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Summary. The Polish space Y constructed in [vM1] admits no nontrivial isotopy. Yet,
there exists a Polish group that acts transitively on Y.

1. Introduction. We consider separable metric spaces only.

THEOREM 1.1. The countable dense homogeneous Polish AR-space Y
constructed in [VM1] has the following properties:

(1) Y admits no nontrivial isotopy with a continuum as the parameter
set;

(2) Y admits a transitive action of a Polish group and, hence, Y is a
coset space;

(3) Y has the homeomorphism extension property for compacta (that is,
Y is compactly homogeneous);

(4) for any bijection @ of Y with int(Fix(®)) = 0 (in particular, by a
result of van Mill [vM1], for any nonidentity homeomorphism of Y),
Y is countable dense homogeneous with respect to conjugates of P.

Recall that a space X is countable dense homogeneous (abbreviated
CDH) if for any countable dense subsets A and B of X there exists a hom-
eomorphism A of X such that h(A) = B; by a result of Bennett [B], such
a connected X is necessarily homogeneous. In (4) of Theorem 1.1, we have
in mind the following “conjugated” variant of the countable dense homo-
geneity: Let @ be a bijection of a space X such that int(Fix(®?)) = (. We
say that X is countable dense homogeneous with respect to conjugates of @
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(abbreviated @*-CDH) if for any two countable dense sets A and B of X,
there exists a homeomorphism h of X such that A=} (®(h(A))) = B.

As shown in [vM1], every homeomorphism of Y which is the identity
on a nonempty open subset (more generally, on a non-Z-set in Y') must be
the identity. It follows that Y is not strongly locally homogeneous. (Recall
that X is strongly locally homogeneous if every x € X has a neighborhood
U so that for any z,2’ € U there exists a homeomorphism h that moves x
to o’ and is the identity outside U.) By a result of van Mill [vM2], every
strongly locally homogeneous Polish space X admits a transitive action of
a Polish group (and, hence, X is a coset space). So, Theorem 1.1 shows
that, beyond the class of strongly locally homogeneous spaces, there are
homogeneous coset spaces with a nice local structure. On the other hand,
in [vM2], van Mill has constructed a homogeneous Polish space Z which is
not a coset space. The space Z, however, has a very bad local structure and,
in particular, is far from being an AR. Possibly, as a rule, a homogeneous
Polish space X with a nice local structure must be a coset space. (The referee
has kindly informed us that, recently, van Mill has constructed a counterpart
of the space Z which can be identified with a convex set in f5. This shows
that, in our vague statement above, the AR-property is not strong enough
to guarantee that a homogeneous X is a coset space.)

As noted in [vM1], the space Y admits a topological copy S, which is a
convex subset of the infinite-dimensional Hilbert space H; moreover, S x S
is homeomorphic to H.

2. The space Y

DEFINITION 2.1. Let P be a compactum. A countable collection P in the
Hilbert cube Q is Z-embedding-dense for P if P consists of pairwise disjoint
topological copies of P which are Z-sets and such that every map a: P — @
can be approximated by an embedding e : P — @ with e(P) € P.

Employing the fact that the space of mappings of P into the Hilbert cube
@ is separable and the basic facts on Z-sets (see, e.g., [To]) one can easily
construct a Z-embedding-dense collection P for an arbitrary compactum P
(see [vM1, Lemma 3.1]).

Letting P be the Hilbert cube itself, choose any Z-embedding-dense col-
lection P = {Py, Py,...} and let

Y =@\ {J P
k=1

It is easily seen that Y is Polish and, as a complement of a countable union
of Z-sets, is an AR (see, e.g., [To]).
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3. No nontrivial isotopy on Y. Let (T, %) be a pointed nontrivial
continuum, where * is a fixed point of T. Write P, = P, x T and consider
the collection P’ = {P{,P},...} in @ = Q x T. Let

[e.e]
Y=\ |JPcQq"
k=1
DEFINITION 3.1. A map h: Y’ — Y" is (n, m)-continuous if the natural
extension
h: (Y UP)/{P} — (Y UP,)/{P,}
is continuous.

It was shown in [vMI1] that, for a homeomorphism h : Y — Y and n,
there exists m such that the obvious counterpart of iL, that is, the map
(YUP,)/{P.} — (YUP,)/{Pn}, is continuous. Moreover, the assignment
n — m is a permutation. A similar fact holds for the space Y.

PROPOSITION 3.2. For every isotopy (hy) : Y — Y t € T, with h, = id,
there exists a permutation p : N — N such that h : Y — Y’ given by
h(y,t) = (he(y),t), (y,t) €Y', is (n,p(n))-continuous.

Proof. We follow the proof of [vM1, Proposition 3.4].

Let M be the closure of the graph of h in the product Q' x Q" and let
1, T be the restrictions to M of the respective projections of Q' x Q' — Q'.
Then M is a continuum, both 7, and 7 are surjections, and 7; ' (J7P') =
75 1 (UP"). Moreover, modifying the argument of [ACvM, Lemma 3.6], one
sees that both m and 7 are monotone. To see that m; is monotone fix
(x,t) € Q. Suppose 7T1_1($, t) C UUV for some nonempty open and disjoint
subsets of M. Since 77 is closed, there exists an open connected set W C Q)
with € W and 7' (W x {t}) C UUV. It follows that (W \Y) x {t} =
(W xA{tHhNm(UNM)|U[(W x{t})Nm (VN M)], which yields a separation
of a connected set W\ Y, a contradiction.

Now, using the monotonicity of m; and me and the Sierpiniski theorem,
one finds m such that 7' (P.) = 75 '(P.,). Let p(n) = m; clearly, p is a
permutation.

Suppose {yx} is a sequence in Y’ such that limg_ d(yx, P) = 0. It
follows that limy, oo d((yx, (yr)), 7y *(P.)) = 0. Since 7, *(P!) = 75 ' (P.,),
we have limy, oo d((yx, h(yr)), 75 1(P2,)) = 0. This implies

Jimd(m2(yx, h(yr)), Pr) = 0.
Thus {h(yx)} converges to P/ in (Y'UP!)/{P.} =

THEOREM 3.3. Let (hy) : Y — Y, t € T, be an isotopy with h, = id.
Then hy =id for all t € T.
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Proof. Suppose hy,(yo) # yo for some tog # *. Write h(y,t) = (he(y),t)
for (y,t) € Y'. Pick a: Q — @ with

yo € (@) and iy (yo) & a(Q).
Enlarge o to an open neighborhood W in @ such that, for W = wn Y,

R, (W) N O‘(Q) =0.
Since yp € a(Q) N W and a(Q) N hyy (W) = (), there exists an embedding
en : Q — P, so close to a that

P,AW £0 and P, Nhy(W) = 0.
For e/, (z,t) = (en(x),1), (x,t) € Q', we have €,,(Q") N (Q x {x}) # 0, that is,

PLO(@ x () £0.
Since h = id on (@ x {*})NY’, h is (n,n)-continuous (that is, p(n) = n),
which contradicts the fact that

P1/1 NW x {to} #( and h(W x {to}) N le)(n) = h(W x {to}) N PTIL =0. m

COROLLARY 3.4. The space Y admits no nontrivial flow. More gener-
ally, if a group G acts on'Y then, for every g € G that can be joined to the
unit e € G by a continuum, we have gy =y for every y € Y.

4. A transitive action of a Polish group on Y. Let H(Q) be the
group of homeomorphisms of the Hilbert cube @Q. Consider

HQY)={he H(Q)| (VneN) h(F,) = P,} ={h € HQ) | h(Y) =Y},

a subgroup of H(Q). It is easily seen that the group H(Q|Y) acts tran-
sitively on Y. However, H(Q|Y) with the topology inherited from H(Q)
is not completely metrizable (actually, H(Q|Y') is a genuine F,s-subset of
H(Q)). It is clear that if a group G acts on a space X, then G equipped
with a stronger compatible topology (that is, giving rise to a topological
group) will act on X as well. If such a stronger Polish topology exists on G
then G is referred to as Polishable. Below we show that this is the case for
G = H(Q|Y'); this fact also follows from a general condition for Polishability
established in [vM2].

THEOREM 4.1. The group H(Q|Y) is Polishable.

Proof. Let Aut(Z) be the group of permutations of the integers with
the pointwise convergence topology; Aut(Z) is a Polish topological group.
Consider the group homomorphism ¢ : H(Q|Y) — Aut(Z) given by ¢(h) =
p(h) € Aut(Z), h € H(Q|Y), where the value p(n) = m is determined by
h(P,) = Pp,. Then the graph I'(¢) = I" is a subgroup of H(Q) x Aut(Z).
Since (h,@(h)) — h is continuous from I" onto H(Q|Y), it is enough to
show that I is closed in H(Q) x Aut(Z). To see this consider a sequence
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{hi}2, € H(Q|Y) that converges in H(Q) such that {¢(hy)} converges
in Aut(Z). It follows that, for every n, the sequence {¢(h)(n)}32, stabilizes,
that is, hi(P,) = Py, for some m and all but finitely many k. Thus, letting
h = limg_,o0 hg, we have h(P,) = P,,. Now, it is easily seen that h € H(Q|Y")
and p(h) = limg_,o @(hg); hence, (h,o(h)) € . m

Recall that, by the Effros theorem [E], if a Polish topological group G
acts transitively on a Polish space X then G/G, is homeomorphic to X,
where G, = {g € G| gx = z} is the stabilizer of  (z may be chosen
arbitrarily in X). Hence, in such a case, X is a coset space. The above
theorem yields:

COROLLARY 4.2. The space Y admits a transitive action of a Polish
group, and hence is a coset space.

REMARK 1. According to Corollary 3.4, the group H(Q|Y") neither with
its original topology nor with the above Polish topology contains a nontrivial
continuum.

5. Different kinds of homogeneity of Y. The fact that Y is CDH
was verified in [vM1] by an application of the well-known back-and-forth
technique. (Actually, it is shown that, for any countable dense sets A, B C Y,
there exists h € H(Q|Y) with h(A) = B.) This same technique yields the
compact homogeneity of Y. Let K and L be compacta in Y and h a hom-
eomorphism of K onto L. Observe that K and L are Z-sets in the Hilbert
cube @Q. So, h can be extended to a homeomorphism hg of . Employing
the fact that elements of P are Z-sets in @ (and are homeomorphic to each
other), we can modify hg step by step to a homeomorphism h,, of @) that
agrees with h,—; on K U P;U---U P, and sends it into L U |JP, and
whose inverse h,, 1 agrees with h;il on LUP,U---U P, and sends it into
K UJP. This can be achieved so that limh, = h is a homeomorphism
of Q. Then h(Y) =Y (hence, h € H(Q|Y)) and h|K = h. This shows (3) of
Theorem 1.1.

REMARK 2. The homeomorphism extension property fails for local com-
pacta of Y. Recently van Mill [vM3] showed that the Hilbert cube @) contains
a countable compact set A so that every homeomorphism of Y which re-
stricts to the identity on A NY is necessarily the identity on Y. Moreover,
A\Y is a convergent sequence space and D = ANY is (countable) discrete
in Y (hence, D is necessarily a Z-set in Y'). Pick y, v/ € Y\ A, y # 3. Then
the homeomorphism h of DU {y} onto D U {y'} which is the identity on D
and sends y to 3’ cannot be extended to a homeomorphism of Y.

Before we give the proof of (4) of Theorem 1.1 below, let us comment
on the @*-CDH property. The requirement that int(Fix(®)) = 0 is natural
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if one expects the existence of h for every choice of A and B. Formally, the
CDH and &*-CDH properties are incomparable. Obviously, for a homeo-
morphism @ of X with int(Fix(®)) = ), the #*-CDH property implies the
CDH property. To see this in a more general setting let a group G act on
X so that, for some gy € G, gox = @(x) is as required. By the definition of
&*-CDH, we can find a homeomorphism h of X so that h~'oggoh(A) = B.
Then, for the conjugated action g * x = h™'(g(h(z))) of G on X, we have
go * A = B.

PROPOSITION 5.1. Fiz any bijection ® of Y with int(Fix(®)) =0 (in par-
ticular, any nonidentity homeomorphism of Y). Then, for any two countable
dense sets A and B in'Y, there exists a homeomorphism h of Q such that

D(h(A)) = h(B) and h(UP) =UP. In particular, Y is &*-CDH.

Proof. Define &(z) = x for x € Q \ Y. Enumerate A = {a;}°, and
B = {b;}?°,. We will inductively construct, for every n > 1, towers of finite
subsets {A, } and {B,} of A and B, respectively, a finite subfamily P,, of P,
and a homeomorphism h,, € H(Q) such that

(1) {al, e ,an} C A, and {bl, e ,bn} C Bp;

(2) @(hn({ar, ..., an})) C hn(By) and &1 (hy ({1, ..., bn})) C ha(Ay);
furthermore, @(hy,(Ay)) = hn(By);

(3) {P1,..., Py} C Py;

(4) {hn(P1),...,hn(Pp)} C Ppand {P1,..., P} C hp(Pr);

(5) hn‘An—l UB,1U Upn—l = hn—1|An—1 UB,-1U Upn—l;

(6) d(hp_1,hn) <2717,

Clearly, h = lim h,, is then as required.

Inductive construction. Define hg = id and let A4g = By = Py = 0.
Suppose that A,_1, Bp_1, Pn_1, and h,,_1 have been constructed for n > 1
so that (1)—(6) are satisfied.

Assume a, € A\ (Ap—1 U Bp—1) and let ¢ = &(hy—_1(ay)). It follows
that ¢ € hp—1(Bp-1). If ¢ & hy_1(An—1) and ¢ # hp—1(a,) (the latter
condition, in particular, implies h,,_1(a,) € Y), we set g™ = h,,_1. If, how-
ever, ¢ € hy—1(Ap—1) or ¢ = hy—1(ay), then there exists a homeomorphism
g1 such that hp_1|An_1 U By_1 UJPn1 = ¢gV|A,_1 U By_1 UJPn_i,
B(g"M(an)) €Y \ hy_1(An_1UB,_1), and &(gM (ay,)) # g™V (ayn); to obtain
the latter condition use the fact that int(Fix(®)) = §. Moreover, g(!) can be
made as close to hy,—1 as we wish. Let A’ = A,,_1 U{a,}. Note that, in both
cases, we have &(gM)(a,)) € Y\ ¢V (A’UB,_1). Now, there exists a homeo-
morphism  ¢» (as close to ¢) as we wish) such that
g(l) |Al U Bn—l U U 7)n—l = 9(2) ‘A, U Bn—l U U Pn—l and 9(2)(b/) = @(9(1) (an))
for a certain b’ € B; it follows that o € A’ U B,,_1.
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Let B’ = B,,_1 U {V'}. Clearly, we have ®(¢(?(A")) = ¢®(B’). Assume
by, € B\ (A UDB) and let d = ¢~ 1(g?(b,)). It follows that d ¢ g*)(A’).
If d ¢ ¢?(B') and d # g@(b,) (the latter condition, in particular, implies
g (b,) €Y), we set ¢ = ¢g@ . 1f d € gP(B') or d = g (b,), then there
exists a homeomorphism ¢ such that we have ¢®|A’ U B UUPn_1 =
gPAUB' UUPy_1, D (g® (bn)) € Y\ gB (A UB), and &g (b,)) #
g3 (by). Moreover, g®® can be made as close to g(® as we wish. In both
cases, we have &~ 1(g3)(b,)) € Y \ ¢®) (A’ U B" U {b,}). Now, there exists a
homeomorphism ¢(* (as close to g®® as we wish) such that ¢34’ U B’ U
{bn} U Upn—l = 9(4)"4/ uB'U {bn} U Upn—l with 9(4) (a/) - dsil(g(g)(bn))
for a certain a’ € A; it follows that «’ ¢ A’UB'U{b,}. We let A,, = A'U{d'}
and B, = B'U{b,}.

Finally, assuming P,, & P,,—1, we can find a homeomorphism g; as close
to ¢g'¥) as we wish and such that 91|AnUB,UJ Pt = g |ApUB, U Pr-1
and g1 (P,) € P. Similarly, if g; *(P,) & Pn_1, we can find a homeomorphism
g2 as close to g1 as we wish and such that go|A, U B, U|JPp-1 U P, =
g1|An U B, UJPr-1 U P, and go(P) = P, for some P € P. Let P, =
Pn—1U{g1(P,)} U{P}. The inductive construction is completed by letting
hn =g2.- m

Proposition 5.1, together with the comments preceding its statement,
yields

COROLLARY 5.2. For a nontrivial action of a group G on the space Y
and countable dense subsets A and B of Y there exists gy € G so that, for a
certain homeomorphism h of X, the conjugated action g*x = h™(g(h(z)))
sends A onto B when g = go.

REMARK 3. In Proposition 5.1, the homeomorphism h can be chosen
as close to the identity in H(Q) as we wish. As a consequence, for count-
able dense subsets A and B of Y, any homeomorphism g of Y can be ap-
proximated by conjugations h~' o g o h that send A onto B. However, this
approximation is not in the limitation topology on the group of homeo-
morphisms H(Y') of Y because h € H(Q|A) is not necessarily close to the
identity in the limitation topology. Actually, it can be shown that Y is not
homogeneous “via small homeomorphisms”. More precisely, there exists a
continuous function € : ¥ — (0, 00) such any homeomorphism A of Y which
satisfies d(h(x),z) < e(z) for every € Y must be the identity on Y (that
is, if h is in the e-neighborhood of the identity in the limitation topology,
then h must be the identity itself).

6. Other counterparts of Y. The most elementary example that can
be obtained via the procedure described in Section 2 is the space @ \ A,
where A is a countable dense subset of @; simply, apply the procedure
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to a one-point space P. The resulting space, however, is strongly locally
homogeneous. On the other hand, choosing a countable Z-embedding-dense
collection P in the Hilbert cube @ for P = [0, 1], we obtain the space Q\|JP
which is a counterpart of the space Y. This space (which can be checked
to be topologically different from Y') shares all the properties of Y from
Theorem 1.1.

In case P is a compactum with dim(P) < k, Zx-embedding-dense col-
lections can be constructed in the interior of the (2k + 1)-dimensional cube
I?k+1 ) which replaces the Hilbert cube @ (for the definition of a Zj-set
see [To]). In particular, there exists a Z;-embedding-dense collection Z =
{I,}52; in I™, the interior of I"™ for m > 4. Actually, we can assume
that each I, is a finite union of line segments. Then the resulting space
Yr = I\ U;2; I, seems to share all the properties of Y listed in Theo-
rem 1.1 with the exception of (3). Obviously, Y7 is not an AR-space; yet,
it must be locally connected, connected, and [-connected for some [. The
following counterpart of property (3) holds: Y7 has the homeomorphism ex-
tension property for compacta in I™ which are Z;-sets in I™. The tricky
case of m = 3 will be discussed in the forthcoming paper by S. Spiez and
the author.
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