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Summary. Let d3 ≥ p2 > p1 ≥ 3 be integers such that p1, p2 are prime numbers. We
show that the sequence (p1, p2, d3) is the multidegree of some tame automorphism of C3

if and only if d3 ∈ p1N + p2N, i.e. if and only if d3 is a linear combination of p1 and p2

with coefficients in N.

1. Introduction. Let F = (F1, . . . , Fn) : Cn → Cn be any polynomial
mapping. Its multidegree, denoted mdegF, is the sequence of positive inte-
gers (degF1, . . . ,degFn). In dimension 2 there is a complete characteriza-
tion of the sequences (d1, d2) such that there is a polynomial automorphism
F : C2 → C2 with mdegF = (d1, d2). This characterization is a conse-
quence of the Jung [2] and van der Kulk [4] theorem. Moreover in [3] it was
proven, among other things, that there is no tame automorphism of C3 with
multidegree (3, 4, 5), (3, 5, 7), (4, 5, 7) or (4, 5, 11).

Recall that a tame automorphism is, by definition, a composition of linear
automorphisms and triangular automorphisms, where a triangular automor-
phism is a mapping of the form

T : Cn 3


x1

x2

...
xn

 7→

x1

x2 + f2(x1)
...
xn + fn(x1, . . . , xn−1)

 ∈ Cn.

We will denote by Tame(Cn) the group of all tame automorphisms of Cn,
and by mdeg the mapping from the set of all polynomial endomorphisms

2010 Mathematics Subject Classification: 14Rxx, 14R10.
Key words and phrases: polynomial automorphism, tame automorphism, multidegree.

DOI: 10.4064/ba59-1-4 [27] c© Instytut Matematyczny PAN, 2011



28 M. Karaś

of Cn into Nn. Using this notation, the above mentioned facts can be writ-
ten as follows: (3, 4, 5), (3, 5, 7), (4, 5, 7), (4, 5, 11) /∈ mdeg(Tame(C3)). In [7]
it was proven that for all d1, d2 there are only finitely many d3 such that
(d1, d2, d3) /∈ mdeg(Tame(C3)).

In this paper we make a further progress in the investigation of the set
mdeg(Tame(C3)). Namely we show the following theorem.

Theorem 1.1. Let d3 ≥ p2 > p1 ≥ 3 be positive integers. If p1 and
p2 are prime numbers, then (p1, p2, d3) ∈ mdeg(Tame(C3)) if and only if
d3 ∈ p1N + p2N, i.e. if and only if d3 is a linear combination of p1 and p2

with coefficients in N.

Notice that for all permutations σ of the set {1, 2, 3}, (d1, d2, d3) ∈
mdeg(Tame(C3)) if and only if (dσ(1), dσ(2), dσ(3)) ∈ mdeg(Tame(C3)). Since
also, (d1, d2, d3) ∈ mdeg(Tame(C3)) if d1 = d2 (by Proposition 2.2 below),
and (2, d2, d3) ∈ mdeg(Tame(C3)) for all d3 ≥ d2 ≥ 2 ([3, Corollary 2.3]),
the assumption d3 ≥ p2 > p1 ≥ 3 is not restrictive.

2. Proof of the theorem. First, we recall one classical result (due
to Sylvester) from number theory, concerning the so-called coin problem or
Frobenius problem [1].

Theorem 2.1. If a, b are positive integers such that gcd(a, b) = 1, then
for every integer k ≥ (a− 1)(b− 1) there are k1, k2 ∈ N such that

k = k1a+ k2b.

Moreover (a− 1)(b− 1)− 1 /∈ aN + bN.

In the proof we will also use the following proposition.

Prposition 2.2 ([3, Proposition 2.2]). If for a sequence of integers 1 ≤
d1 ≤ · · · ≤ dn there is i ∈ {1, . . . , n} such that

di =
i−1∑
j=1

kjdj with kj ∈ N,

then there exists a tame automorphism F of Cn with mdegF = (d1, . . . , dn).

By the above proposition, in order to prove Theorem 1.1, it is enough to
show that if d3 /∈ p1N + p2N, then (p1, p2, d3) /∈ mdeg(Tame(C3)).

In the proof of the above implication we will use some results and notions
from the papers of Shestakov and Umirbaev [5, 6].

The first one is the following

Definition 2.1 ([5, Definition 1]). A pair f, g ∈ k[X1, . . . , Xn] is called
*-reduced if
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(i) f, g are algebraically independent;
(ii) f, g are algebraically dependent, where h denotes the highest homo-

geneous part of h;
(iii) f /∈ k[g] and g /∈ k[f ].

Definition 2.2 ([5, Definition 1]). Let f, g ∈ k[X1, . . . , Xn] be a *-
reduced pair with deg f < deg g. Put p = deg f/gcd(deg f,deg g). Then the
pair f, g is called p-reduced.

Theorem 2.3 ([5, Theorem 2]). Let f, g ∈ k[X1, . . . , Xn] be a p−reduced
pair, and let G(x, y) ∈ k[x, y] with degy G(x, y) = pq + r, 0 ≤ r < p. Then

degG(f, g) ≥ q(p deg g − deg g − deg f + deg [f, g]) + r deg g.

In the above theorem [f, g] means the Poisson bracket of f and g; for us
it is only important that

deg [f, g] = 2 + max
1≤i<j≤n

deg
(
∂f

∂xi

∂g

∂xj
− ∂f

∂xj

∂g

∂xi

)
if f, g are algebraically independent, and [f, g] = 0 if f, g are algebraically
dependent.

Notice also that the estimate from Theorem 2.3 is true even if the condi-
tion (ii) of Definition 2.1 is not satisfied. Indeed, if G(x, y) =

∑
i,j ai,jx

iyj ,

then by the algebraic independence of f and g we have

degG(f, g) = max
i,j

deg(ai,jf igj) ≥ degy G(x, y) · deg g = (qp+ r) deg g

≥ q(p deg g − deg f − deg g + deg [f, g]) + r deg g.

The last inequality is a consequence of the fact that deg [f, g] ≤ deg f+deg g.
We will also use the following theorem.

Theorem 2.4 ([5, Theorem 3]). Let F = (F1, F2, F3) be a tame auto-
morphism of C3. If degF1 +degF2 +degF3 > 3 (in other words, if F is not
a linear automorphism), then F admits either an elementary reduction or a
reduction of types I–IV (see [5, Definitions 2–4]).

Let us also recall that an automorphism F = (F1, F2, F3) admits an ele-
mentary reduction if there exists a polynomial g ∈ C[x, y] and a permutation
σ of {1, 2, 3} such that deg(Fσ(1) − g(Fσ(2), Fσ(3))) < degFσ(1).

Proof of Theorem 1.1. Assume that F = (F1, F2, F3) is an automorphism
of C3 such that mdegF = (p1, p2, d3). Assume also that d3 /∈ p1N + p2N. By
Theorem 2.1 we have

(2.1) d3 < (p1 − 1)(p2 − 1).

First of all we show that this hypothetical automorphism F does not admit
reductions of types I–IV.
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By the definitions of those reductions (see [5, Definitions 2–4]), if F =
(F1, F2, F3) admits such a reduction, then 2 |degFi for some i ∈ {1, 2, 3}.
Thus if d3 is odd, then F does not admit a reduction of types I–IV. Assume
that d3 = 2n for some positive integer n.

If F admits a reduction of type I or II, then by the definition (see [5,
Definitions 2 and 3]) we have p1 = sn or p2 = sn for some odd s ≥ 3. Since
p1, p2 ≤ d3 = 2n < sn, we obtain a contradiction.

If F admits a reduction of type III or IV, then by the definition (see [5,
Definition 4]) we have either

n < p1 ≤ 3
2n, p2 = 3n,

or
p1 = 3

2n,
5
2n < p2 ≤ 3n.

Since p1, p2 ≤ d3 = 2n < 5
2n, 3n, we obtain a contradiction. Thus we have

proved that our hypothetical automorphism F does not admit a reduction
of types I–IV.

Now we will show that it also does not admit an elementary reduction.
Assume, to the contrary, that

(F1, F2, F3 − g(F1, F2)),

where g ∈ C[x, y], is an elementary reduction of (F1, F2, F3). Then we have
deg g(F1, F2) = degF3 = d3. But, by Theorem 2.3,

deg g(F1, F2) ≥ q(p1p2 − p1 − p2 + deg [F1, F2]) + rp2,

where degy g(x, y) = qp1 + r with 0 ≤ r < p1. Since F1, F2 are algebraically
independent, deg [F1, F2] ≥ 2 and so

p1p2 − p1 − p2 + deg [F1, F2] ≥ p1p2 − p1 − p2 + 2 > (p1 − 1)(p2 − 1).

This and (2.1) imply that q = 0, and that

g(x, y) =
p1−1∑
i=0

gi(x)yi.

Since lcm(p1, p2) = p1p2, the sets

p1N, p2 + p1N, . . . , (p1 − 1)p2 + p1N
are pairwise disjoint. This yields

deg
(p1−1∑
i=0

gi(F1)F i2
)

= max
i=0,...,p1−1

(degF1 deg gi + idegF2).

Since also

d3 /∈
p1−1⋃
r=0

(rp2 + p1N)
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(because d3 /∈ p1N + p2N), it is easy to see that

deg
(p1−1∑
i=0

gi(F1)F i2
)

= d3

is impossible.
Now, assume that

(F1, F2 − g(F1, F3), F3),

where g ∈ C[x, y], is an elementary reduction of (F1, F2, F3). Since d3 /∈
p1N + p2N, we have p1 - d3 and gcd(p1, d3) = 1. This means, by Theorem
2.3, that

deg g(F1, F3) ≥ q(p1d3 − d3 − p1 + deg [F1, F3]) + rd3,

where degy g(x, y) = qp1 + r with 0 ≤ r < p1. Since p1d3 − d3 − p1 +
deg [F1, F3] ≥ p1d3 − 2d3 ≥ d3 > p2 and since we want to have deg g(F1, F3)
= p2, it follows that q = r = 0. This means that g(x, y) = g(x). But since
p2 /∈ p1N, the equality deg g(F1, F3) = deg g(F1) = p2 is impossible.

Finally, if we assume that (F1−g(F2, F3), F2, F3) is an elementary reduc-
tion of (F1, F2, F3), then in the same way as in the previous case we obtain
a contradiction.

3. Some consequences

Theorem 3.1. Let p2 > 3 be a prime number and d3 ≥ p2 be an integer.
Then (3, p2, d3) ∈ mdeg(Tame(C3)) if and only if d3 /∈ {2p2 − 3k | k =
1, . . . , [p2/3]}.

Proof. Since p2 > 3 is a prime number, we have p2 ≡ r (mod 3) for some
r ∈ {1, 2}. It is easy to see that if d3 ≥ p2 and either d3 ≡ 0 (mod 3) or
d3 ≡ r (mod 3), then d3 ∈ 3N + p2N. Thus, by Theorem 2.1,

2(p2 − 1)− 1 6= 0, r (mod 3).

Take any d3 such that p2 ≤ d3 ≤ 2p2 − 3 and d3 6= 0, r (mod 3). Since
d3 ≤ 2p2 − 3 and d3 ≡ 2p2 − 3 (mod 3), one can see that d3 /∈ 3N + p2N,
because otherwise we would have 2p2 − 3 ∈ 3N + p2N, contrary to Theorem
2.1. Thus

{d3 ∈ N | d3 ≥ p2, d3 /∈ 3N + p2N}
= {d3 ∈ N | p2 ≤ d3 ≤ 2p2 − 3, d3 ≡ 2p2 − 3 (mod 3)}
= {2p2 − 3k | k = 1, . . . , [p2/3]}.

One can also notice the following easy but probably amusing results (of
course one can easily write down more statements like these).
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Theorem 3.2. (a) If d3 ≥ 7, then (5, 7, d3) ∈ mdeg(Tame(C3)) if and
only if

d3 6= 8, 9, 11, 13, 16, 18, 23.

(b) If d3 ≥ 11, then (5, 11, d3) ∈ mdeg(Tame(C3)) if and only if
d3 6= 12, 13, 14, 17, 18, 19, 23, 24, 28, 29, 34, 39.

(c) If d3 ≥ 13, then (5, 13, d3) ∈ mdeg(Tame(C3)) if and only if
d3 6= 14, 16, 17, 19, 21, 22, 24, 27, 29, 32, 34, 37, 42, 47.

(d) If d3 ≥ 11, then (7, 11, d3) ∈ mdeg(Tame(C3)) if and only if
d3 6= 12, 13, 15, 16, 17, 19, 20, 23, 24, 26, 27, 30, 31, 34, 37, 38,

41, 45, 48, 52, 59.

Proof. This is a consequence of Theorems 2.1 and 1.1. For example to
prove (a), by Theorems 2.1 and 1.1 we only have to check which of the
numbers 7, 8, . . . , 23 = (5− 1)(7− 1)− 1 are elements of the set 5N + 7N.
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