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Summary. Let K be a unique factorization domain of characteristic p > 0, and let f ∈
K[x1, . . . , xn] be a polynomial not lying in K[xp

1, . . . , x
p
n]. We prove that K[xp

1, . . . , x
p
n, f ]

is the ring of constants of a K-derivation of K[x1, . . . , xn] if and only if all the partial
derivatives of f are relatively prime. The proof is based on a generalization of Freuden-
burg’s lemma to the case of polynomials over a unique factorization domain of arbitrary
characteristic.

1. Introduction. Nowicki and Nagata in [10] considered various ques-
tions about the number of generators of rings of constants of derivations,
both in zero and positive characteristic cases. In particular, they proved in
[10, Proposition 4.1] that if k is a field of positive characteristic, then the
ring of constants of an arbitrary k-derivation of the polynomial k-algebra
k[x1, . . . , xn] is finitely generated over k. In [10, Proposition 4.2] they proved
that if char k = 2, then the ring of constants of a nonzero k-derivation of
k[x, y] is a k[x2, y2]-algebra generated by a single polynomial. They also gave
a counter-example in the case of char k = p > 2. It is natural to ask when
the ring of constants of a k-derivation of k[x1, . . . , xn], where char k = p > 0,
is generated over k[xp

1, . . . , x
p
n] by a single element.

The present author presented in [5] a discussion of sufficient conditions
and necessary conditions for an element to be such a single generator of a ring
of constants. In Theorem 2.3 of [5] the author proved that for a polynomial
f ∈ K[x1, . . . , xn] \K[xp

1, . . . , x
p
n], where K is a UFD of characteristic p > 0,
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the condition

(∗) gcd
(
∂f

∂x1
, . . . ,

∂f

∂xn

)
= 1

is sufficient and the condition

(∗∗) gcd
(
f + h,

∂f

∂x1
, . . . ,

∂f

∂xn

)
= 1 for every h ∈ K[xp

1, . . . , x
p
n]

is necessary. The conditions (∗) and (∗∗) are necessary and sufficient in
the case of characteristic 2 ([5, Theorem 3.7]). The proof was based on the
following analog of Freudenburg’s lemma.

Proposition 1.1 ([5, 3.6]). Let K be a UFD of characteristic 2. Let
f ∈ K[x1, . . . , xn] and let g be a prime element of K[x1, . . . , xn] not belonging
to K[x2

1, . . . , x
2
n]. If g | ∂f

∂xi
for i = 1, . . . , n, then g2 | f + h for some h ∈

K[x2
1, . . . , x

2
n].

The original version of this lemma was presented by Freudenburg for two
variables over C in [3].

Lemma 1.2 (Freudenburg). Given a polynomial f ∈ C[x, y], suppose g ∈
C[x, y] is an irreducible non-constant divisor of both ∂f/∂x and ∂f/∂y. Then
there exists c ∈ C such that g divides f + c.

This fact was generalized to polynomials over an arbitrary algebraically
closed field of characteristic zero by van den Essen, Nowicki and Tyc in [2,
Proposition 2.1].

Proposition 1.3 (van den Essen, Nowicki, Tyc). Let k be an algebraical-
ly closed field of characteristic zero. Let P be a prime ideal in k[x1, . . . , xn]
and f ∈ k[x1, . . . , xn]. If for each i the partial derivative ∂f/∂xi belongs
to P , then there exists c ∈ k such that f + c ∈ P .

The natural analog of Freudenburg’s lemma appeared to be, in general,
false in characteristic p > 2 ([5]). The condition (∗∗) also turned out to be,
in general, not sufficient.

In this article we generalize Freudenburg’s lemma to polynomials over a
UFD of arbitrary characteristic (Theorem 3.1). In positive characteristic it is
a weaker version of this lemma than the one mentioned above. This enables
us to obtain in Theorem 4.2 the equivalence of some conditions for f to be
a single generator of the ring of constants of a derivation, in particular, we
obtain the condition (∗).

2. Preliminaries. Throughout this paper by a ring we mean a commu-
tative ring with unity and by a domain we mean a commutative ring with
unity, without zero divisors.
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Let K be a domain. We denote by K0 the field of fractions of K, and
by K∗ the set of all invertible elements of K. Two polynomials f, g ∈
K[x1, . . . , xn] are called associated if f = ag for some a ∈ K∗; we then
write f ∼ g. A polynomial f ∈ K[x1, . . . , xn] is called square-free if it is not
divisible by a square of any polynomial from K[x1, . . . , xn] \ K∗. If K is a
domain of characteristic p > 0, then a polynomial f ∈ K[x1, . . . , xn] is called
p-free if it is not divisible by any polynomial from K[xp

1, . . . , x
p
n] \K∗.

Let K be a ring and let A be a K-algebra. A K-linear map d : A→ A is
called a K-derivation of A if d(fg) = d(f)g + fd(g) for every f, g ∈ A. The
kernel of a K-derivation d is called the ring of constants of d and is denoted
by Ad.

If the K-algebra A is a domain of characteristic p > 0, then Ap = {ap;
a ∈ A} is a subring of A. Denote by KAp the K-submodule of A generated
by Ap and observe that KAp is a K-subalgebra of A. The ring of constants
of every K-derivation of A is a KAp-subalgebra of A. In particular, the
ring of constants of every K-derivation of K[x1, . . . , xn] is a K[xp

1, . . . , x
p
n]-

subalgebra of K[x1, . . . , xn].
Recall some definitions and facts from [4].

Definition 2.1. Let A be a domain of characteristic p ≥ 0, and let R
be a subring of A. If p = 0, we put T p = 1 and R0[T p] = R0. An element
a ∈ A is called separably algebraic over R if w(a) = 0 for some irreducible
polynomial w(T ) ∈ R0[T ] \ R0[T p]. The set of all elements of A separably
algebraic over R is called the separable algebraic closure of R in A and is
denoted by RA.

Proposition 2.2. Let A be a domain of characteristic p > 0. Let R be
a subring of A such that Ap ⊆ R. Then RA = R0 ∩A.

The following theorem from [4] concerns rings of constants of K-deriva-
tions, where K is a domain. It is a generalization of Nowicki’s characteri-
zation ([9, Theorem 5.4], [8, Theorem 4.1.4]) and Daigle’s observation ([1,
Theorem 1.4]); see also [6, Theorem 1.1].

Theorem 2.3. Let A be a finitely generated K-domain, where K is
a domain (of arbitrary characteristic). Let R be a K-subalgebra of A. If
charK = p > 0, assume additionally that Ap ⊆ R. The following conditions
are equivalent:

(1) R is the ring of constants of some K-derivation of A,
(2) RA = R.

The following corollary of the above theorem will be useful in the proof
of Theorem 3.1.
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Corollary 2.4. Let A be a finitely generated K-domain, where K is a
domain. Then the smallest (with respect to inclusion) ring of constants of a
K-derivation of A is of the form B

A, where:

(a) B is the canonical homomorphic image of K in A if charK = 0,
(b) B = KAp if charK = p > 0.

In particular, for charK = p > 0, the smallest ring of constants contain-
ing a given element f ∈ A is of the form

B[f ]
A

= B0(f) ∩A = B0[f ] ∩A,
where B = KAp.

The general definition of a p-basis can be found, for example, in [7, p. 269].
In this paper we deal only with the one-element case.

Definition 2.5. Let A, B be domains of characteristic p > 0 such that
Ap ⊆ B, and let R be a subring of A. An element f ∈ A is called a one-
element p-basis of R over B if R is a free B-module with basis 1, f, . . . , fp−1.

The following fact is an adaptation of Lemma 1.3 from [5]. It will be
useful in the proof of Theorem 4.2.

Lemma 2.6. Let K is a domain of characteristic p > 0. For an arbitrary
polynomial f ∈ K[x1, . . . , xn] \K[xp

1, . . . , x
p
n] put

C(f) = K(xp
1, . . . , x

p
n, f) ∩K[x1, . . . , xn].

Then the following conditions are equivalent:

(i) K[xp
1, . . . , x

p
n, f ] is the ring of constants of a K-derivation,

(ii) f is a one-element p-basis of C(f),
(iii) C(f) = K[xp

1, . . . , x
p
n, f ],

(iv) for every w0, w1, . . . , wp−1 ∈ K(xp
1, . . . , x

p
n), if

w0 + w1f + · · ·+ wp−1f
p−1 ∈ K[x1, . . . , xn],

then w0, w1, . . . , wp−1 ∈ K[xp
1, . . . , x

p
n].

3. An analog of Freudenburg’s lemma. In this section we prove the
following analog of the lemma of Freudenburg.

Theorem 3.1. Let K be a UFD, and let P be a prime ideal of the poly-
nomial algebra K[x1, . . . , xn]. Consider a polynomial f ∈ K[x1, . . . , xn] such
that ∂f/∂xi ∈ P for i = 1, . . . , n.

(a) If charK = 0, then there exists an irreducible polynomial W (T ) ∈
K[T ] such that W (f) ∈ P .

(b) If charK = p > 0, then there exist b, c ∈ K[xp
1, . . . , x

p
n] such that

gcd(b, c) ∼ 1, b 6∈ P and bf + c ∈ P .
The proof is based on the following observation.
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Lemma 3.2. Let K be a domain, let I be an ideal of K[x1, . . . , xn] and let
δ be a K-derivation of the factor algebra A = K[x1, . . . , xn]/I. Then there
exists a K-derivation d of K[x1, . . . , xn] such that δ(f) = d(f) for every
f ∈ k[x1, . . . , xn], where f denotes the coset of f in A.

Proof. Put δ(xi) = hi, where hi ∈ K[x1, . . . , xn], for i = 1, . . . , n. Define
aK-derivation d ofK[x1, . . . , xn] such that d(xi) = hi for i = 1, . . . , n. Then,
by a straightforward computation, one can verify that δ(f) = d(f) for every
f ∈ k[x1, . . . , xn].

Now we can prove Theorem 3.1.

Proof of Theorem 3.1. Note that if d is a K-derivation of K[x1, . . . , xn],
then

d(f) =
∂f

∂x1
d(x1) + · · ·+ ∂f

∂xn
d(xn),

so d(f) ∈ P .
Consider the factor algebra A = K[x1, . . . , xn]/P . Since P is a prime

ideal, A is a domain. If δ is an arbitrary K-derivation of A, then, by Lemma
3.2, there exists aK-derivation d ofK[x1, . . . , xn] such that δ(f) = d(f) = 0,
since d(f) ∈ P . We conclude that f belongs to the ring of constants of every
K-derivation of A.

If charK = 0, then, by Corollary 2.4(a), f ∈ BA, whereB is the canonical
homomorphic image ofK in A. Hence U(f) = 0 for some polynomial U(T ) ∈
B0[T ] \ B0. Let U(T ) = anT

n + · · · + a1T + a0, where an, . . . , a1, a0 ∈ K0,
and putW (T ) = anT

n + · · ·+a1T +a0. We may assume that the polynomial
W (T ) belongs toK[T ] and is irreducible inK[T ]. We deduce thatW (f) ∈ P .

If charK = p > 0, then f ∈ (KAp)0 ∩ A, by Corollary 2.4(b) and
Proposition 2.2. Therefore b · f = −c for some b, c ∈ K[xp

1, . . . , x
p
n], b 6∈ P ,

where we may assume that gcd(b, c) ∼ 1. We infer that bf + c ∈ P .

In a special case when P is a principal ideal, we obtain a stronger result.

Proposition 3.3. Let K be a UFD. Consider f, g ∈ K[x1, . . . , xn] \K
such that g is irreducible and g divides ∂f/∂xi for i = 1, . . . , n. If charK =
p > 0, assume additionally that f, g 6∈ K[xp

1, . . . , x
p
n].

(a) If charK = 0, then there exists an irreducible polynomial W (T ) ∈
K[T ], such that g2 divides W (f).

(b) If charK = p > 0, then there exist b, c ∈ K[xp
1, . . . , x

p
n] such that g2

divides bf + c, g does not divide b and gcd(b, c) ∼ 1.

Proof. (a) Applying Theorem 3.1 to the prime ideal P = (g), we obtain
W (f) = gh for some h ∈ K[x1, . . . , xn]. Since g 6∈ K, we have ∂g

∂xi
6= 0 for

some i, and then g - ∂g
∂xi

. Taking the partial derivative with respect to xi of
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both sides of the equality W (f) = gh we obtain

W ′(f)
∂f

∂xi
= h

∂g

∂xi
+ g

∂h

∂xi
,

so g |h ∂g
∂xi

. Hence g |h and g2 |W (f).
(b) We use the same arguments as in case (a) with a polynomialW (T ) =

bT + c ∈ K ′[T ], where K ′ = K[xp
1, . . . , x

p
n].

Note that as a consequence of the above proposition we obtain a char-
acterization of polynomials with relatively prime partial derivatives. In the
case of characteristic zero we have the following theorem.

Theorem 3.4. Let K be a field of characteristic 0, and let f ∈ K[x1, . . .
. . . , xn] \K. The following conditions are equivalent:

(i) gcd(∂f/∂x1, . . . , ∂f/∂xn) ∼ 1,
(ii) for every irreducible polynomial W (T ) ∈ K[T ], the polynomial W (f)

is square-free.

4. One-element p-bases. In this section we obtain a characterization
of one-element p-bases of rings of constants ofK-derivations ofK[x1, . . . , xn],
where K is a UFD of characteristic p > 0.

If f =
∑

i1,...,in≥0 ai1,...,inx
i1
1 . . . x

in
n , where ai1,...,in ∈ K, then we set

f(p) =
∑

i1,...,in≥0
p|i1,...,p|in

ai1,...,inx
i1
1 . . . x

in
n .

We can improve Proposition 3.3 from [5] in the following way.

Proposition 4.1. Let K be a UFD of characteristic p > 0. Let f ∈
K[x1, . . . , xn] and g∈K[xp

1, . . . , x
p
n]. If g | ∂f

∂xi
for i=1, . . . , n, then g | f−f(p).

Proof. By [5, Proposition 3.3], under these assumptions we have g | f +h
for some h ∈ K[xp

1, . . . , x
p
n], so f + h = gw, where w ∈ K[x1, . . . , xn]. Since

g ∈ K[xp
1, . . . , x

p
n], it is easy to check that (gw)(p) = gw(p). Then f(p) + h =

(f+h)(p) = gw(p), and we obtain f−f(p) = g(w−w(p)), that is, g | f−f(p).

Now, we can prove the main theorem.

Theorem 4.2. Let K be a UFD of characteristic p > 0, let f ∈ K[x1, . . .
. . . , xn] \K[xp

1, . . . , x
p
n]. The following conditions are equivalent:

(i) gcd(∂f/∂x1, . . . , ∂f/∂xn) ∼ 1,
(ii) K[xp

1, . . . , x
p
n, f ] is the ring of constants of a K-derivation,

(iii) for every b, c ∈ K[xp
1, . . . , x

p
n] such that b 6= 0 and gcd(b, c) ∼ 1, the

polynomial bf + c is square-free and p-free,
(iv) the polynomial f − f(p) is p-free and, for every b, c ∈ K[xp

1, . . . , x
p
n]

such that b 6= 0 and gcd(b, c) ∼ 1, the polynomial bf+c is square-free.
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Proof. The implication (i)⇒(ii) was proved in [5, Theorem 2.3]. The
implication (iii)⇒(iv) is obvious.

(ii)⇒(iii). Assume that K[xp
1, . . . , x

p
n, f ] is the ring of constants of some

K-derivation of K[x1, . . . , xn] and consider b, c ∈ K[xp
1, . . . , x

p
n] such that

b 6= 0 and gcd(b, c) ∼ 1. If h | bf + c for some h ∈ K[xp
1, . . . , x

p
n] \K∗, then

(b/h)f+c/h ∈ K[x1, . . . , xn], where b/h, c/h ∈ K(xp
1, . . . , x

p
n). By Lemma 2.6

we deduce that b/h, c/h ∈ K[xp
1, . . . , x

p
n], so h | b and h | c, a contradiction.

Suppose that g2 | bf+c for some g ∈ K[x1, . . . , xn]\K∗. If p = 2, then g2 ∈
K[xp

1, . . . , x
p
n], and this is the case we have just considered. Assume that p > 2

and put r = (p+ 1)/2. Note that gp | g2r and g2r | (bf + c)r, so gp | (bf + c)r.
We have (bf+c)r = brf r+· · ·+cr, so (br/gp)f r+· · ·+cr/gp ∈ K[x1, . . . , xn].
Since r < p, we deduce by Lemma 2.6 that br/gp, cr/gp ∈ K[xp

1, . . . , x
p
n], so

g | b and g | c, a contradiction.

¬(i)⇒ ¬(iv). Assume that gcd(∂f/∂x1, . . . , ∂f/∂xn) � 1 and consider an
irreducible polynomial g ∈ K[x1, . . . , xn] such that g | ∂f

∂xi
for i = 1, . . . , n.

If g belongs to K[xp
1, . . . , x

p
n], then g | f − f(p) by Proposition 4.1. If g does

not belong to K[xp
1, . . . , x

p
n], then, by Proposition 3.3, g2 | bf + c for some

b, c ∈ K[xp
1, . . . , x

p
n] such that b 6= 0 and gcd(b, c) ∼ 1. In both cases condition

(iv) does not hold.
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