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Summary. We describe the limit measures for some class of deformations of the free
convolution, introduced by A. D. Krystek and Ł. J. Wojakowski. In particular, we provide
a counterexample to a conjecture from their paper.

1. Introduction. The conditionally free convolution, defined by Bożej-
ko, Leinert and Speicher [3], is an associative and commutative operation �
on pairs of compactly supported probability measures on R. It is related to
the Voiculescu [8, 9] free convolution, namely, if

(1) (µ1, ν1) � (µ2, ν2) = (µ, ν)

then ν = ν1 � ν2, and if µ1 = ν1 and µ1 = ν2 then µ = µ1 � µ2.
Recall that an important tool for studying a probability measure µ on R

is the Cauchy transform which is the analytic function Gµ : C+ → C defined
by

(2) Gµ(z) :=
�

R

dµ(t)
z − t

,

where C+ := {z ∈ C : Im z > 0}. If µ is compactly supported then Gµ(z)
can be represented as a continued fraction

2000 Mathematics Subject Classification: 60F05, 46L53, 60E10.
Key words and phrases: Cauchy transform, conditionally free product, Jacobi param-

eters.

[75] c© Instytut Matematyczny PAN, 2008



76 M. Hinz and W. Młotkowski

(3) Gµ(z) =
1

z − u0 −
α0

z − u1 −
α1

z − u2 −
α2

z − u3 −
α3

. . .

.

The Jacobi parameters satisfy: αk ≥ 0, uk ∈ R and if αm = 0 for some m ≥ 0
then αn = un = 0 for all n > m. The coefficient α0 is called the variance
of µ and denoted by V (µ). LetMc denote the class of compactly supported
probability measures on R. We will need the following two properties, which
can be found in Chihara’s monograph [4].

Proposition 1.1. Assume that µ ∈Mc with the Cauchy transform (3).
Then:

(i) µ is symmetric (i.e. µ(A) = µ(−A) for every Borel subset A of R) if
and only if uk = 0 for every k ≥ 0.

(ii) The support of µ is contained in the halfline [0,∞) if and only if
there exists a sequence {λm}m≥0 of nonnegative numbers such that
for every m ≥ 0 we have αm = λ2m · λ2m+1 and um = λ2m + λ2m−1,
under the convention that λ−1 = 0.

The numbers λm are the nonnegative (i.e. upper) Jacobi parameters for
the symmetric measure µsym defined by

	
R f(t2) dµsym(t) =

	
R f(t) dµ(t).

To define the conditionally free convolution we define two transforms.
For µ, ν ∈Mc we define Rν , Rµ,ν as the complex functions which satisfy

1
Gν(z)

= z −Rν(Gν(z)),(4)

1
Gµ(z)

= z −Rµ,ν(Gν(z))(5)

(the former is the Voiculescu free transform). For µ1, ν1, µ2, ν2 ∈ Mc the
conditionally free convolution (1) is defined by the equalities

Rν(z) = Rν1(z) +Rν2(z),(6)
Rµ,ν(z) = Rµ1,ν1(z) +Rµ2,ν2(z).(7)

Now, assume that a map T :Mc →Mc satisfies the following condition
(Bożejko property): if

(8) (µ1, Tµ1) � (µ2, Tµ2) = (µ, ν)

then ν = Tµ. Defining µ1 �T µ2 := µ we obtain an associative and commu-
tative operation �T onMc. For example, if Tµ = µ for every µ ∈Mc then
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�T is the Voiculescu free convolution �, and if Tµ = δ0 for every µ ∈ Mc

then �T becomes the Boolean convolution ].

2. The φ-convolution. From now on we fix φ ∈Mc which is infinitely
divisible with respect to � (examples can be found in [7, 2, 5]). Let

(9) Gφ(z) =
1

z − β0 −
γ0

z − β1 −
γ1

z − β2 −
γ2

z − β3 −
γ3

. . .
be its Cauchy transform. Krystek and Wojakowski [6] defined a convolution
�φ in the following way. For µ ∈ Mc, we put Tµ := φ�V (µ) (the free power
of φ). Then T has the Bożejko property (Theorem 7 in [6]) and we set
�φ := �T . The authors of [6] found the related limit measures only in the
case when φ is either the Wigner or the free Poisson measure.

We are going to exhibit the relation between the Jacobi parameters of
φ and those of the limit measures with respect to �φ. In particular we will
verify the hypothesis given in [6, Remark 10].

For µ ∈ Mc and λ > 0 we define dilation of µ by Dλµ(A) := µ(λ−1A).
Denote by γ(λ)

m , β(λ)
m the Jacobi parameters of the free power φ�λ.

Theorem 2.1 (The central limit theorem). Assume that µ ∈ Mc satis-
fies

	
R t dµ(t) = 0 and

	
R t

2 dµ(t) = λ. Then the sequence

(10) ξλ,N := D1/
√
Nµ�φ · · ·�φ D1/

√
Nµ

(N summands) is ∗-weakly convergent to the measure ξλ ∈Mc such that

(11) Gξλ(z) =
1

z −
λ

z − β(λ)
0 −

γ
(λ)
0

z − β(λ)
1 −

γ
(λ)
1

z − β(λ)
2 −

γ
(λ)
2

. . .

.

In particular , ξ is symmetric if and only if φ is symmetric.

Proof. By (a slightly generalized version of) Theorem 8 in [6] and (5)
we have 1/Gξλ(z) = z − λGφ�λ(z), which proves (11). It remains to use
Proposition 1.1(i).



78 M. Hinz and W. Młotkowski

Theorem 2.2 (The Poisson limit theorem). For λ > 0 the sequence

(12) %λ,N :=
((

1− λ

N

)
δ0 +

λ

N
δ1

)
�φ · · ·�φ

((
1− λ

N

)
δ0 +

λ

N
δ1

)
(N summands) is ∗-weakly convergent to the measure %λ which satisfies

(13) G%λ(z) =
1

z − λ−
λ

z − β(λ)
0 − 1−

γ
(λ)
0

z − β(λ)
1 −

γ
(λ)
1

z − β(λ)
2 −

γ
(λ)
2

. . .

.

Moreover , the support of %λ is contained in [0,∞) if and only if the support
of φ is contained in [0,∞).

Proof. According to Theorem 9 in [6] and formula (5) we have

(14)
1

G%λ(z)
= z −

λ

1−Gφ�λ(z)
= z − λ−

λ

1
Gφ�λ(z)

− 1
,

which leads to (13).
Assume that supp(φ) ⊆ [0,∞); then also supp(φ�λ) ⊆ [0,∞). Let

{λm}∞m=0 be the sequence of upper Jacobi parameters of (φ�λ)sym, according
to Proposition 1.1(ii). Then the numbers λ′0 := λ, λ′1 := 1 and λ′k := λk−2

for k ≥ 2 are the upper Jacobi parameters for (%λ)sym. On the other hand,
if the support of %λ is contained in [0,∞) and if λ′m are the upper Jacobi
parameters of (%λ)sym then λ′0 = λ, λ′1 = 1 and the numbers λm+2, m ≥ 0,
are the upper Jacobi parameters of (φ�λ)sym.

3. A family of infinitely divisible measures. Here we will show that
the limit measures ξλ and %λ are �φ-infinitely divisible. More generally, for
λ > 0, u, v ∈ R, let µ = µ(λ, u, v) denote a measure such that

(15) Gµ(z) =
1

z − u−
λ

z − β(λ)
0 − v −

γ
(λ)
0

z − β(λ)
1 −

γ
(λ)
1

z − β(λ)
2 −

γ
(λ)
2

. . .

.

Then we have
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Theorem 3.1. For λ1, λ2, λ > 0, u1, u2, u, v ∈ R and t > 0 we have

(16) µ(λ1, u1, v) �φ µ(λ2, u2, v) = µ(λ1 + λ2, u1 + u2, v)

and

(17) µ(λ, u, v)�φt = µ(tλ, tu, v).

In particular , µ(λ, u, v) is infinitely divisible with respect to �φ.

Proof. For µ = µ(λ, u, v) we have V (µ) = λ and

(18)
1

Gµ(z)
= z − u−

λ

1
Gφ�λ(z)

− v
= z − u−

λGφ�λ(z)
1− vGφ�λ(z)

,

hence, by (5),

(19) Rµ,φ�λ(z) = u+
λz

1− vz
,

which leads to the formulas (16) and (17).

4. An example. In [6] the authors conjecture that for every �-infinitely
divisible compactly supported probability measure φ the limit measures have
eventually constant Jacobi parameters. In view of Theorems 2.1 and 2.2 this
is equivalent to the statement that every �-infinitely divisible compactly
supported probability measure φ has eventually constant Jacobi parameters.
The aim of this section is to provide a counterexample to this statement, thus
disproving the conjecture. We are indebted to Professor Nobuaki Obata for
suggesting the measure that will serve here as the counterexample.

Fix λ > 0 and let %λ denote the free Poisson (i.e. the Marchenko–Pastur)
distribution with parameter λ. It is know that %λ is �-infinitely divisible
and has compact support contained in [0,∞). Take the reflection %̂λ, i.e.
%̂λ(E) := %λ(−E). Then we have

R%λ(w) =
λ

1− w
and Rb%λ(w) = −R%λ(−w) =

− λ
1 + w

.

Now we define φ := %λ � %̂λ. Then φ is �-infinitely divisible and compactly
supported. We also have

(20) Rφ(w) =
2λw

1− w2
.

By (4) we have

(21)
1

Gφ(z)
= z −Rφ (Gφ(z)) = z −

2λGφ(z)
1−Gφ(z)2

,

which leads to the equation
(22) zGφ(z)3 + (2λ− 1)Gφ(z)2 − zGφ(z) + 1 = 0.
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We are going to prove

Theorem 4.1. The Jacobi parameters of φ are not eventually constant.

Proof. Suppose that the Jacobi parameters of φ are eventually constant.
Then we have

(23) Gφ(z) =
1

z − β0 −
γ0

z − β1 −
γ1

. . .
z − βn − γnG0(z)

for some n ≥ 0, βk ∈ R, γk > 0, where

(24) G0(z) =
1

z − u−
a

z − u−
a

. . .
for some u ∈ R, a ≥ 0. Then G0(z) satisfies the equation

(25) aG0(z)2 − (z − u)G0(z) + 1 = 0.

By induction on n one can show that

(26) Gφ(z) =
A(z) +B(z)G0(z)
C(z) +D(z)G0(z)

,

where A(z), B(z), C(z), D(z) are polynomials of degree n, n − 1, n + 1, n,
respectively, with real coefficients. From (26) we have

(27) G0(z) =
C(z)Gφ(z)−A(z)
B(z)−D(z)Gφ(z)

.

Combining (25) and (27) we get

(28) Gφ(z)2 = R(z)Gφ(z) + S(z),

where R(z) and S(z) are rational functions with real coefficients. Substitut-
ing this three times to (22) we find that Gφ(z) is a rational function with
real coefficients. That, in turn, implies that φ has finite support. In view
of Theorem 3.1 in [1], the only �-infinitely divisible measures with finite
support are the one-point measures δu, u ∈ R; but then

Gδu(z) =
1

z − u
and Rδu(w) = u,

contrary to (20).
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