivalent to the following:

(4) For all $y \in F$ and $\varepsilon > 0$ there exists $K \in \mathcal{K}$ such that $\sup \{\delta^*(y|M(T \setminus K)); M \in H\} < \varepsilon$.

DEFINITION. A subset of $M_+(T, \mathcal{K}, cc(E, F))$ which satisfies condition (4) is said to be *uniformly tight*.

COROLLARY 2.1. Let T be an abstract set, and let \mathcal{G} and \mathcal{K} be families of subsets of T which satisfy axioms (i)–(v). Let $H \subset \widetilde{M}_+(T,\mathcal{K},\operatorname{cc}(E,F))$ be such that $\{M(T); M \in H\}$ is relatively compact in $\operatorname{cc}(E,F)$. If H is uniformly tight, then every net on H has a convergent subnet.

The results of the next corollary have been proved in [6] for scalar-valued measures. For non-negative measures they have been proved separately by several authors (e.g. [3], [1], [8], [18], [9], [5]). We have generalized them to set-valued measures [13].

COROLLARY 2.2. Assume that T is a locally compact space or a complete metric space or else a hemicompact k-space. Let H be a subset of $\widetilde{M}_+(T,\mathcal{K}(T),\operatorname{cc}(E,F))$ endowed with the wn-topology. Then the following conditions (1) and (2) are equivalent:

- (1) H is relatively compact.
- (2) (a) The set $\{M(T); M \in H\}$ is relatively compact in cc(E, F),
 - (b) H is uniformly tight.

Since $\widetilde{M}_+(T, \mathcal{K}(T), \operatorname{cc}(E, F))$ is a completely regular space, condition (1) of the corollary is equivalent to that of the theorem. The result is evident if T is a locally compact space or a complete metric space. If T is a hemicompact k-space the proof is similar to that in [9, Theorem 5.2, p. 884].

Finally, note that $\widetilde{M}_+(T, \mathcal{K}, \operatorname{cc}(E, F))$ with the wn-topology is a Hausdorff space when axioms (i)–(v) are satisfied. Since two weak set-valued measures M and M' are equal if and only if $\delta^*(y|M(\cdot)) = \delta^*(y|M'(\cdot))$ for all $y \in F$, the proof follows from that of Topsøe ([16, p. 204]).

3. The space $M_+(T,\mathcal{K}(T),\operatorname{ck}(E))$. In this section we prove that the wn-topology, the sn-topology and the s-topology coincide in $\widetilde{M}_+(T,\mathcal{K}(T),\operatorname{ck}(E))$. Now E is a Banach space and F=E' is its topological dual. The norms on E and E' are denoted by $|\cdot|$. Let B'(0,1) be the closed unit ball of E', endowed with the relative topology $\sigma(B'(0,1),E)$ generated by the weak topology $\sigma(E',E)$ in E'. We denote by $\operatorname{ck}(E)$ the space of all convex compact non-empty subsets of E, and by $\widetilde{M}_+(T,\mathcal{K}(T),\operatorname{ck}(E))$ the subspace of $\widetilde{M}_+(T,\mathcal{K}(T),\operatorname{cc}(E,E'))$ consisting of all elements with values in $\operatorname{ck}(E)$. Note that a weak set-valued M with values in $\operatorname{cc}(E,E')$ is a set-valued measure, that is, for any sequence (A_n) of pairwise disjoint sets in $\mathcal{B}(T)$ with union A, we have $M(A) = \lim_{n \to \infty} \sum_{k=0}^n M(A_k)$ where the limit is taken with respect to the Hausdorff topology [15]. The Hausdorff topology derives from the distance δ defined by $\delta(C,C') = \sup\{|\delta^*(y|C) - \delta^*(y|C')|; y \in E', |y| \le 1\}$ for all C and C' in $\operatorname{cc}(E,E')$. The space $(\operatorname{ck}(E),\delta)$ is a complete metric space [2]. We start with the following

LEMMA 3.1. Let $(C_i)_{i\in I}$ be a net on $\operatorname{ck}(E)$, and let $(z_i)_{i\in I}$ be a net on B'(0,1). If (C_i) converges to C_0 in $\operatorname{ck}(E)$, and (z_i) converges to z_0 in B'(0,1), then $(\delta^*(z_i|C_i))$ converges to $\delta^*(z_0|C_0)$.

Proof. We have

$$\begin{aligned} |\delta^*(z_i|C_i) - \delta^*(z_0|C_0)| &\leq |\delta^*(z_i|C_i) - \delta^*(z_i|C_0)| + |\delta^*(z_i|C_0) - \delta^*(z_0|C_0)| \\ &\leq \sup_{|y| \leq 1} |\delta^*(y|C_i) - \delta^*(y|C_0)| + |\delta^*(z_i|C_0) - \delta^*(z_0|C_0)|. \end{aligned}$$

Since $C_0 \in \operatorname{ck}(E)$ and the map $\delta^*(\cdot|C_0): B'(0,1) \to \mathbb{R}, y \mapsto \delta^*(y|C_0)$, is

continuous, the net $(\delta^*(z_i|C_0))_i$ converges to $\delta^*(z_0|C_0)$. Moreover

$$\lim_{i} (\sup_{|y| < 1} |\delta^*(y|C_i) - \delta^*(y|C_0)|) = 0$$

because (C_i) converges to C_0 . The lemma is therefore proved.

THEOREM 3.2. Let T be a completely regular Hausdorff space, and E be a Banach space. Let $(M_i)_{i\in I}$ be a net on $\widetilde{M}_+(T,\mathcal{K}(T),\operatorname{ck}(E))$ and $M_0\in \widetilde{M}_+(T,\mathcal{K}(T),\operatorname{ck}(E))$. Then (M_i) converges to M_0 in the wn-topology if and only if (M_i) converges to M_0 in the s-topology.

Proof. By Section 1.6 it is evident that the s-topology is finer than the wn-topology, so we need only prove that convergence in the wn-topology implies convergence in the s-topology. Assume that (M_i) converges to M_0 in the wn-topology. To show that (M_i) converges to M_0 in the s-topology it suffices to prove that for every $f \in C_+(T)$, $(\int f M_i)$ is a Cauchy net. If this were not so, there would exist $g \in C_+(T)$ and $\varepsilon > 0$ such that for every $i \in I$ we would find $k_i, j_i \in I$ with $k_i, j_i \geq i$ and $y_i \in B'(0,1)$ such that $|\int g \delta^*(y_i|M_{j_i}(\cdot)) - \int g \delta^*(y_i|M_{k_i}(\cdot))| \geq \varepsilon$. We may assume without loss of generality that $g \leq 1$. Since B'(0,1) is a compact space for the topology $\sigma(B'(0,1), E)$, the net $(y_i)_{i \in I}$ has a convergent subnet. Assume for simplicity that (y_i) itself converges to $z \in B'(0,1)$. Consider the net $(\int g \delta^*(y_i|M_{k_i}(\cdot)))_{i \in I}$. We have

$$\int g\delta^*(y_i|M_{k_i}(\cdot)) - \int g\delta^*(z|M_{k_i}(\cdot)) \le \int g\delta^*(y_i - z|M_{k_i}(\cdot))$$

because for every y and y' in E' one has $\int g\delta^*(y+y'|M_{k_i}(\cdot)) \leq \int g\delta^*(y|M_{k_i}(\cdot)) + \int g\delta^*(y'|M_{k_i}(\cdot))$. Since $g \leq 1$ and $\delta^*(y|M_{k_i}(\cdot))$ is a non-negative measure one has $\int g\delta^*(y|M_{k_i}(\cdot)) \leq \delta^*(y|M_{k_i}(T))$ for every $y \in E'$. We then have

$$\int g\delta^*(y_i|M_{k_i}(\cdot)) - \int g\delta^*(z|M_{k_i}(\cdot)) \le 2\delta^*\left(\frac{1}{2}(y_i-z)\Big|M_{k_i}(T)\right).$$

It follows that

$$\left| \int g \delta^*(y_i | M_{k_i}(\cdot)) - \int g \delta^*(z | M_{k_i}(\cdot)) \right|$$

$$\leq 2 \sup \left(\delta^* \left(\frac{1}{2} (y_i - z) \middle| M_{k_i}(T) \right), \delta^* \left(\frac{1}{2} (z - y_i) \middle| M_{k_i}(T) \right) \right).$$

By Lemma 3.1 the nets $(\delta^*(\frac{1}{2}(y_i-z)|M_{k_i}(T)))_i$ and $(\delta^*(\frac{1}{2}(z-y_i)|M_{k_i}(T)))_i$ converge to 0. Hence $\lim_i |\int g \delta^*(y_i|M_{k_i}(\cdot)) - \int g \delta^*(z|M_{k_i}(\cdot))| = 0$. Taking account of the hypothesis one has $\lim_i \int g \delta^*(z|M_{k_i}(\cdot)) = \int g \delta^*(z|M_0(\cdot))$. Then we may conclude that $\lim_i \int g \delta^*(y_i|M_{k_i}(\cdot)) = \int g \delta^*(z|M_0(\cdot))$. Analogously, $\lim_i \int g \delta^*(y_i|M_{j_i}(\cdot)) = \int g \delta^*(z|M_0(\cdot))$. It follows from the equality of those limits that $\lim_i |\int g \delta^*(y_i|M_{k_i}(\cdot)) - \int g \delta^*(y_i|M_{j_i}(\cdot))| = 0$. That is a contradiction.

We denote by t_{sn} , t_{wn} and t_s the strong-narrow, weak-narrow and simple topology, respectively. If t and t' are two topologies on the same set, we write $t \leq t'$ if t is coarser than t'.

Let $G \in \mathcal{G}(T)$ and $K \in \mathcal{K}(T)$ and assume that $K \subset G$ and T is a completely regular Hausdorff space. Put $\mathcal{F} = \{f \in C_+(T); f < 1_G\}$ where 1_G is the indicator function of G. Since T is a completely regular Hausdorff space, there exists $f \in \mathcal{F}$ such that f(x) = 1 for all $x \in K$. The family \mathcal{F} is filtering to the right and $1_G = \sup\{f; f \in \mathcal{F}\}$. Now let $M \in \widetilde{M}_+(T,\mathcal{K}(T),\operatorname{ck}(E))$. Since M is $\mathcal{K}(T)$ -inner regular and positive, we have $M(G) = \overline{\operatorname{co}} \bigcup \{\int fM; f \in \mathcal{F}\} = \operatorname{cl} \bigcup \{\int fM; f \in \mathcal{F}\}$. The second equality follows from the fact that $\bigcup \{\int fM; f \in \mathcal{F}\}$ is a convex set in E. Indeed, if $x \in \int fM$ and $y \in \int gM$ with $f \in \mathcal{F}$ and $g \in \mathcal{F}$, then $h = \sup(f,g) \in \mathcal{F}$ and $M(h) \supseteq M(f) \cup M(g)$ because M is positive. Therefore $rx + (1-r)y \in M(h)$ where $0 \le r \le 1$.

Theorem 3.3. Let T be a completely regular Hausdorff space and let E be a Banach space. Then in $\widetilde{M}_+(T,\mathcal{K}(T),\mathrm{ck}(E))$ the wn-topology, sn-topology and s-topology are identical.

Proof. Let $f \in C_+(T)$ and let

$$p_f: (\widetilde{M}_+(T; \mathcal{K}(T), \mathrm{ck}(E)), t_s) \to (\mathrm{ck}(E), \delta), \quad M \mapsto p_f(M) = \int fM.$$

Then p_f is continuous, and therefore lower semicontinuous. It follows that for every $G \in \mathcal{G}(T)$ the map

$$p_G: (\widetilde{M}_+(T, \mathcal{K}(T), \operatorname{ck}(E)), t_s) \to (\operatorname{ck}(E), \delta)$$

 $M \mapsto p_G(M) = M(G) = \operatorname{cl} \bigcup \left\{ \int fM; f \in \mathcal{F} \right\}$

is lower semicontinuous. We deduce that $t_{sn} \leq t_s$ because t_{sn} is the weakest topology for which all maps $M \mapsto M(G)$ defined on $\widetilde{M}_+(T, \mathcal{K}(T), \mathrm{ck}(E))$ are lower semicontinuous. It follows from the proof of Theorem II.21 in [2, p. 52] that $t_{wn} \leq t_{sn}$. The relations $t_{wn} \leq t_{sn} \leq t_s$ and Theorem 3.2 show that these three topologies are identical.

References

- [1] N. Bourbaki, *Intégration*, chapitre IX, Hermann, Paris.
- [2] C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions, Lecture Notes in Math. 580, Springer, 1977.
- [3] J. B. Conway, The strict topology and compactness in the space of measures, Trans. Amer. Math. Soc. 126 (1967), 474–486.
- [4] N. Dunford and J. T. Schwartz, *Linear Operators*, Part I, *General Theory*, Interscience, New York, 1958.
- [5] X. Fernique, Processus linéaires, processus généralisés, Ann. Inst. Fourier (Grenoble) 17 (1967), no. 1, 1–92.

- [6] D. H. Fremlin, D. J. H. Garling and R. G. Haydon, Bounded measures on topological spaces, Proc. London Math. Soc. (3) 25 (1972), 115–136.
- [7] G. Köthe, Topological Vector Spaces I, 2nd ed., Springer, Berlin, 1983.
- [8] L. Le Cam, Convergence in distribution of stochastic processes, Univ. Calif. Publ. Statist. 2 (1957), 207–236.
- [9] S. E. Mosiman and R. F. Wheeler, The strict topology in a completely regular setting: Relations to topological measure theory, Canad. J. Math. 24 (1972), 873–890.
- [10] D. Preiss, Metric spaces in which Prokhorov's theorem is not valid, Z. Wahrsch. Verw. Gebiete 27 (1973), 109–116.
- [11] Yu. V. Prokhorov, Convergence of random processes and limit theorems in probability theory, Theor. Probab. Appl. 1 (1956), 157–216.
- [12] K. K. Siggini, On the construction of set-valued measures, Bull. Polish Acad. Sci. Math. 51 (2003), 251–259.
- [13] —, Compacité étroite des multi-applications tendues, Rev. Roumaine Math. Pures Appl. 33 (1988), 457–470.
- [14] —, Sur la compacité des multimesures I, C. R. Math. Acad. Sci. Paris 334 (2002), 949–952.
- [15] D. S. Thiam, Intégration dans les espaces ordonnés et intégration multivoque, thèse, Univ. Pierre et Marie Curie, 1976.
- [16] F. Topsøe, Compactness in spaces of measures, Studia Math. 36 (1970), 195–212.
- [17] —, Topology and Measure, Lecture Notes in Math. 133, Springer, Berlin, 1970.
- [18] V. S. Varadarajan, Measures on topological spaces, Mat. Sb. 55 (1961), 35–100 (in Russian); English transl.: Amer. Math. Soc. Transl. Ser. II 48 (1965), 161–228.

Kenny Koffi Siggini Department of Mathematics Faculty of Sciences University of Lome P.O. Box 1515, Lome, Togo E-mail: ksiggini@hotmail.com

Received June 9, 2006

(7530)