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Summary. Let ' = ind lim F,, be an infinite-dimensional LF-space with density dens F' =
7 (> Ng) such that some F), is infinite-dimensional and dens F,, = 7. It is proved that
every open subset of F' is homeomorphic to the product of an ¢3(7)-manifold and R* =
indlim R™ (hence the product of an open subset of £2(7) and R*). As a consequence, any
two open sets in I’ are homeomorphic if they have the same homotopy type.

1. Introduction. A locally convex topological linear space F is called
an LF-space if it is the strict inductive limit of Fréchet spaces (). More
precisely, F' has a tower Fy C F> C --- of linear subspaces being Fréchet and
a local basis consisting of balanced (circled) convex sets V' such that V N F,
is a neighborhood of 0 in F;, for each n € N. Then we write F' = ind lim F,.
Given countably many Fréchet spaces F,,, n € N, we define Y ° F, =
indlim []}"_; F;, where each []}", F; is identified with the subspace []}"_; F; x
{0} of H?:Jrll F;. For LF-spaces, we refer to [8, Ch. II, §6], [12, Ch. 13], etc.

In this paper, we also consider the (topological) direct limit of a tower
X1 C X9 C --- of (topological) spaces which is denoted by lim X, that
is, li_r)an = Unen Xn with the topology such that U is open in lii>an if
and only if U N X, is open in X, for each n € N. Even if each X, is a
topological linear space, h_n)an is not in general. If the addition of lii>an is
continuous, then it is a topological linear space (?). In this case, if every X,
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is locally convex then so is lim X, (cf. [12, Problem 13-1-5]). For the tower
R C R? € R? C ---, the direct limit R® = h_H)an is a topological linear
space, hence R* is an LF-space, i.e., R® = indlim R". The Hilbert space
with density 7 (> Ng) is denoted by #(7), where fo = l5(Ry).

The topological classification problem for LF-spaces is completely solved
by the results of Mankiewicz [6, Theorem 2.14]| and Torunczyk [11, Theo-
rem 6.1]: every LF-space F' = ind lim F;, is homeomorphic to (=) one of the
spaces R, lo(7) x R® or > 7 | lo(1y,), where 7 = dens F and 71 < 75 < - - -
with sup7; = dens F'. In fact, (1) F =~ R*> if dim F}, < oo for each n € N;
(2) F = l2(1) x R* if some F, is infinite-dimensional and dens F}, = dens F'
=7; (3) F =Y ;2 la(r;) if dens F}, < dens F for every n € N.

Given a space E (called a model space), a paracompact Hausdorff space
M is called an E-manifold if it is locally homeomorphic to E, that is, each
point of M has an open neighborhood homeomorphic to an open set in
E. Although the theory of R*°-manifolds has been well developed (cf. [3],
[7], etc.), that of f5 x R*°-manifolds has not. Not much is known about
lo(1) x R®- or 322, lo(7;)-manifolds.

In the following,

let F' be an LF-space such that F =~ l3(T) x R, where 7 > Ny.
In this paper, we show the following:

MAIN THEOREM. For each open set U in F, there exists an l3(7)-mani-
fold M such that U ~ M x R*°.

We have the following corollaries. The first one follows from the classi-
fication theorem for ¢(7)-manifolds [5], [4] (cf. [2, Ch. IX, Theorem 7.3|):
any two f2(7)-manifolds with the same homotopy type are homeomorphic.

COROLLARY 1 (Classification). Two open subsets of F' are homeomor-
phic if they have the same homotopy type.

Due to the stability theorem for ¢2(7)-manifolds [9] (cf. [2, Ch. IX, The-
orem 4.1|), M X l5(7) = M for every lo(7)-manifold M, hence we have the
following:

COROLLARY 2 (Stability). Every open set U in F' is homeomorphic to
UXxF.

For each connected ¢3(7)-manifold M, there exists a locally finite-dimen-
sional simplicial complex K with card K(9) < 7 such that M ~ |K| x {3,
where | K| admits the metric topology, by the triangulation theorem for £(7)-
manifolds [4|. Thus, the following holds:

COROLLARY 3 (Triangulation). Each open subset of F' is homeomorphic
to |K| x F for some locally finite-dimensional simplicial complex K with
card KO < 7.
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2. Outline of the proof. Let I =[0,1] and Ry = [0, 00). Since ¢(7) X
R" =~ ly(1) x I = Ly(7) for every n € N (cf. [10]), it follows from the
stability theorem for f(7)-manifolds [9] that X x R} ~ X x I" = X for
each £5(7)-manifold X and n € N. Moreover, R* ~ R = lim R}, the direct
limit of the tower Ry C RZ C R} C -+ (cf. [7]), where each R is identified
with R? x {0} C R, Therefore, F' = f5(7) x R%. Thus, we can consider
U as an open set in f3(7) x RS°. One should note that

lo(1) x R = Lo(7) x im RY 7 lim(f2(7) x RY) as spaces.

A closed set A in a space X is called a Z-set if for each open cover U
of X there is a map f: X — X \ A which is U-close to id, that is, every
{z, f(z)} is contained in some U € Y. It is known that if an f2(7)-manifold
A is a Z-set in an fo(7)-manifold X then A is collared in X, that is, there is
an open embedding 1) : Ax[0,1) — X (called a collar) such that ¢(z,0) = x
for every x € A.

For each n € N, let U, = U N (2(7) x R’!). As is easily observed, each
U, is an {9(7)-manifold which is a Z-set in Uy4+1. Note that Uy C Uy C ---
and U = {J,,ery Un. We define

M=Jln=1,n] xU, C [ JRy xlo(r) x R} =Ry x £y(7) x RY.
neN neN

Now, each [n — 1,n] x U, is an ¢3(7)-manifold and
([n = 1,n] x Un) N ([0, + 1] X Upy1) = {n} x Un,

where {n} x U, is collared not only in [n—1, n]xU,, but also in [n, n+1]xUp+1
because it is a Z-set in the f3(7)-manifold [n,n + 1] X Up4;. It follows that
M is a separable {5(7)-manifold. Since R* » [0,1)> = lim[0,1)", we shall
show that M x [0,1)* ~

Let ¥ = (¢;);en be a sequence of collars v; : U; x [0,1) — U;41. By the
natural embedding

P X id 1 Uy, X [0,1) x [0,1)> — Upgq X [0,1)%,

we regard U, x [0,1) x[0,1)*° = U,, x [0, 1)*° as an open set in U1 x [0, 1)*°.
Let Uy be the direct limit of the following open tower:
Uy x [0, 1)00 C Uyx [0, 1)00 C
1 xid o xid
Since each U, x [0,1)* is an open set in f3(7) x R’ x [0,1)*° ~ a(1) x R*,
it follows that Uy is an fo(7) x R®-manifold. Since U,, x [0,1)* C U, for
each n,k € N, we can regard Uy = (J,,cny Un as sets but the topology of Uy

depends on the sequence ¥ = (1););en. The first step of the proof is to find
¥ so that Uy =~ U.
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Observe that Uy is also the direct limit of the following open tower:

Uy x[0,1/2)*° c Uy x[0,2/3)° C ---
1% [0,1/2) 05 2 [0,2/3) WS

On the other hand, for each n € N, let
n n (e.@)

Then M7° C M3° C --- are open sets in M x [0,1)* and M x [0,1)>* =
M?>. In the second step, we construct homeomorphisms
neN Yin p p

hn:M;f"eUnx[o " ) , neN,

‘n+1
so that the following diagram commutes:
C
M —_— MZS

hnl lhn#»l

n oe C n+1 &
U, 0 U, 0
nx[’n+1> P xid n+1x[’n—|—2>

This implies that M x [0,1)* ~ Uyg.
To complete the proof, we use two more results on ¢5(7)-manifolds. The
following is proved in [5]:

THEOREM 1. Let M and N be l5(T)-manifolds. Every homotopy equiva-
lence f: M — N is homotopic to (=) a homeomorphism.

We call an embedding f : X — Y a Z-embedding if f(X)isa Z-setin Y.
The following easily follows from the Z-set unknotting theorem [1]:

THEOREM 2. Let f : M — N be a homeomorphism between la(T)-
manifolds and g : A — N a Z-embedding of a Z-set A in M. If g is homo-
topic to the restriction f|A then g extends to a homeomorphism g : M — M
which is isotopic to f.

3. The first step of the proof. For simplicity, we use the following
notation:

n<w n
H [0,a;] = U H[O,ai] for a; > 0, i > k.
i=k n>ki=k

For a subset N C f5(7) x R"} and a map a : N — (0,1), we define
N(a)={(z,t) € N xRy [t < a(x)} C lo(7) x R

For each n € N, let U,, = UN(f2(7) xR"}). Then Uy, is an £3(7)-manifold. For
a sequence o = (ay)gen of maps oy : Up — (0, 1) satisfying the condition
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Ug(ag) C Ugs1, we can inductively define

Un(an, ... ar) = Up(am, ..., ap—1)(ag)
C Uk(ag) C Ugy1  for each k > n.
Then, for each n € N,
Un(an) C Un(an,anH) C Un(an,an+1,an+2) (G
Let UY = Ugsy Un(an, ..., a;) C U. Thus, we have a tower U{* C Us* C
Ug C -+ with U =J,,en Ug. If each US is open in U then U = lim Uy

LEMMA 1. There exists a sequence o = (o )gen of maps oy, : U, — (0,1)
such that Uy(ag) C Ugs for every k € N and each US is open in U, hence
U= h_n)lUfL‘ Moreover, for each x € Uy there is a neighborhood V of x in
Uk and a; > 0, i > k, such that infycy ag(y) > 0 and

inf {an(y) ‘ y eV x [0, ai]} >0  for every n > k.
Proof. For each k € N, let V}, be a locally finite open cover of U and let
ay; € (0,1], i > k, be such that

n<w

clV x H [0,av;] CU for each k € Nand V € V.
i=k+1
We define 3y, : U, — I as follows:

k
Br(r) = max {auk“ ’ VeV, j<k zeccVx H [O,aw]},
i=j+1

where cl V' x Hf: y 1110, av;] = clV if j = k. Then (3 is upper semicontinuous
because

k+1
{(z,t) eUp x Tt < Br(@)} = | | av x ] [0,av,]
i<k VeV i=j+1

is closed in Uy x Ry. Choose an open set UIQH in U1 so that
{(l’,t) S Uk; x 1 | t < ﬁk+1(l’)} C Uli:-i—l - CIU/::-‘rl C Uk+1.
Then we have a lower semicontinuous function 7 : U — I defined by

(@) = sup{t € T | {a} x [0,4] € UL, }.
Since (B < 7, there exists a continuous map «y : Uy — (0,1) such that
Ok < ag < Yg. Thus, Ug(ax) C Ugsq for every k € N.
By the definition, for each V € V;, and n > k,
n+1

AV x ] 0,avi] C Ukla, ..., on),
i=k+1
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which implies inf ey ag(y) > ayv 41 > 0 and

n
inf {an(y) ’ yeV x H [O,ai}} > ayn1 >0 for every n > k.
i=k+1
To show that each Uy is open in U, let x € U7. Choose k > n so that

x € Up(an,...,ar) C Ugy1. Then z has the following open neighborhood

in U:
m+1<w

W x H [O,CLVJ’),
i=k+2
where W =V NU,(ay,...,ar) and V € Vi1 1. Now, by induction on m > k,

we shall show that
m+1

W x H [0, a\/’i] C Un(an, R ,am).
i=k+2
To this end, take an arbitrary
m—+1

Yy = (Z,tk+2, L ,tm+1) eW x H [0, aV,i]-
i=k-+2
By the inductive assumption, it follows that

m
Y = (2 thp2, o tm) €W x [ 0,avs] € Un(om, ..., am-1).
i=k+2

Since tm41 < avmt1 < am(y'), it follows that
y € Un(an,...,am—1)(am) = Un(an, ..., o).

Thus, we have

m+1<w m
W x H [0,(1\/,1'] = U W x H [O,CLV,Z'] c Uy
i=k+2 m>k i=k-+2

Therefore, U} is open in U. =

Now, we shall construct a sequence ¥ = (1););en of collars 1; : U; x[0,1) —
Ui+1, 7 € N, so that Uy ~ U. Recall Uy is the direct limit of the following
open tower:

Ui x [0, 1)00 C Uyx [0, 1)00 C
1 Xid o xid

where we regard U, x [0,1)* as an open set in U,+1 % [0,1)* by the em-
bedding

P X id : Uy x [0,1)™ = Uy, x [0,1) X [0,1) — Uy x [0,1).

LEMMA 2. There exists a sequence ¥ = ({n)nen of collars iy, : Uy X
[0,1) — Upt1 such that Uy = U.
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Proof. Let a = (cuy)nen be a sequence of maps ay, : U, — (0, 1) obtained
by Lemma 1. Then U is open in U and U = h_r)nUﬁ‘ For each n € N, we
define a collar ¢, : Up x [0,1) — Upy1 by ¥p(z,t) = (2, an(z)t). For every
k € N, we inductively define &, : U, x [0,1)¥ — [0,1) as follows:

On k(T tns1s o tngk)
= Unik—1(2; 001 (@, tng1), - O o1 (@, Bt - - Bnk—1) ek
where 0, 1(x,t) = o (x)t. Then we have the following equation:
(%) Ok (x, Sntl ey Sntk ) = Spik-
an () Ot k—1(Ty St 1y - oy Snak—1)
Define hy, : Up x [0,1)° — UZ and g, : US — U, x [0,1)* as follows:

hn(2, s, tnga, o) =(2, 0n1 (2, tnt1), On2 (@, tog1, thg2)s - -0 ),
Sn+1 Sn+42 Sn+3
’ an(x)7 ant1(z, Sn-i-l)’ Qnt2(T, Snt1, Sni2) o >
It is easily observed that g,,0h, = idy, x[o,1)- By (*), we have h,0g, = idya.
Thus, g, is a bijection with h, = g, . Moreover, (¢, X id) 0 g, = gny1|U
for all n € N, that is, the following diagram commutes:
Uy - Upiq

n

gn J/ gn+1 l

U, x [0,1)>® Til; g1 X [0,1)

gn(% Sn+1;Sn+25--- ) - <IIZ’

Indeed, for each (z, $p41, Snt2,...) € US,

. . Sn+1 Sn42
n X 1d) o gn (T, Spa1, Spao, ... ) = (Y, X id) | x, , Y
(@b ) g ( +1 +2 ) (¢ )< Oén(ZL') Oén+1($78n+1) )

. Sn+1 Sn+2
- <1"” ( an<x>>’ @, mg1) )

Sn+2
= (x,8p41), ——m, ...
<( o )’an+1($,sn+1)’ >

== gn+1(($7 Sn+1)a Sn+2y - - - )

We shall show that h,, and g, are all continuous, which means that g, is a
homeomorphism. Then we shall have

U=1lmU; ~1limU, x[0,1)* = Uy.
i —

To see the continuity of h,, at x € Uy, x [0,1)°°, let V be a neighborhood
of hy(x) in US. Then x is contained in some U, x [0,1)*  which implies
that hy(z) € Up(a1,...,ak_1). We can find a neighborhood V' of h,(z) in
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U, x [0,1)* and 0 < 7,545 < 1, i € N, such that
j<w
ho(x) € V! 5 T]10, rnsns) C V.
i=1
Since 8,1, . - - , 6n k are continuous, it follows that hy,|U, x [0, 1)¥ is continuous,
hence z has a neighborhood W in U, x [0,1)* such that h,(W) C V'. Then
W x [T/=Y[0, 7pskti] is a neighborhood of @ in U, x [0,1)> and
J<w j<w

hn (W X H[O7rn+k+i]> CV'x il_[l[oa Tntk+i] CV,

which implies that h,, is continuous at =x.
To see the continuity of g, at z € UZ, for each neighborhood V' of g, (z)
in Uy, x [0,1)* choose an open set W in U,, and 7,4, > 0, i € N, so that
j<w
gn(x) € W x JT[0,7m14] C V.
i=1

Due to Lemma 1, it can be assumed that inf,cy o, (y) > 0 and

k
inf {an+k(y) ‘ yeW x H[O,TnJri]} >0 for every k € N.
i=1

Hence, we can find 0 < g1 < rpy4, © € N, such that

J
W Snt1s - snpjo1) €W X 10, rnpils $nts < dngs
i=1
o L
= nty < Tn+j.
ntj—1(Ys Sntts - -5 Sntj—1)

Then it follows that
J<w J<w

gn(W X H[O7Qn+i]) CWx H[OarnJri] cV,

which implies that g, is continuous at z. =

REMARK 1. Let My C My C --- be a closed tower of ¢2(7)-manifolds
such that each M; is a Z-set (hence collared) in M; 1. Then My, = J;cny My
has a topology such that My is an f3(7) x R*-manifold and each M; is
a subspace of M. Indeed, given a sequence ¥ = (v;);en of collars 1; :
M; x[0,1) — M1, we regard M, x [0,1)° as an open set in M1 x [0,1)>
by the natural embedding

Yy X id : My, x [0,1)*° = M,, x [0,1) x [0,1)*° — Mp41 x [0,1)>.
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Let My be the direct limit of the open tower

My x [0,1)®° C My x[0,1)® c -
11 xid o xid

Since every separable ¢ (7)-manifold can be embedded into ¢3(7) as an open
set by the open embedding theorem for ¢(7)-manifolds [5] (cf. [4]), each
M,, x[0,1)* is homeomorphic to an open set in £2(7) x [0, 1) = fo(7) x R*.
Then My is an f3(7) x R®-manifold. Since M, x [0,1)¥ C M, for each
n, k € N, we can regard My = M as sets but the topology of My depends
on the sequence ¥ = (v;);en. One should note that My # lim My, In fact,
the topology of lim My, is finer than that of My.

4. The second step of the proof. By Lemma 2, we have a sequence
U = (1;)ien of collars ©; : U; x I — U,y such that U is homeomorphic to
the direct limit Uy of the following open tower:

Uy x [0,1)° C Uyx[0,1)®° C
11 xid

1hg xid
The Main Theorem is reduced to the following:
LEMMA 3. M x [0,1)® ~ Uy.
Proof. Here, we regard Uy as the direct limit of the following open tower:

Up x [0,1/2)®° C Uy x[0,2/3)° C ---
! [ /) Py xid 2 [ /) g xid

Recall we can write M x [0,1)* = (J,cny M, where M° C M3$© C --- are
open sets in M x [0,1)° defined as follows:

n n o]
oo y . S
M = <!:1| [i—1,n) x Ul> X [O, — 1) .
To show that M x [0,1)* =~ Uy, it suffices construct homeomorphisms

Bt M2 — Uy, x [0,”) . neN,
n+1

so that the following diagram commutes:

[eS) - )
Mn Mn+1

th/ lh'nﬂ»l
oo oo
n c n—+1
U, 0 U, 0, ——
nX[’n—i—l) Pn xid nHX[’n—l—Z)
For each n € N, we define

M, = <Lnj[z'—1,n) x U,;) x {0, nL)n

i=1
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Then it follows that

n \~ n
M,so = Mn X |:O, 7‘[/—’—]_) and Mn X |:0, n—}—]_) C Mn+1.
If we could construct homeomorphisms
n [e.e]
fn:MnHUnX[Oan_'_l) ) neN,

so that the following diagram commutes:

n C
My, x [07 n—i—1> _— My 14

anidl lfnJrl

2
n n+1
U, 0 U, 0, ——
"X{’n—i—l) ¥xid "+1X[’n—|—2>

then the desired homeomorphism h,, could be defined as follows:

B = foxid: M = M, x |0, —— ) — U, x [0, ——) .
n+1 n+1

To construct f, inductively, let

M, = <O[i— 1,n] x Ui> X [o,nil]n,

=1
OM,, = M, \ M,

n n
= {’I’l} X Un X |:O, 7'[,—|—]_:|

U (ig[z’—l,n] X Ul-) x <[O’ni1]n\ {0&)”)

Similarly to M, we can see that these are £5(7)-manifolds. Note that 9M,, is a
Z-set in M. Let p,, : M,, — U, be the projection and i, : U, — 0M, C M,
the injection defined by iy, (x) = (n,x,v,), where

n n o "
Uy = — .
" n+1""""n+1 "n+1

Then i,(U,) = U, x {v,} is a strong deformation retract of both M,, and
OM,,, hence p,, and p,|0M,, are homotopy equivalences and i, is a homotopy
inverse of both p, and p,|0M,. Thus, we have the homotopy equivalences

Tn: M, — U, X O,L and 1, =r,|0M, : OM,, — U, x i
n—+1 n+1

defined by r,(x) = (pn(z),n/(n + 1)).
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We shall construct homeomorphisms
n

ntMnHUnX |:077’L—|—1

], n €N,

so that f,, ~ 1y,
n

fn(aMn):Unx{n+1}7 lev fn(Mn):Unx |:07n:L—1>’

and the following diagram commutes:

M, x [07 n ] — My

n—+1

anIdl J{fn«l»l
2
n n+1
U, 0 U, 0
"X[’n—f—l] b xid "+1X[’n+2]

Then f, = f,|M, is the desired homeomorphism.

First, by Theorem 1, we have homeomorphisms f : M; — Uj x [0,1/2]
and [’ : OM; — Uy X {1/2} onto U such that f ~ r; and f’ ~ r|. Since
f' =~ flOM;, we can apply Theorem 2 to extend f’ to a homeomorphlsm
f1: My — Uy x [0,1/2] which is isotopic f, hence f; ~ 1.

Now, assume that f,, has been obtained and consider the following sets:

— n — n
M,, = OM, — | UM
oM, =0 nx[o,n+1]u ”X{n—i—l}’

= 2,

n+2}

(G-t (b)) )

= [n,n+ 1] x Upq1 X [0,

NN
(i) {2}
e e o)) (o ) )

Then we have the following homeomorphism:
= (¢ x id)(f, x id)|0OM,, : OM,, — B,,.

Observe that L,y1 and W, 1 are fo(7)-manifolds, OM, and OM,; are
disjoint Z-sets in Ly1, and B, and Up41 X {(n+1)/(n+2)} are disjoint Z-
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sets in Wy, 11. Since in4+1(Un+1) = Upt1 X {vn41} and Upp1 x{(n+1)/(n+2)}
are strong deformation retracts of L,+; and W, 41 respectively, it follows
that 77 1= Trt1|Ln+1 @ Lnt1 — Wiy is a homotopy equivalence. By
Theorem 1, we have homeomorphisms

n+1
g:Lpg1 = Wiy and g’ : OMyq — Upy X {n—i—Q}

such that g ~ 7, and ¢' ~ 7, = 7} |0My 1. Then ¢’ extends to a
homeomorphism

= n+1
g":aMnuaMn+1—>BnUUn+1x {n+2}

by setting ¢”|0M,, = gn.
Note that 7, is homotopic to the map

— n
n My n )
4 HUX[On+1]

defined by ¢, (x) = (pn(2),0) and ¥,q, = pn. Then we have 1, f,, =~ VYpry, ~
VYnGn = pn- Let ¢, : T — {n/(n+1)} and cpp1 : T — {(n+1)/(n +2)} be
the constant maps. Since 1), |0M,, = p,, X ¢pp1|0M,,, it follows that
Gn = Unfp X cn|OMy = py X cp|OMy 2 pp X Cnp1|OMy, = 1 |OM,,,
where all homotopies are realized in W41 (the first two in B,,). Therefore,
g” >~ T;{+1|5Mn U 8Mn+1 >~ g‘gMn U (9Mn+1.

Thus, we can apply Theorem 2 to extend ¢” to a homeomorphism g : L, 11 —
Wii1. By pasting g with (b, x id)(f,, x id), we can obtain the desired
homeomorphism f,, . Since ip41pny1 =~ id in M, 41, it follows that

T T . /- -
Srn1 = fritingd1Pnt1 = G in1Pn41 2 Tnpline1Png1 2 ol
This completes the proof. =

REMARK 2. For a closed tower My C My C - of ¢o(7)-manifolds such
that each M; is a Z-set in M1, M = |J,cn[n — 1,n] X My, is an £3(7)-
manifold. On the other hand, given a sequence ¥ = (¢, )nen of collars v, :
M, x [0,1) — M,41, the ¢3(7) x R>®-manifold My can be defined as in
Remark 1. Similarly to Lemma 3, we can show M xR ~ My. Since M x R*®
does not depend on ¥, the topological type of My is unique. Moreover, My
can be embedded in (1) x R*> as an open set.
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