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Summary. Some kinds of perfect spaces, including paracompact perfectly normal spaces
and collectionwise normal perfect spaces, are characterized in terms of continuous selec-
tions avoiding supporting sets. A necessary and sufficient condition on a domain space
for a selection theorem of E. Michael [Fund. Math. 47 (1959), 173–178] to hold is also
obtained.

1. Introduction. Throughout this paper, all spaces are assumed to be
T1-spaces. Let 2Y denote the set of all non-empty subsets of a space Y . For
a mapping ϕ : X → 2Y , a mapping f : X → Y is called a selection of ϕ
if f(x) ∈ ϕ(x) for each x ∈ X. In [7], E. Michael established theorems on
continuous selections for convex-valued mappings, which characterize sev-
eral topological properties such as paracompactness, normality, collection-
wise normality and perfect normality. In most of the theorems, set-valued
mappings are assumed to be closed-valued. On the other hand, Theorem 3.1′′′

in [7] characterizing perfect normality ensures the existence of continuous se-
lections for some set-valued mappings with non-closed values. An essential
part of the proof is to obtain a continuous selection avoiding supporting sets
of each value for a closed and convex-valued mapping.

The set of all non-empty closed convex subsets of a Banach space Y is
denoted by Fc(Y ). For K ∈ Fc(Y ), a supporting set S of K is a closed
convex proper subset of K such that if an interior point of a segment in K
is contained in S, then the whole segment lies in S. For example, supporting
sets of finite-dimensional simplexes are their proper faces. Let I(K) denote
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the set of all points ofK which are not in any supporting set ofK. A mapping
ϕ : X → 2Y is called lower semicontinuous (l.s.c. for short) if for every open
subset V of Y , the set ϕ−1[V ] = {x ∈ X | ϕ(x) ∩ V 6= ∅} is open in X.
A topological (respectively, normal) space is said to be perfect (respectively,
perfectly normal) if every open subset is an Fσ-set. Theorem 3.1′′′ in [7] can
be restated as follows.

Theorem 1.1 (E. Michael [7]). A T1-space X is perfectly normal if and
only if for every separable Banach space Y , every l.s.c. mapping ϕ : X →
Fc(Y ) admits a continuous selection f : X → Y such that f(x) ∈ I(ϕ(x))
for each x ∈ X.

In [8], E. Michael proved a theorem on dense families of continuous se-
lections, and extended the “only if” part of Theorem 1.1 to arbitrary Banach
spaces, but for more restrictive domains.

Theorem 1.2 (E. Michael [8, Corollary 1.3]). If X is a metrizable space,
then for every Banach space Y , every l.s.c. mapping ϕ : X → Fc(Y ) admits
a continuous selection f : X → Y such that f(x) ∈ I(ϕ(x)) whenever ϕ(x)
is separable.

As in [7], several topological properties of domain spaces X have been
characterized in terms of selections (see also [12], [13]). From this point of
view, Theorem 1.2 suggests the possibility of characterizing a certain class
of perfectly normal spaces. The purpose of this paper is to obtain charac-
terizations of some classes of perfect spaces in terms of selections avoiding
supporting sets.

In Section 2, we consider set-valued mappings with compact values, and
prove characterizations of paracompact perfectly normal spaces and collec-
tionwise normal perfect spaces in terms of continuous selections.

In Section 3, we obtain a necessary and sufficient condition on X for
the conclusion of Theorem 1.2 to hold. The first infinite ordinal number is
denoted by ω. For a space X, a cover U of X and x ∈ X, let ordx U =
Card{U ∈ U | x ∈ U}, where Card stands for cardinality. Let us say that
a space X has property (S) if for every open cover U of X, there exists a
σ-discrete collection F of closed subsets of X such that if x ∈ U ∈ U and
ordx U ≤ ω, then x ∈ F ⊂ U for some F ∈ F . This property is suggested
by a characterization of perfect spaces due to J. M. Worrell, Jr. and H. H.
Wicke [17] (see Lemma 2.3). We prove the following.

Theorem 1.3. A T1-space X is a paracompact Hausdorff space satisfying
(S) if and only if for every Banach space Y , every mapping ϕ : X → Fc(Y )
admits a continuous selection f : X → Y such that f(x) ∈ I(ϕ(x)) whenever
ϕ(x) is separable.
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Note that the Sorgenfrey line is a non-metrizable paracompact Hausdorff
space satisfying (S) (see Remark 3.8). An analogous result for separable-
valued mappings is also obtained in Section 3.

In this paper, we use the following notation and terminology. The set
of all positive integers and the set of all real numbers are denoted by N
and R, respectively. An ordinal number is the set of smaller ordinal num-
bers, and a cardinal number is an initial ordinal number. The first uncount-
able ordinal number is denoted by ω1. Throughout this paper, γ stands
for an infinite cardinal number. The closure of a subset A is denoted by
ClA. The weight of a space Y is denoted by w(Y ). An indexed collection
{Uλ | λ ∈ Λ} of subsets of a space X is point-countable if for each x ∈ X the
set {λ ∈ Λ | x ∈ Uλ} is countable, while {Uλ | λ ∈ Λ} is called discrete if
each x ∈ X has a neighborhood N such that Card{λ ∈ Λ | Uλ∩N 6= ∅} ≤ 1.
For a Banach space (Y, ‖ · ‖), y ∈ Y and r > 0, let B(y, r) = {z ∈ Y |
‖y − z‖ < r}. The convex hull of a subset A of a Banach space is denoted
by convA. For a mapping ϕ : X → 2Y and a collection V of subsets of Y ,
let ϕ−1[V] = {ϕ−1[V ] | V ∈ V}. For undefined notation and terminology, we
refer to [1].

2. Theorems for mappings with compact values. In this section,
we obtain characterizations of some kinds of perfect spaces in terms of map-
pings with compact values. The following lemma was essentially proved by
E. Michael (see the proof of [7, Theorem 3.1′′′]).

Lemma 2.1 (E. Michael [7]). Let X be a topological space, Y a Banach
space and ϕ : X → Fc(Y ) a mapping. If there is a countable collection
{fi | i ∈ N} of continuous selections fi : X → Y of ϕ, then there exists a
continuous selection f : X → Y of ϕ such that f(x) ∈ I(ϕ(x)) whenever
{fi(x) | i ∈ N} is dense in ϕ(x).

Thus, a key to obtaining a continuous selection that avoids supporting
sets is to construct a sequence of continuous selections as in Lemma 2.1.
For a mapping ϕ : X → 2Y , a mapping φ : X → 2Y is called a set-valued
selection of ϕ if φ(x) ⊂ ϕ(x) for each x ∈ X. For l.s.c. set-valued selections,
we have the following.

Lemma 2.2. Let X be a perfect space, Y a Banach space, ϕ : X → Fc(Y )
an l.s.c. mapping and A an Fσ-set of X such that {x ∈ X | ϕ(x) is compact}
⊂ A. Then there exists a sequence {φi | i ∈ N} of l.s.c. set-valued selections
φi : X → Fc(Y ) of ϕ such that φi(x) = ϕ(x) for each x ∈ X r A and
i ∈ N, and for each x ∈ X with ϕ(x) compact , every open subset W of Y
with ϕ(x) ∩W 6= ∅ contains φi(x) for some i ∈ N.
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To prove Lemma 2.2, we need the following lemma which was essentially
proved by J. M. Worrell, Jr. and H. H. Wicke [17] (see also [11, Theorem 3]).

Lemma 2.3 (J. M. Worrell and H. H. Wicke [17, Lemma]). For every
open cover U of a perfect space X, there exists a σ-discrete collection F of
closed subsets of X such that if x ∈ U ∈ U and ordx U < ω, then x ∈ F ⊂ U
for some F ∈ F .

Proof of Lemma 2.2. Our proof is based on the idea used by E. Michael [8].
Put X ′ = {x ∈ X | ϕ(x) is compact}. Take a sequence {Vi | i ∈ N}
of locally finite open covers of Y such that meshVi < 1/2i. Then X ′ ⊂
{x ∈ X | ordx ϕ−1[Vi] < ω} for each i ∈ N. By Lemma 2.3, for each
i ∈ N, there exists a σ-discrete collection Fi of closed subsets of X such
that if x ∈ X ′ and V ∈ Vi with x ∈ ϕ−1[V ], then x ∈ F ⊂ ϕ−1[V ] for
some F ∈ Fi. We may assume that

⋃
Fi ⊂ A and X ′ ∩ F 6= ∅ for each

F ∈ Fi. For i ∈ N and F ∈ Fi, the set {V ∈ Vi | F ⊂ ϕ−1[V ]} is finite,
say {V F

k | k = 1, . . . , kF }. For F ∈
⋃
i∈NFi and k ∈ {1, . . . , kF }, define φFk :

F → Fc(Y ) by putting φFk (x) = Cl(conv(ϕ(x) ∩ V F
k )) for each x ∈ F .

Then φFk is l.s.c. (see [7, Propositions 2.3, 2.4 and 2.6]). For each i ∈ N,
take discrete collections F(i,j), j ∈ N, of closed subsets of X such that Fi =⋃
j∈NF(i,j). For i, j, k ∈ N, define φ(i,j,k) : X → Fc(Y ) by φ(i,j,k)(x) = φFk (x)

if x ∈ F ∈ F(i,j) and k ≤ kF , and φ(i,j,k)(x) = ϕ(x) otherwise. Then the
sequence {φ(i,j,k) | i, j, k ∈ N} is as required.

The following lemma is easy to verify and we omit the proof.

Lemma 2.4. Let K be a closed convex subset of a Banach space Y . If V
is an open convex subset of Y , then I(Cl(K ∩ V )) ⊂ I(K). If Cn ⊂ I(K)
for each n = 1, . . . , k, then conv

⋃
{Cn | n = 1, . . . , k} ⊂ I(K).

We have the following characterization of perfect spaces.

Theorem 2.5. For a topological space X, the following statements are
equivalent.

(a) X is perfect.
(b) For every Banach space Y , every l.s.c. mapping ϕ : X → Fc(Y )

admits an l.s.c. set-valued selection φ : X → Fc(Y ) such that φ(x) ⊂
I(ϕ(x)) whenever ϕ(x) is compact.

(c) Every l.s.c. mapping ϕ : X → Cc(R) admits an l.s.c. set-valued selec-
tion φ : X → Cc(R) such that φ(x) ⊂ I(ϕ(x)) for each x ∈ X.

Proof. (a)⇒(b). Fix n ∈ N. Put Un = ϕ−1[B(0, n)] and define ϕn :
Un → Fc(Y ) by ϕn(x) = Cl(ϕ(x) ∩ B(0, n)) for each x ∈ X. Take a se-
quence {θni | i ∈ N} of l.s.c. set-valued selections θni : Un → Fc(Y ) of ϕn
as in Lemma 2.2. Define θn : Un → 2Y by θn(x) = {

∑∞
i=1(1/2)iyi | yi ∈

θni (x), i ∈ N} for each x ∈ X. Since ϕn(x) is bounded and complete, the
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limit
∑∞

i=1(1/2)iyi always exists. The mapping s : ϕn(x)N → ϕn(x) defined
by s((yi)i∈N) =

∑∞
i=1(1/2)iyi for each (yi)i∈N ∈ ϕn(x)N, where ϕn(x)N is

endowed with the product topology, is continuous. Thus θn is l.s.c., and
θn(x) is compact whenever ϕ(x) is compact. Since each θni is convex-valued,
so is θn. If ϕ(x) is compact and yi ∈ θni (x) for each i ∈ N, then the set
{yi | i ∈ N} is dense in ϕn(x). By Lemma 2.4 and the same argument as in
[7, Lemma 5.1], we have θn(x) ⊂ I(ϕn(x)) = I(Cl(ϕ(x)∩B(0, n))) ⊂ I(ϕ(x))
whenever ϕ(x) is compact. Thus the mapping φn : Un → Fc(Y ) defined
by φn(x) = Cl(θn(x)) is an l.s.c. set-valued selection of ϕ|Un such that
φn(x) ⊂ I(ϕ(x)) whenever ϕ(x) is compact.

Here, {Un | n ∈ N} is an open cover of the perfect space X such that
Un ⊂ Un+1 for each n ∈ N. Thus each open set Un can be written as
Un =

⋃
i∈NE

n
i , where Eni , i ∈ N, are closed subsets of X. Put F0 = ∅

and Fn =
⋃
i≤nE

i
i for each n ∈ N. Then {Fn | n ∈ N} is a closed cover

of X such that Fn ⊂ Un and Fn ⊂ Fn+1 for each n ∈ N, and hence
{UnrFn−1 | n ∈ N} is a point-finite open cover of X. Define φ : X → Fc(Y )
by φ(x) = Cl(conv

⋃
{φn(x) | x ∈ UnrFn−1}). Then φ is an l.s.c. set-valued

selection of ϕ. If ϕ(x) is compact, then conv
⋃
{φn(x) | x ∈ Un r Fn−1}

is the convex hull of the union of finitely many compact convex subsets
of Y , and hence it is compact (cf. [6, Lemma 2.10.14]). Thus, by Lemma 2.4,
φ(x) ⊂ I(ϕ(x)) whenever ϕ(x) is compact.

(b)⇒(c). This is obvious.
(c)⇒(a). Assume that X satisfies (c) and let U be an open subset of X.

Define ϕ : X → 2R by ϕ(x) = [0, 1] if x ∈ U and ϕ(x) = {0} otherwise.
Then ϕ : X → Cc(R) is l.s.c. and, by (c), there exists an l.s.c. mapping
φ : X → Cc(R) such that φ(x) ⊂ I(ϕ(x)). Put Fn = X r φ−1[(−1, 1/n)] for
each n ∈ N. Then each Fn is closed in X. Since I([0, 1]) = (0, 1), we have
U =

⋃
n∈N Fn.

A space X is γ-paracompact if every open cover U of X with CardU ≤ γ
is refined by a locally finite open cover of X.

Theorem 2.6. For a T1-space X, the following statements are equiva-
lent.

(a) X is γ-paracompact and perfectly normal.
(b) For every Banach space Y with w(Y ) ≤ γ, every l.s.c. mapping ϕ :

X → Fc(Y ) admits a sequence {fi | i ∈ N} of continuous selections
fi : X → Y such that {fi(x) | i ∈ N} is dense in ϕ(x) whenever ϕ(x)
is compact.

(c) For every Banach space Y with w(Y ) ≤ γ, every l.s.c. mapping ϕ :
X → Fc(Y ) admits a continuous selection f : X → Y such that
f(x) ∈ I(ϕ(x)) whenever ϕ(x) is compact.
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Proof. To show (a)⇒(b), let X be a γ-paracompact perfectly normal
space, Y a Banach space with w(Y ) ≤ γ, and ϕ : X → Fc(Y ) an l.s.c.
mapping. Then there exists a sequence {φi | i ∈ N} of l.s.c. mappings φi :
X → Fc(Y ) as in Lemma 2.2. By virtue of [7, Theorem 3.2′′] (see also
[10, Theorem 4.1]), there exists a continuous selection fi : X → Y of φi for
each i ∈ N. Then {fi | i ∈ N} is the required sequence.

The implication (b)⇒(c) follows from Lemma 2.1, and (c)⇒(a) follows
from [7, Theorem 3.2′′] (see also [10, Theorem 4.1]) and Theorem 2.5.

Corollary 2.7. A T1-space X is paracompact and perfectly normal if
and only if for every Banach space Y , every l.s.c. mapping ϕ : X → Fc(Y )
admits a continuous selection f : X → Y such that f(x) ∈ I(ϕ(x)) whenever
ϕ(x) is compact.

A space X is γ-collectionwise normal if for every discrete collection
{Fλ | λ ∈ Λ} of closed subsets of X with CardΛ ≤ γ, there exists a disjoint
collection {Uλ | λ ∈ Λ} of open subsets of X such that Fλ ⊂ Uλ for each
λ ∈ Λ. For a Banach space Y , let Cc(Y ) be the set of all non-empty compact
convex subsets of Y and put C′c(Y ) = Cc(Y ) ∪ {Y }.

Theorem 2.8. For a T1-space X, the following statements are equiva-
lent.

(a) X is γ-collectionwise normal and perfect.
(b) For every Banach space Y with w(Y ) ≤ γ, every l.s.c. mapping ϕ :

X → C′c(Y ) admits a sequence {fi | i ∈ N} of continuous selections
fi : X → Y such that {fi(x) | i ∈ N} is dense in ϕ(x) whenever ϕ(x)
is compact.

(c) For every Banach space Y with w(Y ) ≤ γ, every l.s.c. mapping ϕ :
X → C′c(Y ) admits a continuous selection f : X → Y such that
f(x) ∈ I(ϕ(x)) for each x ∈ X.

Proof. To show (a)⇒(b), let X be a γ-collectionwise normal perfect
space, Y a Banach space with w(Y ) ≤ γ, and ϕ : X → C′c(Y ) an l.s.c.
mapping. Put A = {x ∈ X | ϕ(x) ∈ Cc(Y )}. Then A is an Fσ-set. Thus (b)
follows from Lemma 2.2 and [7, Theorem 3.2′] (see also [10, Theorem 4.2]).

The implication (b)⇒(c) follows from Lemma 2.1 since if ϕ(x) is not
compact, then ϕ(x) = Y . The implication (c)⇒(a) follows from [7, The-
orem 3.2′] (see also [10, Theorem 4.2]) and Theorem 2.5.

Corollary 2.9. A T1-space X is collectionwise normal and perfect if
and only if for every Banach space Y , every l.s.c. mapping ϕ : X → C′c(Y )
admits a continuous selection f : X → Y such that f(x) ∈ I(ϕ(x)) for each
x ∈ X.
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Remark 2.10. For K ∈ Fc(Y ), a point y ∈ Y is called an extreme point
if K r {y} is convex. The weak convex interior wci(K) of K ([3]) is the set
of all non-extreme points of K. Then wci(K) ⊂ I(K) for each K ∈ Fc(Y )
with CardK > 1. Thus the “only if” part of Theorem 2.8 is an extension of
(1)⇒(2) of [3, Theorem 4.6] and (a)⇒(b) of [18, Corollary 10].

A space X is said to be γ-PF-normal if every point-finite open cover
U of X with CardU ≤ γ is normal. A space is called PF-normal ([15]) if
it is γ-PF-normal for every infinite cardinal number γ. Note that every γ-
collectionwise normal space is γ-PF-normal, and ω-PF-normality coincides
with normality.

Theorem 2.11. For a T1-space X, the following statements are equiva-
lent.

(a) X is γ-PF-normal and perfect.
(b) For every Banach space Y with w(Y ) ≤ γ, every l.s.c. mapping ϕ :

X → Cc(Y ) admits a sequence {fi | i ∈ N} of continuous selections
fi : X → Y such that {fi(x) | i ∈ N} is dense in ϕ(x) for each
x ∈ X.

(c) For every Banach space Y with w(Y ) ≤ γ, every l.s.c. mapping ϕ :
X → Cc(Y ) admits a continuous selection such that f(x) ∈ I(ϕ(x))
for each x ∈ X.

Proof. The implication (a)⇒(b) follows from Lemma 2.2 and [10, The-
orem 4.1] (note that, in the realm of normal spaces, γ-PF-normality coin-
cides with γ-pointwise-ω-paracompactness of [10]). The implication (b)⇒(c)
follows from Lemma 2.1, and (c)⇒(a) follows from [10, Theorem 4.1] and
Theorem 2.5.

Corollary 2.12. A T1-space X is PF-normal and perfect if and only
if for every Banach space Y , every l.s.c. mapping ϕ : X → Cc(Y ) admits a
continuous selection such that f(x) ∈ I(ϕ(x)) for each x ∈ X.

3. Theorems for mappings with separable values. First, we prove
Theorem 1.3. Let us consider the following property for a space X.

(Sγ) For every open cover U of X with CardU ≤ γ, there exists a σ-
discrete collection F of closed subsets of X such that if x ∈ U ∈ U
and ordx U ≤ ω, then x ∈ F ⊂ U for some F ∈ F .

A space satisfies (S) if it satisfies (Sγ) for every infinite cardinal γ. Note
that a space satisfies (Sω) if and only if it is perfect. It is shown in Remark 3.8
that a perfect space need not satisfy (S). Theorem 1.3 follows from the
following.
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Theorem 3.1. For a T1-space X, the following statements are equiva-
lent.

(a) X is a normal γ-paracompact space satisfying (Sγ).
(b) For every Banach space Y with w(Y ) ≤ γ, every l.s.c. mapping ϕ :

X → Fc(Y ) admits a sequence {fi | i ∈ N} of continuous selections
fi : X → Y such that {fi(x) | i ∈ N} is dense in ϕ(x) whenever ϕ(x)
is separable.

(c) For every Banach space Y with w(Y ) ≤ γ, every l.s.c. mapping ϕ :
X → Fc(Y ) admits a continuous selection f : X → Y such that
f(x) ∈ I(ϕ(x)) whenever ϕ(x) is separable.

Proof. The implication (a)⇒(b) is obtained by repeating the proof of
[8, Theorem 1.1], and (b)⇒(c) follows from Lemma 2.1.

To show (c)⇒(a), let X be a space satisfying (c). By [7, Theorem 3.2′′]
(see also [10, Theorem 4.1]), X is normal and γ-paracompact. To show that
it satisfies (Sγ), let U be an open cover of X with CardU ≤ γ. For any set Λ,
let l1(Λ) be the usual Banach space of summable functions s : Λ → R with
the norm ‖s‖ =

∑
λ∈Λ |s(λ)|. Following [7], define an l.s.c. mapping ϕ : X →

Fc(l1(U)) by ϕ(x) = {y ∈ l1(U) | ‖y‖ = 1, y(U) ≥ 0 for every U ∈ U , and
y(U) = 0 for all U ∈ U with x /∈ U} for x ∈ X. Here w(l1(U)) ≤ γ. By (c),
there exists a continuous selection f : X → l1(U) of ϕ such that f(x) ∈
I(ϕ(x)) whenever ϕ(x) is separable. Let B be a σ-discrete base for l1(U).

We claim that the σ-discrete closed collection {f−1(ClB) | B ∈ B}
satisfies the condition of (Sγ). Indeed, let x ∈ X with ordx U ≤ ω and
x ∈ U ∈ U . Then ϕ(x) is separable. Since S = {y ∈ ϕ(x) | y(U) = 0} is
a supporting set of ϕ(x), we have f(x) /∈ S and hence f(x)(U) > 0. Take
B ∈ B such that f(x) ∈ B and diamB < f(x)(U). For each z ∈ f−1(ClB),

f(z)(U) ≥ f(x)(U)− |f(x)(U)− f(z)(U)| ≥ f(x)(U)− ‖f(x)− f(z)‖ > 0,

and hence z ∈ U . Thus x ∈ f−1(ClB) ⊂ U .

The following example shows that, if a closed convex subset K of a Ba-
nach space is not separable, then I(K) may be empty. Thus the separability
of values of a set-valued mapping is necessary in order that a selection may
avoid all supporting sets of its values.

Example 3.2. Let Λ be an uncountable set and put K = {s ∈ l1(Λ) |
s(λ) ≥ 0 for each λ ∈ Λ}. Take s ∈ K arbitrary. Then there exists λs ∈ Λ
such that s(λs) = 0 and the set S = {t ∈ K | t(λs) = 0} is a supporting set
of K containing s. Thus I(K) = ∅.

Next, we consider continuous selections avoiding supporting sets for sepa-
rable-valued mappings. For a Banach space Y , let Sc(Y ) = {S ∈ Fc(Y ) |
S is separable}. Mimicking the definition of γ-PF-normality, let us call a
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space X γ-PC-normal if every point-countable open cover U of X with
CardU ≤ γ is normal. A space is called PC-normal if it is γ-PC-normal
for every infinite cardinal number γ. Note that every γ-PC-normal space is
countably paracompact and normal. For the same reason as in [3, p. 506],
γ-PC-normality is not hereditary with respect to closed subsets in general.
But γ-PC-normality is hereditary with respect to open Fσ-sets. The proof is
quite analogous to the proof that γ-PF-normality is hereditary with respect
to open Fσ-sets (cf. [19]).

For collections U and F of subsets of a space X, F is called a base [4]
of U if each member of U is a union of members from F . A subset A of a
topological space X is called a cozero-set if there is a continuous function
f : X → R such that A = {x ∈ X | f(x) 6= 0}. A base is called closed
(respectively, cozero-set) if it consists of closed subsets (respectively, cozero-
sets). By Lemma 2.3, a spaceX is perfect if and only if every point-finite open
cover of X has a σ-discrete closed base. Inspired by this characterization, let
us consider the following properties of a space X.

(S′γ) Every point-countable open cover U with CardU ≤ γ of X has a
σ-discrete closed base.

(S′) X satisfies (S′γ) for every infinite cardinal γ.

Clearly, (Sγ) implies (S′γ), and a space satisfies (Sω) if and only if it is
perfect. It is shown in Remark 3.8 that (S′) coincides with neither (S) nor
perfectness. For separable-valued mappings, we have the following.

Theorem 3.3. For a T1-space X, the following statements are equiva-
lent.

(a) X is a γ-PC-normal space with (S′γ).
(b) Every point-countable open cover U of X with CardU ≤ γ has a

σ-discrete cozero-set base.
(c) For every Banach space Y with w(Y ) ≤ γ, every l.s.c. mapping ϕ :

X → Sc(Y ) admits a sequence {fi | i ∈ N} of continuous selections
fi : X → Y such that {fi(x) | i ∈ N} is dense in ϕ(x).

(d) For every Banach space Y with w(Y ) ≤ γ, every l.s.c. mapping ϕ :
X → Sc(Y ) admits a continuous selection f : X → Y such that
f(x) ∈ I(ϕ(x)) for each x ∈ X.

To prove Theorem 3.3, we need some preparation. S. Nedev [10] proved
the following selection theorem for γ-PC-normal spaces (note that, in the
realm of normal spaces, γ-PC-normality coincides with γ-pointwise-ω1-para-
compactness of [10]).

Theorem 3.4 (S. Nedev [10, Theorem 4.1]). A T1-space X is γ-PC-
normal if and only if for every Banach space Y with w(Y ) ≤ γ, every l.s.c.
mapping ϕ : X → Sc(Y ) admits a continuous selection.
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For a collection F = {Fλ | λ ∈ Λ} of subsets of a space X, another
such collection {Uλ | λ ∈ Λ} is called an expansion of F if Fλ ⊂ Uλ for
each λ ∈ Λ. An expansion is called open if it consists of open subsets. For
a subset A of a space X and a collection U of subsets of X, let St(A,U) =⋃
{U ∈ U | A ∩ U 6= ∅}.

Lemma 3.5. If X is γ-PC-normal , then every discrete collection {Fλ |
λ ∈ Λ} of closed subsets of X with CardΛ ≤ γ has a discrete open expansion
provided it has a point-countable open expansion {Uλ | λ ∈ Λ}.

Proof. Let X, {Fλ | λ ∈ Λ} and {Uλ | λ ∈ Λ} be as in the statement.
For each λ ∈ Λ, put Gλ = Uλ r

⋃
µ6=λ, µ∈λ Fµ. Then Fλ ⊂ Gλ for each λ ∈ Λ

and G = {Gλ | λ ∈ Λ} ∪ {X r
⋃
µ∈Λ Fµ} is a point-countable open cover of

X such that CardG ≤ γ, and hence G is normal. Thus there exists a normal
sequence {Gi | i ∈ N} of open covers of X such that G1 refines G. Then
{St(G,G2) | G ∈ G2} refines G. Thus {St(Fλ,G2) | λ ∈ Λ} is a discrete open
expansion of {Fλ | λ ∈ Λ}.

Let us prove Theorem 3.3.

Proof of Theorem 3.3. (a)⇒(b). Assume (a) and let U be a point-count-
able open cover of X with CardU ≤ γ. Take a σ-discrete closed base
F =

⋃
i∈NFi of U , where Fi is discrete. We may assume F refines U and

each F ∈ F is non-empty. For each F ∈ F , the set {U ∈ U | F ⊂ U}
is countable, say {U(F, j) | j ∈ N}. Fix i, j ∈ N and put U(i,j) =
{U(F, j) | F ∈ Fi}. For each U ∈ U(i,j), put EU =

⋃
{F ∈ Fi | U(F, j) = U}.

Then
⋃
{EU | U ∈ U(i,j)} =

⋃
Fi, and U(i,j) is a point-countable open ex-

pansion of the discrete collection {EU | U ∈ U(i,j)} of closed subsets of X
of cardinality ≤ γ. By Lemma 3.5 and the normality of X, there exists a
discrete collection V(i,j) = {VU | U ∈ U(i,j)} of cozero-sets of X such that
EU ⊂ VU ⊂ U for each U ∈ U(i,j). Then

⋃
{V(i,j) | i, j ∈ N} is a σ-discrete

cozero-set base of U .
(b)⇒(c). The proof is analogous to that of [8, Theorem 1.1]. Let X be a

space satisfying (b), Y a Banach space with w(Y ) ≤ γ, and ϕ : X → Sc(Y )
an l.s.c. mapping. By [9, Theorem 1.2],X is γ-PC-normal. Let {Vi | i ∈ N} be
a sequence of locally finite open covers of Y such that meshVi < 1/2i for each
i ∈ N. Then ϕ−1[Vi] is a point-countable open cover of cardinality ≤ γ for
each i ∈ N. By (b), there exists a σ-discrete cozero-set baseWi =

⋃
j∈NW(i,j)

of ϕ−1[Vi] for each i ∈ N, where each W(i,j) is discrete and each W ∈ Wi

is non-empty. For i ∈ N and W ∈ Wi, the set {V ∈ Vi | W ⊂ ϕ−1[V ]}
is countable, say {V W

k | k ∈ N}. For each W ∈
⋃
i∈NWi and k ∈ N, de-

fine ϕWk : W → Sc(Y ) by ϕWk (x) = Cl(conv(ϕ(x) ∩ V W
k )) for x ∈ W .
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SinceW is γ-PC-normal, by Theorem 3.4, ϕWk admits a continuous selection
gWk : W → Y .

Each W ∈
⋃
i∈NWi can be written as W =

⋃
n∈N F

W
n for some closed

sets FWn , n ∈ N. Then {FWn | W ∈ W(i,j)} is a discrete collection of closed
subsets for each i, j, n ∈ N. For i, j, k, n ∈ N, define ϕ(i,j,k,n) : X → Sc(Y ) by
ϕ(i,j,k,n)(x) = {gWk (x)} if x ∈ FWn and W ∈ W(i,j), and ϕ(i,j,k,n)(x) = ϕ(x)
otherwise. Since ϕ(i,j,k,n) is l.s.c., there is a continuous selection f(i,j,k,n) :
X → Y of ϕ(i,j,k,n). Then {f(i,j,k,n) | i, j, n, k ∈ N} is the required sequence.

(c)⇒(d). This follows from Lemma 2.1.
(d)⇒(a). Assume that X satisfies (d). By Theorem 3.4, X is γ-PC-

normal. By the same argument as in the proof of the “only if” part of The-
orem 3.1, X satisfies (S′γ).

Corollary 3.6. A T1-space X is a PC-normal space with (S′) if and
only if for every Banach space Y , every mapping ϕ : X → Sc(Y ) admits a
continuous selection f : X → Y such that f(x) ∈ I(ϕ(x)) for each x ∈ X.

Remark 3.7. Lemma 3.5 is a γ-PC-normal analogue of (1)⇒(7) of
[3, Theorem 3.1]. In Lemma 3.5, if the phrases “γ-PC-normal” and “point-
countable” are replaced with “γ-PF-normal” and “point-finite”, respectively,
then the converse is also valid by [3, Theorem 3.1]. But the converse of
Lemma 3.5 itself does not hold in general since every collectionwise normal
space satisfies the condition stated in Lemma 3.5, while every PC-normal
space is countably paracompact (see [14]).

Remark 3.8. A regular space X is called a σ-space if X has a σ-discrete
closed network (for properties of σ-spaces, see [2]). The following implications
hold:

σ-space ⇒ (S) ⇒ (S′) ⇒ perfect.

Note that every hereditarily separable perfect space satisfies (S). Thus
the Sorgenfrey line satisfies (S). But the Sorgenfrey line is not a σ-space (in
fact, it is not a β-space [5, Example 4.11]). Thus the first arrow cannot be
reversed.

Todorčević [16] constructed an example of a non-metrizable paracompact
perfect space X[≥] with a point-countable base. Note that every space which
has a point-countable base and satisfies (S′) is a σ-space, and it is known
that every paracompact σ-space with a point-countable base is metrizable
(cf. [2]). Hence the spaceX[≥] shows that the third arrow cannot be reversed.

An example showing that the second arrow cannot be reversed is also
obtained by using Todorčević’s space X[≥]. A key is the fact that every
closed subspace of a space satisfying (S) satisfies (S). Notice that w(X[≥])
= ω1, since CardX[≥] = ω1 by the construction and X[≥] has a point-
countable base. Thus, we may assume that X[≥] is a subspace of the product
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H = [0, 1]ω1 . Take a countable dense set D of H (cf. [1, Theorem 2.3.15])
and let T = (X[≥]×{ω})∪(D×ω) ⊂ H×(ω+1), where ω+1 has the order
topology. Topologize T by declaring that a basic neighborhood of a point
〈t, ω〉 ∈ X[≥] × {ω} is a neighborhood in the subspace T of the product
H× (ω+1), and all points of D×ω are isolated. Then T satisfies (S′), since
it is separable and perfect. On the other hand, T fails to satisfy (S), since it
contains a closed subspace X[≥]× {ω} which does not satisfy (S).

Acknowledgments. The author would like to thank Professor Haruto
Ohta, who communicated to the author the examples showing that the sec-
ond and third arrows in Remark 3.8 cannot be reversed.
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