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Summary. Let (X,Y) be a duality pair of M-spaces X,Y of measurable functions from
2 C R™ into R?%. The paper deals with Y-weak cluster points ¢ of the sequence ¢(-, z; (-))
in X, where z;: £2 — R™ is measurable for j € N and ¢: 2 x R™ — R is a Carathéodory
function. We obtain general sufficient conditions, under which, for some negligible set Ay,
the integral I(¢,vy) = S]Rm #(x, \) dvy(\) exists for 2 € 2\ Ay and é(x) = I(¢,vs)
on 2\ Ay, where v = {v; }zc is a measurable-dependent family of Radon probability
measures on R™.

1. Notations and some basic facts on Young measures. Let u de-
note a complete separable o-finite o-additive positive measure on a g-algebra
2 of subsets of a set (2. Measurability will always mean 2(-measurability.
Let E be a separable Banach space. We will denote by L*®(f2, E;pu), or
briefly L>°(E), the Banach space (of all equivalence classes) of essential
E-norm-bounded measurable functions u: 2 — E with norm |ju|p~ :=
essSsup,cq ||u(x)|| g. Let LY(£2, E; ), or briefly L' (E), denote the Bochner—
Lebesgue space (of all equivalence classes) of u-integrable strongly measur-
able functions from {2 into E.

Let M(R™) be the Banach space of bounded signed Radon measures on
R™ and Cy(R™) be the Banach space of all continuous functions f: R™ — R
with lim|y . f(A) = 0 equipped with the sup-norm, where | - | denotes
the Euclidean norm in R™. It is known that (Cp(R™))* = M(R™). Let
L (M(R™)) denote the Banach space (of all equivalence classes) of Cp(R™)-
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weakly measurable functions v : 2 — M(R™) with norm ||| = ||z —
|z |(R™)||Lee < 00, where |vz|(R™) is the total variation of v, on R™ and,
for abbreviation, we write L (resp. v,) instead of L*°(R) (resp. v(z)). It
is known that L2 (M(R™)) can be interpreted as dual space (L'(Co(R™)))*
via the injection v +— (-,v),, where (h,v), = {,(v(z), h(x)) du(z) for all
h € LY(Cy(R™)). Given a measurable function z: 2 — R™, define the
parametrized Dirac measure 0, € LS (M(R™)) by

T €2+ 6,(x) =0,y (the Dirac measure supported at z(x)).

An element v € LP(M(R™)) is called a Young parametrized measure if
vz (R™) =1 p-a.e. Define (¢oz)(x) := ¢(x, z(z)). A function f: 2xR"™ — FE
is said to be Carathéodory if f(-,u) is measurable for every u € R™ and f(z, -)
is continuous for almost all x € (2.

The formulations and proofs of the main results of the present paper are
based on the following fundamental theorem |2, 3] about the Young measure
representation in case of the pair (X,Y) = (L'(R), L>°(R)) (see Theorem 1.1;
cf. [20, p. 98-100], [8, Section 8.1, pp. 518-525], [5, 21]).

THEOREM 1.1 (The Young measure representation; Ball [3], Balder [2]).
Suppose that a sequence of measurable functions z;: 2 — R™ satisfies the
global tightness condition with respect to p:

(GB) lim sup pu{z € 2:|z;(x)| > L} = 0.

L—oo jEN

Then there exist a subsequence zj, and a Young measure v = {vy}zc0 such
that 6., 1s LY (Co(R™))-weakly convergent to v in LX°(M(R™)). Moreover,
given a Carathéodory function : £2 x R™ — R, the following statements
hold.

(Y1) If o zj, is L>°(R)-weakly convergent to ¢ in L*(R), then, for some
p-negligible set Ay, € A, the integral \g,, ¥(x, \) dvy(X) € R exists for
x e 2\ Ay and

(1.1) P(a) = | P, N)dve()) on 2\ Ay.
Rm
(Y2) Iftpoz;, is sequentially L (R)-weakly pre-compact in L'(R), then, for
some pi-negligible set Ay €A, the integral I(1), v,) := (g ¥(x, A) dvg(N)
€ R exists for all x € 2\ Ay and 1 o z;, is L>°(R)-weakly convergent
to 1 € LY(R), where ¢(x) := I(1h,v,) for x € 2\ Ay and () =0
otherwise.

The generalization of Theorem 1.1 for the L¥" (R)-weak limit of 7 0 zj, In
the Orlicz space LY (R) is proved by P. Malek et al. [11, Th. 4.2.1, pp. 171
176] in the case when ¥ and ¥* are complementary non-power Orlicz func-
tions, ¥ satisfies the Ag-condition [12], and 7: R™ — R is continuous.
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2. Formulation of results. A linear space Z C LY(R™) is called an
M-space if the inclusions z € Z and o € L*°(R) imply that az € Z [16, 18|.
If m = 1 then it is easy to check that M-spaces Z are just vector lattices.
The Kdthe associate space Z' with respect to p of an M-space Z is defined
e.g. in |7, 9| for m =1, and in [15, 14, 18] for m > 2. By [16, Theorem 3.1],
equivalently in case m > 2, Z' is defined by

7' ={Y € I°(R™) : 2/ (z) € vsupp Z () p-ae., (2,2), € R, Vz € Z}.

Here (z,2'), = {,(2(x),%'(z))du(x), where (-,-) denotes the Euclidean
scalar product on R", and the so-called vector support vsupp Z can be equiv-
alently defined by

vsupp Z(z) := {z1(z), z2(x),...} p-a.e.

for some sequence z, € Z such that z € Z = z(x) € {z1(2), 22(x), ...} p-a.e.
If Z,Y c L°(R™) are M-spaces and Y C Z’, then (Z,Y) is a duality pair
with respect to (z,2"), (2 € Z,2' € Y), and we write (Z,Y),.

Let (Z,Y) be a duality pair of vector spaces. A set N C Z is called se-
quentially Y -weakly pre-compact in Z (or conditionally sequentially Y -weakly
compact in Z) if each sequence z; € N has some Y-weak Cauchy subse-
quence zj(). The space Z is called sequentially Y -weakly complete if each
Y-weak Cauchy sequence is Y-weakly convergent in Z.

THEOREM 2.1. Let X, Y C L°(R?) be M -spaces, supp X = £2, vsupp X ()
= vsupp Y () p-a.e., and Y C X', where X' is the Kithe associate space
of X with respect to pi. Suppose that a sequence zj € L°(R™) satisfies (GB)
with respect to p, and a Carathéodory function ¢: 2 x R™ — R? satisfies
é(z,R™) C vsupp X (z) p-a.e. Moreover, let z;, and v be as in Theorem 1.1.
Then the following statements hold.

(Y3) If pozj, is Y -weakly convergent to ¢ in X, then, for some p-negligible

set Ay € U, the integral (g, ¢(x,\) dvy(N) exists in vsupp X (x) for
x e 2\ Ay and

(2.1) d(x) = | o(z,\)dvz()) on 2\ Ay
Rm
(Y4) If X =Y’ and ¢ o zj, is sequentially Y -weakly pre-compact in X,
then, for some p-negligible set A, € A, the integral I1(¢,v,) :=
Spm @(, A) dvg(N) exists in vsupp X () for all x € 2\ Ay and pozj, is
Y -weakly convergent to ¢ in X, where ¢(x) := I(¢,vy) for x € 2\ Ay
and ¢(z) := 0.
CONDITION 2.2 (Local tightness condition, [11, p. 171], [20]). A sequence
zj € LY(R™) satisfies
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(LB) Jim slelgu{ﬂc €Cq:lz(@)| 2L} =0 (YgeN)
J

for a nondecreasing sequence Cq € A with j(Cq) < 00 and |J ey Cq = £2.

THEOREM 2.3. Let u(§2) = oo and let X, Y and ¢ be as in Theorem 2.1.
If a sequence z; € L°(R™) satisfies (LB) with respect to p, then the state-
ments (Y3)—(Y4) of Theorem 2.1 remain true.

A normed space Z C L°(R™) with norm || - ||z is called a normed M-
space if the inclusions z € Z and a € L*®(R) imply that az € Z and
lazllz < ||la||ze<|lzllz [16, 18]. The regular part Z° of a normed M-space
Z is defined to be the normed M-subspace of all elements z € Z satisfying
lim,, (py—o Ixp2llz = 0, where p. := p if p(2) < co and p. is a fixed
finite positive measure equivalent to p if p(f2) = oo, and xp denotes the
characteristic function of D € .

PROPOSITION 2.4. Let X,Y C LO(R?) be M-spaces with X C Y, where
Y is the Kithe associate space of Y with respect to . Suppose that a sequence
zj € LY(R™) and a Carathéodory function ¢: £2 x R™ — R? satisfy one of
the following conditions:

(SC1) There exist nondecreasing continuous functions g,: [0,00) — [0, 00)
such that

(a) limy—o0 g(t) = 00 and limy_,o y(t)/g(t) = 0;

(b) {(gol|zj))uo}jen is Y -weakly bounded in X, where ug: 2 — (0,00)
is measurable, ugY C L'(R?), and vsupp X (z) = vsupp Y (z)
p-a.e.;

(c) |p(x, N)] < v(|A])uo(x) for p-almost all x € 2 and all A € R™;
(SC2) There exists a Banach M-space I' withY C I'°, (I'°) C X and

SUpPjeN [foxe Zj”(rc)/ < 0.
Then the sequence ¢ o z; is sequentially Y -weakly pre-compact in X.

REMARK 2.5. Proposition 2.4/(SC1) is a generalization of [20, Proposi-
tion 6.5] (where Y = L}(R) with u(£2) < 00).

In the case of ¢: 2xR™ — E with dim E' = oo, results analogous to The-
orems 2.1 and 2.3 can be proved but only for a pair (X,Y’) of Kéthe-Bochner
spaces X,Y of E-/E*-valued functions (see Theorem 2.6). Given a separable
Banach space E and a vector lattice K C L°(R), the Kéthe-Bochner space
K (F) is defined as the space (of equivalence classes) of strongly measurable
E-valued functions z such that ||z(-)| g € K.

THEOREM 2.6. Let K, K C LY(R) be vector lattices, E be a Banach space
and E* be its dual. Assume that:
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(a) supp K =supp K = 2 and K C K', where K’ is the Kithe associate
space of K with respect to u;
(b) E is separable and reflexive with dim E = co.

If ¢: 2 x R™ — E is a Carathéodory function and a sequence z; € LO(R™)
satisfies either (GB) or (LB), then the statements (Y3)—(Y4) of Theorem 2.1
remain true for the Kothe-Bochner spaces X = K(E) and Y = K(E*)
provided (2.1) (resp. ¢) is substituted by

(22) B(x) = (P)- | o, N dva(d)  on 2\ Ay
Rm
(resp. (E(x) = (P)-{gm 0(x, A) dvg(X) for x € 2\ Ay), where, for x € 2\ Ay,

the above integral exists as the Pettis integral of the function ¢(x,-) : R™ —
E with respect to the measure v,,.

PROPOSITION 2.7. Let zj € L°(R™) (j € N). Then (LB) with respect to
u follows from the condition:

(LK) For q € N there exist a normed lattice with monotone norm K(q) C
LY(R) and a continuous nondecreasing function gg: [0,00) — [0,00)
such that limy . g4(t) = 0o and supjey (X, 94(125 ()l K (g) < for

a nondecreasing sequence Cyq € A with p(Cy) < oo and quN

REMARK 2.8. Proposition 2.7 is an extension of the statement in [3,
Remark 1, p. 209] (where K(q) = L'(R)).

REMARK 2.9. If Z C LY(R™) is a normed M-space and sup;cy ||z z
< 00, then (LB) holds. Indeed, by [9, Corollary of Theorem IV.3.1], [23]
(m = 1) and [16, Theorem 2.1/(3)] (m > 2), the sequence z; is bounded
in LO(R™) equipped with the quasi-norm 2]l Lomy = g, lf‘(x()l)‘ dpy ().
Hence, by [9, Section III1.1.3-1II.1.4], this sequence is bounded in p on any Cy,
and so (LB) follows. In particular, Z can be assumed to be either a Banach
lattice of scalar-valued functions (a solid space) or a non-solid generalized
Orlicz space (see, e.g., [1, 12, 17]) of R™-valued functions with m > 2.

3. Proofs of results of Section 2

Proof of Theorem 2.1. We divide this proof into Steps 3.1-3.2.

STEP 3.1 (Proof of (Y3)). Given y € Y, define ¢,: 2 x R™ — R by
dy(x, N) = (y(x),d(x, ). As Y is an M-space we have ay € Y for every
a € L®(R), and from Y C X’ we infer that

<¢ o ijv Oéy>“ = <¢y o ij, Oé>“ € R
By Theorem 1.1/(Y2) for ¢, together with the assumption for ¢ o z;,, we
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deduce that
<¢ O Zjks Ody># = <¢)y O Zjp» Oé>“ - <$7 ay>,u = <$ya a)# eR

for all « € L*>°(R), where, for some 15¢y € A with ,u(!)\f?qby) = 0, the integral
pm @y(z, A) dvz(X) € R exists for x € Dy, and ¢y () = (5. ¢y(x, A) dvg(N)
for z € l~)¢y and ¢, () := 0 otherwise. Hence,

<$7 XDy>,u = <$y> XD>,u

= | § (@), 6, X)) dve(V)| du(w) € R (D € %, D C Dyy).
D Rm
On the other hand, (¢, xpy)u = §,(y(z), ¢(z)) du(x) for any D € 2 with
D C l~)¢y. By the Radon—Nikodym theorem, we deduce that for y € Y there
exists Dy, € U such that Dy, C Dy, t(Dgy \ Dgy) = 0, and

(3.1) (y(x),6(x)) = | (y(@), é(w,\) dvo(\) €R (Vo € Dy,).
Rm™m

Now, we consider X € L°(£2,R%) and Y € X’ for d > 1 (the case d = 1
can be handled analogously upon using [9, Corollary I1V.3.2| for suppY =
supp X = 2). By [16, Theorem 3.1], there exists a sequence of representative
families Gy = {uig, ..., uqq} of the M-space Y such that the sets supp Gy
€ 2 are mutually disjoint, and

(1) p(suppY \ U, supp G¢) = 0;
(2) [uig(z)] = -+ = |ua)e(®)| = 1 and |uig(z)| = 0 (i & {1,...,d(q)})
for z € supp G4 and d(q) = dim vsupp Y (z) on supp G,.

By the definition [16] of the representative family G,, we have u;; € Y
and the linear hull of {uiq(x),...,uqe(x)} coincides with vsuppY(z) for
x € supp Gy. Hence, by (3.1), for Xsuppa,tpg € Y (1 < p < d(q)) there exists
D, € A such that D, C supp Gy, pu(supp Gq \ Dpq) = 0, and

(Xsupqu(JJ)qu(x),a(ﬁf)) = S (Xsupp G, (2)Upg(2), d(x, A)) dvz(A) € R
RrRm
for x € Dp,. By the assumption, there exists Dy € A with p(£2\ Do) = 0
such that ¢(x),¢(z,\) € vsupp X (z) = vsuppY(z) for all z € Dy and
for all A € R™. Hence, for z € Dg N ﬂz(:q% Dyq and 1 < p < d(q), the
integral (o, ¢(z, ) dv,()) exists in the finite-dimensional Euclidean space
vsupp Y (z) = vsupp X (x) and

(tpg(), 8(2)) = (upa(@), § 6, \) dva(V)) € R

Rm
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Therefore,
P(z) = S o(x, \) dvg (M) € vsupp X (z)
]Rm
forz € Dy := UZil[DoﬂﬂZg Dy, and p(§2\ Dy) = 0. Hence the statement

(Y3) follows for Ay := 2\ Dy.

STEP 3.2 (Proof of (Y4)). Observe that, as X = Y’ there exist a sub-
sequence j(k) of jp and ¢ € X such that ¢ o Zj(k) 18 Y-weakly convergent
to ¢ in X, due to the Y-weak completeness theorem of J. Dieudonné [7] (if
X is a normed lattice with Y = X’); W. Luxemburg and A. Zaanen [10],
P. P. Zabrejko [23, Theorem 32| (if X is a normed lattice); H. Nakano [13]
(d = 1 with Y = X’); O. Burkinshaw and P. Dodds [4, Corollary 4.2 of
Theorem 4.1]| (d = 1) and [15, Theorem 2.8/(1)], [18] (d > 2).

By Theorem 2.1/(Y3) applied to ¢ o zj(;), we can find Ay, € 2 such
that ;i(Ag) = 0 and the integral {5, ¢(x, A) dvy () exists in vsupp X (z) for

We proceed to show that ¢oz;, is Y-weakly convergent to g; in X, where
P(x) := Spm @(x, X) dvy(X) for z € 2\ Ay and ¢(x) := 0 otherwise.

On the contrary, suppose that ¢ o z;, is not Y-weakly convergent to 5
in X. Then there exist € > 0, hp € Y and a subsequence g of ji such that
[(pozq,, ho)u—(®, ho),| > € > 0. By the above Y-weak completeness theorem
together with Theorem 2.1/(Y3), for the sequence ¢oz,, we can find a subse-
quence iy, of g, ¢ € X and Az € 2 such that (pozi, h)y — (9, h), (Vh €Y),
M(A(g) = 0, the integral (g, ¢(x,\)dvy(X) exists in vsupp X (x) for z €
2\ A@’ and a(x) = {gm &(x, ) dvg(X) on 2\ Aa Therefore, $ and (; define

the same element (equivalence class) in X, and <$, ho)u = (¢, ho) - Hence,
we get a contradiction. =

PROPOSITION 3.1 ([15, Lemma 4.2.2|). Let u(§2) = co. Then, for a se-
quence zj € LY(R™), the condition (LB) holds with respect to p if and only
if the condition (GB) holds with respect to pu,.

Proof of Theorem 2.3. By Proposition 3.1, (LB) for p and z; implies
(GB) for p1, and z;. So, we may apply Theorem 2.1 for z; with respect to ju..
Recall that if ;(§2) = oo then the measure p is called separable (see |9, 23])

provided pi, is separable, which is equivalent to separability of LY(R™). We
divide the proof into Steps 3.3-3.4.

STEP 3.3 (Proof of (Y3)). Denote by a. € L'((0,00)) the Radon—Niko-
dym derivative dpu./dp. Define

Y :={:ai eV},
}7/1* = {z e LO(R™) : z(z) € vsupp Y (z) pe-ace., (2, ). eR,VE € Y},
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where (z,%"),, = {,(2(x), % (x)) dp« (). Then 17/:* is in fact the Kothe as-
sociate space of Y with respect to p. Observe that, for a2’ =2’ €Y,
(2 ) = | (2(2), 2(2) e () ) (2) di() = {2, 2
Q
As ¢ € LY(£2,Co(R™); p) if and only if ¢ == (/ay € LY(£2, Co(R™); ), we

have

v, = [ | ] S dva V)] dpa(@) = (0,0

Q Rm

Hence, 6., is LY (2, Co(R™); peyweakly convergent to v in L (2, M(R™); p.)
and ¢ozj, is ?-Weakly convergent to ¢ in X with respect to the duality pair
(X, }7>M*. By Theorem 2.1/(Y3), there exists A, € A such that p,(Ag) = 0,
the integral {5, ¢(x, X) dvy () exists in vsupp X (z) for z € 2\ Ay, and (2.1)
holds for all € £2\ Ag. As 1 is equivalent to p., we see that p(Ag) = 0.

STEP 3.4 (Proof of (Y4)). Observe that X =Y’ implies X = f’l:* Since
the sequence ¢ o zj, is sequentially Y-weakly pre-compact in X, we conclude
that ¢ o zj, is sequentially ?—weakly pre-compact in X with respect to the
duality pair (X, f/>“ By Theorem 2.1/(Y4), there exists Ay € A such that
p+(Ag) = 0, the integral {5, ¢(x, ) dvy(X) exists in vsupp X (z) for all z €
2\ Ay, and ¢pozj, is Y -weakly convergent to q~5 in X with respect to (-, ).,
where ¢(z) := (g @(x, X) dvg(X) for x € 2\ Ay and ¢(z) := 0 otherwise.
Since p is equivalent to p., we conclude that p(Ay) = 0 and ¢ o z;, is
Y -weakly convergent to gg inX. m

Proof of Proposition 2.4. We divide this proof into Steps 3.5-3.6.

STEP 3.5. Assume that (SC1) holds. We claim that the sequence ¢ o z;
is Y-absolutely bounded in X, i.e.

32) yeY = u*(lgl)ﬂ_)o ilelgé)l(y(iv)v (¢ 0 zj)(x))| du(x) = 0,

sup | [(y(@), (¢ 0 2))(2))| du(x) < oo.
jEN 0
Indeed, we deduce that
| (w(@), (60 2) (@) du(z) < | [y(@)|v(|2 (@) )uo(x) du(x)

D D

(T ) @hi@)ue die
Dn{y(lz; (D<K Dndy(lzi())>1}

< ly@)uo(z)du(@) + | Jy(@)lv(|z(@))uo(x) du(a).
D r(z (D=1}
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Since 7 is nondecreasing, we can choose m; — oo such that {t>0: v(t) > 1}
C{t>0:¢t>m}. Then

Vo @z (@) )uo(e) dule)
015021

IN

| @) (z(@))uo(x) due)
[ 0)2m}

<a 1 w@lels@Dhu dit)
{25 ()1zmq}
<L | ly(@)lg(|2 (@) uo (@) dp(w) < SN
- M P J - M
as | — oo uniformly in j, where C € (0,00), g(t) > M;y(t) for t > my, and
M; — o0 as | — oco. Hence, for any € > 0 there exists Iy such that

| w@hz@))uo(x) du(z) <e  VjeN.
{7z ()N =lo}

As y € Y and uoY C L*R?) we have lim,, p)—o §p [y(2)|uo(z) du(z)
= 0. Therefore, there exists 6 > 0 such that p.(D) < J implies

| ly(@)uo(@)] du(w) < li
D 0

Hence, we infer that

€
pe(D) <6 = | |(y(2), (¢ 0 2)(@)|du(z) < lo TeT
D
So, the first part of (3.2) follows. The second part of (3.2) follows by the
same arguments.

Since vsupp X (z) = vsupp Y (z) p-a.e. and X C Y’, (3.2) implies that
the sequence ¢ o zj, is sequentially Y-weakly pre-compact in X, due to the
Y-weak pre-compactness theorem of J. Dieudonné [7] (if X is a normed
lattice with X = X" Y = X'); W. Luxemburg and A. Zaanen [10], P. P.
Zabrejko |23, Theorem 33| (if X is a normed lattice); H. Nakano [13| (m =1
with X = X”)Y = X’); O. Burkinshaw and P. Dodds [4, Theorem 3.4,
Proposition 2.4] (m = 1), and [15, Theorem 2.8/(2)], [18] (m > 2).

STEP 3.6. Assume that (SC2) holds. It is known that (I"°)’ can be inter-
preted as the dual space (I°)* by the injection 2’ — (-, 2’), (see, e.g., [1, 23],
[9, Theorems VI.1.4 and IV.3.6] (d = 1), [15, Corollary 2.2, Proposition 2.2],
[18] (d > 2)). By |9, Theorem IV.3.3] (m = 1) and [16, Theorem 2.5|, [15, 18]
(m > 2), the separability of u implies the separability of I'°. Hence, by the
Alaoglu-Bourbaki theorem together with [9, Theorem V.7.6], the I'°-weak
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topology on any closed ball of (I"°)* is compact and metrizable. Therefore,
for any sequence a; in the (I"°)’-norm-bounded set {¢ o zj, }ren there exist a
subsequence p(7) of the sequence 7 and a € (1'°)" such that aj; is I"°-weakly
convergent to a in (I'°)'. Since Y C I'® and (I'°)" C X, ap; is Y-weakly
convergent to a in X. Hence, a, ;) is a Y-weak Cauchy sequence in X. Thus,

(%)
the statement of Proposition 2.4/(SC2) follows. =

Proof of Theorem 2.6. It suffices to modify Step 3.1 of the proof of The-
orem 2.1/(Y3). Since supp K = £2, by [9, Corollary IV.3.2] there exists a
sequence of disjoint sets 2, € & such that x o, € K and n(2\UZ £24) = 0.
Since F is a separable reflexive space, so is E*. Hence, there exists {tp}pen
dense in E*. By (3.1) for xo,u, € Y, for some ﬁpq € A, l~?pq C {24 and
p(£25\ Dpq) = 0 and (x, ()i, (2)) = §gm (X0, (@), (2, A)) dvs(N) € R

for z € Dyq. Therefore, for x € (e Dpg;

(T 3(2) = | (s 6(, V) die(N) € R.
Rm

Put (2, ) := |[¢(z, \)|| . Since supp K = supp K = 2 and the sequence
¢poz;j, is K (E*)-weakly pre-compact in K (E), by M. Talagrand [22, Corollary
9 of Theorem 6] and M. Nowak [19, Theorem 3.3| we deduce that the sequence
Ypozj, is K-weakly pre-compact in K. By Theorem 2.1/(Y4) for ¢oz;, , there
exists Dy, € A such that pu(£2\ Dy) = 0 and the integral {5, ¥(z, ) dve()) €
R exists for all x € Dy,

Fix u* € E*. Then we can choose a sequence ; := ;) from the dense set

{Up }pen with [|@; —u*| g — 0 as i — oco. Hence, z € ()2, qu N Dy, implies
that (G;, p(x,\)) — (u*,¢(x, ) for all A € R™, (4, ¢(z)) — (u*, p(x)),
and |(t;, ¢(x, N))| < sup;ey ||Gil| =1 (x, A) < oco. Hence, by the Lebesgue
dominated convergence theorem, we infer that

) (s, 6, 0)) dva(A) = | (w', 6(, V) dva() € R

R™ R™
as i — oo for x € (2, Dypy N Dy. Hence, z € ()2, Dypg N Dy, implies that
(w*, p(x)) = gm(u*,(x,\)) dvy(X) € R for all u* € E*. Therefore, for
SN ﬁpqﬁDw, the Pettis integral (P)-{p.,, ¢(x, A)dvy(\) € E exists and
coincides with ¢(x) [6, p. 53]. So, we obtain

(2€ Dy = J N DpDs) = 6(2) = (P)- | 6l \) da()) € E,
g=1p=1 Rm

and p(£2\ Dg) = 0. Hence, the statement (Y3) of Theorem 2.6 follows for
A¢ =1 \ Dd" u
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LEMMA 3.2 ([15, Lemma 4.2.3]). Let K C L°(R) be a normed lattice
with monotone norm. Then for € € (0,00) there exists r(e) € (0,00) such
that [|z||k <r(e) = |zllpom) < €.

Proof of Proposition 2.7. By 2.7, g4(|zj(x0)|) > g4(L) for zg € DJL =
{x € £2:|2;(x)| > L}. Since K(q) is a normed lattice with monotone norm
Il (q), we infer that

1xca9a(125 DI k@) = IXe,npi 94125 DI k()
> o, 01 92D i) = 90X 10
Hence, limp—oo supjen [[X¢,qpi k(@ = 0- By Lemma 3.2, for all ¢ > 0
there exists rq(e) > 0 such that,‘ given j € N, if HXCqﬁDJL-HK(q) < r(e) then
”XCqu]L' lroor) = %M*(Cq N D}) < e. Therefore, there exists LZ such that
L > LI implies that HchngHK(q) < r(g) for all j € N. It follows that

S 1(Cy N Di) <eforall j € Nand all L > LZ This gives (GB) for u. and
zj on Cy C £2. By Proposition 3.1, (LB) follows for y and z;. =
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