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Summary. For each ordinal 1 < a < wi we present separable metrizable spaces X, Yo
and Z, such that

(1) fXa, fYa, { Zo = wo, where { is either trdef or Ko-trsur,
(ii) A(a)-trind Xo = oo and M (a)-trind Xo = —1,
(iii) A(a)-trind Yo = —1 and M (a)-trind Yo, = oo, and
(iv) A(a)-trind Zo = M («)-trind Z, = oo and A(a + 1) N M (a + 1)-trind Z, = —1.
We also show that there exists no separable metrizable space W, with A(«)-trind W, # oo,
M («)-trind W, # oo and A(a) N M («)-trind W, = oo, where A(«) (resp. M(«)) is the
absolutely additive (resp. multiplicative) Borel class.

1. Introduction. All topological spaces in this paper are assumed to
be separable metrizable, and all classes of topological spaces are assumed to
be non-empty (the empty space ) is a member of each class), and to contain
every space homeomorphic to a closed subspace of each of their members
(one says that the class is monotone with respect to closed subspaces). The
letter P is used to denote such a class. Our terminology mostly follows [1]
and [3].

In [4] Lelek introduced the small inductive dimension modulo a class P,
P-ind, a natural generalization of the small inductive dimension ind and the
small inductive compactness degree cmp. Namely, for a space X one defines
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(i) P-ind X = —1iff X € P,

(ii) P-ind X < n, where n is an integer > 0, if for each point x € X and
each closed subset A of X with x ¢ A there exists a partition C' in
X between z and A such that P-ind C' < n.

Recall that a subset C of a space X is said to be a partition between disjoint
sets A and B in X if there are disjoint open subsets U and V' of X such that
AcU,BCcVandC=X\(UUV).

It is evident that if P = {0} (resp. P is the class of compact spaces)
then P-ind X = ind X (resp. P-ind X = cmp X). Moreover, if Py C P; then
Pi-ind X < Po-ind X. In particular, cmp X <ind X.

Recall (cf. [1]) that the absolutely additive (resp. multiplicative and am-
biguous) Borel classes A(0),..., A(a),... (resp. M(0),...,M(«),... and
A(0) N M(0),...,A(a) N M(c),...), where 0 < o < wy, satisfy the condi-
tions above (see Section 3 for details). In the universe of separable metrizable
spaces, A(0) = {0}, M(0) is the class Ky of compact metrizable spaces, A(1)
is the class Sy of o-compact separable metrizable spaces, and M (1) is the
class Cy of separable completely metrizable spaces (cf. [1]).

Moreover, the following hierarchy of absolute Borel classes holds (the
arrows indicate inclusions of classes):

A1) = S, A2) -+
SN .
A(0) = {0} — M(0) = Ko — A()NMA)  A2)NM(2) AB
NN
M(1) = C M(2)

where AB = |J{A(a) : o < w1 }.

It is well known that the Hilbert cube I°*° has trind I*°® = oo, where trind
is the small transfinite inductive dimension, a natural transfinite extension
of ind. Evidently, trempI® = —1. Hence from the hierarchy it follows that
all other small transfinite dimensions of I® modulo absolute Borel classes
P # {0} are equal to —1.

In [5] E. Pol defined the small transfinite inductive compactness degree,
trcmp, a natural transfinite extension of cmp, and constructed a separable
completely metrizable o-compact space E such that trcmp £ = oco. Note that
A(1) N M(1)-trind E = —1. Hence by the hierarchy we have trind E = oo,
and all other small transfinite dimensions of £ modulo absolute Borel classes
P D Ky are equal to —1.

In |2] Charalambous suggested considering a natural transfinite extension
of P-ind, P-trind, a generalization of both trind and trcmp (see Section 2
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for the definition). Now the problem naturally arises about analogs of the
spaces [*° and FE for all small transfinite dimensions modulo absolute Borel
classes different from trind and trcmp.

Recall that a space Y is a P-hull (resp. a P-kernel) of a space X if X C Y
(resp. Y C X) and Y € P. As in [2| the small transfinite P-deficiency and
the small transfinite P-surplus of a space X are defined by

P-trdef X = min{trind(Y" \ X) : Y is a P-hull of X},
P-trsur X = min{trind(X \ Y) : Y is a P-kernel of X},

respectively. Evidently, the functions P-trdef and P-trsur are transfinite ex-
tensions of the functions P-def and P-sur from [1|. Observe (cf. [1]) that for
P = Ko the function P-def is the compact deficiency, def. We will denote
the transfinite extension KCo-trdef of def by trdef. Note that if Po C P; then
Pi-trdef X < Pso-trdef X and P;-trsur X < Po-trsur X.

Using an idea of E. Pol, Charalambous [2]| presented a space C' such that
Co-trdef C = wg and Cy-trind C = oo. This example showed that the Aarts
equality Co-def X = Cp-ind X (valid for each space X) cannot be extended to
the transfinite case. Recall (cf. [1]) the equalities M («)-def X = M («)-ind X
and A(a)-sur X = A(«)-ind X, which hold for each ordinal 1 < o < w; and
each space X. So the problem arises about extending Charalambous’ result
to all absolute Borel classes.

The main result of this paper answers the above problems as follows.

THEOREM 1.1. For each ordinal 1 < o < wq there exist spaces X, Yo,
Zq, such that

(i) f Xq, {Yy, £ Zo = wo, where f is either trdef or Ko-trsur,
(ii) A(a)-trind X, = oo and M (a)-trind X, = —1,
(iii) A(a)-trindY, = —1 and M («)-trind Y, = oo,
(iv) A(a)-trind Z, = M(«a)-trind Z, = oo and Ala+ 1) N M(a + 1)-
trind Z, = —1,
but there exists no space Wy, such that
A(a)-trind Wy, # oo,
M («)-trind Wy, # oo,
A(a) N M (a)-trind W, = oo.
REMARK 1.1. For each space X and each 1 < o < wj we have:
(i) if M(a)-trdef X < wp and M(«a)-trind X = oo (resp. —1), then
M (a)-trdef X = wp (resp. —1),

(i) if A(a)-trsur X < wp and A(a)-trind X = oo (resp. —1), then A(«a)-
trsur X = wp (resp. —1).
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Hence we know additionally that M («)-trdef X, = A(«)-trsurY, = —1 and
A(a)-trsur X, = M («)-trdef Y, = M (a)-trdef Z, = A(a)-trsur Z, = wy.

THEOREM 1.2. There exists a space X with trdef X = Ky-trsur X = wy
such that AB-trind X = oo.

REMARK 1.2. By the hierarchy we have B-trind X = oo for each absolute
Borel class B and D-trdef X = D-trsur X = wq for each absolute Borel class
D except A(0).

2. Small transfinite inductive dimension modulo a class P. Let
X be a space and « be either an ordinal > 0 or the integer —1.

Recall ([2]) that the small transfinite inductive dimension modulo a
class P, P-trind, of X is defined as follows:

(i) P-trind X = —1iff X € P.

(ii) P-trind X < a (> 0) if for every point x € X and every closed
subset A of X such that x ¢ A there exists a partition C in X
between z and A with P-trind C' < a.

(iii) P-trind X = « if P-trind X < v and P-trind X > (3 for every ordinal
6 < a.

(iv) P-trind X = oo if P-trind X > « for every ordinal a.

Note that {@}-trind = trind and Kp-trind = trcmp. Some other known
functions are Sp-trind = S-trind, the small transfinite inductive o-compact-
ness degree, and Cy-trind = tricd, the small transfinite inductive completeness
degree ([2]). The following relationships between particular cases of P-trind
are evident.

PROPOSITION 2.1.

(i) P1-trind = Pa-trind iff P; = Po.
(ii) If Pa C Py then Pi-trind < Pa-trind.
(iii) If X € P then P;-trind X = P N P;-trind X for every class P;.

Note that trind > P-trind for every class P, and trcmp > max{S-trind,
tricd}. Observe also that the function P-trind is monotone with respect to
closed subsets.

3. Absolute Borel classes. Recall that every ordinal a can be repre-
sented as a = A(a) + n(«), where A(«) is a limit ordinal or 0, and n(«) is
an integer > 0. An ordinal « is called even (resp. odd) if n(«) is even (resp.
odd). As in [1] let us denote by A, (resp. As) the family of all countable
unions (resp. intersections) of elements from a family A of sets.

Let B(X) be the family of Borel subsets of a space X. This family can
be generated by an inductive transfinite process (cf. [1]). For each countable
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ordinal o > 0 the Borel class F,(X) (resp. Go(X)) is defined transfinitely
as follows.

(i) Fo(X) (resp. Go(X)) is the family of all closed (resp. open) subsets
of X;
(i) if o is odd then Fi(X) = (U{Fs(X) : B < a})s (resp. Go(X) =
(H{Gs(X) : B < a})s);
(iii) if « is even then Fo(X) = (U{F3(X) : B < a})s (resp. Go(X) =
(H{Gp(X) : B < a})o).

Notice that B(X) = U{Fa(X) : a < w1} = H{Ga(X) : @ < wi}. It is
also clear that A € F,(X) iff X \ A € Go(X) (briefly, Fi,(X) = =G4 (X)),
and if Z CY C X then Z € F,(Y) (resp. Go(Y)) iff there exists a subset
Z' C X such that Z =2Z'NY and Z' € Fy(X) (resp. Go(X)).

Recall that for each ordinal 0 < o < wy the multiplicative (resp. additive)
Borel class a, 12 (X) (resp. X2 (X)) of a space X is the family F,, for a even
(resp. odd) and G, for a odd (resp. even); the ambiguous class o, A%(X),
of X is IY(X) N XY(X). Some properties of multiplicative, additive and
ambiguous classes of a space X can be found in the next statement.

PRrROPOSITION 3.1 (|8, Proposition 3.6.1]).

(i) The additive (resp. multiplicative) classes are closed under countable
unions (resp. intersections).
(ii) The additive, multiplicative and ambiguous classes are closed under
finite intersections and finite unions.
(iii) The following hierarchy of Borel sets holds (the arrows indicate in-
clusions of families):

SN N
NN A \

I (X) 23(X) X) -
(iv) For each 0 < a < wy, N (X) = =X%(X) and AY(X) is an algebra.
(v) For each 0 < a < wy, X9(X) = (AY(X)), and IO (X) = (A%(X))s.

Ap(X)

We need two more facts about the Borel sets.

PROPOSITION 3.2 (|8, Corollary 3.6.8]). Let X be an uncountable Polish
space and 0 < o < wy. Then there exists an element E of X0 (X) which is
not in T2 (X).
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Note that then X \ E € T12(X) \ ¥%(X). Observe that both F and X \ ¥
are in A (X).

PROPOSITION 3.3 (|8, Theorem 5.2.11]). Let X,Y be compact metric
spaces and f : X — Y a continuous onto mapping. Suppose A C Y and

0<a<w. Then A TIO(Y) iff f~1(A) € IY(X).

We also notice that if B C Y and 0 < a < w; then B € X2(Y) (resp.
AL(Y)) iff f71(B) € X5,(X) (resp. AL(X)).

Following [2] we call a subset A of a space X a Bernstein set if |ANB| =
|(X'\ A) N B| = ¢ (continuum) for every uncountable B € B(X). Let Brn(X)
denote the family of all Bernstein sets of X. Notice that Brn(X) # ( for
every uncountable Polish space X. Indeed, recall (cf. [8, Theorem 3.2.7|)
that every uncountable Borel subset B of X contains a copy of the Cantor
set C. Note that C is homeomorphic to C2. So B contains ¢ disjoint copies
of C. One can show as in [8, Example 3.2.8] that X contains a subset A such
that AN F and (X \ A) N F are uncountable for each uncountable closed
set F'in X. So |ANB| =|(X\ A) N B|=c. Hence A € Brn(X).

Note that if M € Brn(X) then |[M| = ¢, X\M € Brn(X) and M ¢ B(X).

Recall that a space X is said to be absolutely of multiplicative (resp. ad-
ditive) class o, where 0 < a < wy, if X is of multiplicative (resp. additive)
Borel class o in Y whenever X is a subspace of a space Y (that is, for any
homeomorphic embedding h : X — Y the image h(X) is of multiplicative
(resp. additive) class a in Y). As in [1] let us denote the absolutely mul-
tiplicative (resp. additive) Borel class o by M(«) (resp. A(«)). For each
0 < a < wy the intersection M (o)) N A(«) is called the ambiguous absolutely
Borel class a.

PROPOSITION 3.4 (|1, Theorem I1.9.6 and Corollary 11.9.7]).
(i) A(0) = {0}, M(0) = Ko, A(1) =Sy and M(1) = Cy.
(ii) For every o with 2 < o < wy a space X is in M («) (resp. A(«)) iff

there is a homeomorphic embedding h : X — Y with Y € Cy such
that h(X) is of multiplicative (resp. additive) class a in'Y .

It is evident that the classes M (a), A(a) and A(a) " M (), 0 < o < wy,
are monotone with respect to closed subsets. A class P of topological spaces
is said to be finitely additive if each space X, covered by a finite family of
elements of P, is also an element of P.

PROPOSITION 3.5 ([1, Theorem I1.9.9]). For each ordinal o < wy the
classes A(a), M(«) and A(a) N M () are finitely additive.

We will call a space X absolute Borel if X is in A(a) (or M («)) for some
a < wi. We denote by AB the class of all absolute Borel spaces.
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A simple corollary of Propositions 3.1 and 3.4 is the hierarchy of abso-
lute Borel classes in the universe of separable metrizable spaces from the
introduction. Let I denote the closed interval [0, 1], @1 the space of ratio-
nal numbers in I, and P; the space of irrational numbers in I. Observe that
Q€ S()\Co and P € Co\So.

PROPOSITION 3.6. For each ordinal 1 < a < wy there are subsets Q, P,
and Dy, of 1 such that

(i) Qa € A(a) \ M () and P, € M(a) \ A(«);
(ii) Do € Ala+1) N M(a+1), but Dy ¢ A(a) U M(a).

Proof. (i) For o > 1 the desired subsets @, and P, exist by Propositions
3.2 and 3.4.

(ii) For o > 1 put D, = EqUF,, where E,, is in 3% ([0, 1/3])\11%([0, 1/3])
and F, is in T19([2/3,1]) \ 8(]2/3,1]). The statement is proved.

4. Infinite-dimensionality modulo a class P. We will follow some
idea of E. Pol from [5].

In this section all classes P of topological spaces are additionally assumed
to be finitely additive. A space X is said to have property (x)p if for every
sequence {(A;, B;)}5°, of pairs of disjoint compact subsets of X there exist
partitions L; between A; and B; such that ﬂf\;l L; € P for some integer N.
It is evident that if a space X has property (%)p then so does each closed
subset of X.

REMARK 4.1. Let M be a subspace of a space X, (A, B) a pair of disjoint
closed subsets of X, and L a partition in M between M N A and M N B. If
M is closed in X or A, B C M then there exists a partition L’ in X between
A and B such that M NL' = L (see [3, Lemma 1.2.9] and [1, Lemma L. 4.5]).

PROPOSITION 4.1. If a space X is covered by a finite family of closed
sets, each having property (x)p, then X also has this property.

Proof. Tt is sufficient to consider the case when X is the union of two
closed subsets X; and X9 which have property (x)p. Consider a sequence
{(Aj, B;) }2, of pairs of disjoint compact subsets of X. Since X has property
(*)p, for each integer ¢ > 0 there is a partition L’%Jrl between Ag;11 N X3
and Bsg;11 N X in X7 such that ﬂfvzll L,2i+1 € P for some Nj. Let Lo;11 be
a partition between Ag;;1 and Bg;y1 in X such that Lo N X1 = L.
So ﬂfvzll (L2i+1 N X1) € P. Similarly, for each ¢ > 1 we have a partition Lo;
between As; and Bsy; in X such that ﬂf\fl (Lo; N X2) € P for some Na. Put
N = max{2N; + 1,2N3}. Then
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Since P is finitely additive and monotone with respect to closed subsets, we
have ﬂf\i 1 Li € P. This completes the proof.

PROPOSITION 4.2. If P-trind X # oo then X has property (x)p.

Proof. Let us apply induction on o = P-trind X. If o = —1, then X € P
and the statement is evidently valid.

Assume that the conclusion holds for P-trind X < « > 0. Let now X
have P-trind X = «a. Consider a sequence {(A;, B;)}2, of pairs of disjoint
compact subsets of X. Since Ay is compact and P-trind X = «, there exist
open subsets Uq,...,U; of X such that A; C U§:1 U; and for each i =
1,...,k, we have ClU; N By = () and P-trind BAU; < f3; for some 3; < a.
By the inductive assumption and Proposition 4.1, the set Ule BdU; has
property (x)p. We put U = Ule U;. It is easy to see that L1 = BdU C
Ule BdU; is a partition between A; and Bj, and Lj has property (*)p.
Note that for each ¢ > 2 there exists a partition Lg between A; N L1 and
B; N Ly in Ly such that ﬂfiQ L) € P for some N. Now if we take, for each
i=2,...,N, a partition L; between A; and B; in X such that L; N L; = L]
then ﬂlj\iQ L = ﬂf\il L;. So ﬂlj\il L; € P. The proposition is proved.

Let I*® = {(z;) : 0 < 2; < 1,5 =1,2,...} be the product of countably
many intervals I. For each n > 2 denote the subset {(z;) € I*° : z, = 0 for
k >mn+1} by I". For each n > 2 and each i = 1,...,n, set AT = {(z;) € I":
xz; = 0} and B]' = {(z;) € I" : &; = 1}. Choose for each n > 2 a subset E,,
of I" and put

(4.1) X = ({0} xI®)u | J({1/n} x Ey).

n=2
Let Y = ({0} x I*®) U U2 o({1/n} x I") and Z = {0,1/2,1/3,...}. Tt is
obvious that X C Y C Z x I*°. Moreover, Y is compact, and its subspace
Y \ X is a topological sum of countably many finite-dimensional spaces.
Hence, trind(Y \ X) < wp. Moreover, trind(X \ ({0} x I*°)) < wy. It follows
that

(4.2) trdef X <wg and Ko-trsur X < wy.
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PROPOSITION 4.3. If for each integer m > 1 there exist an integer
k(m) > m + 1 such that for every n > k(m) and for arbitrary partitions
L? between A? and Bl in I", i < n, we have E, N (2, L ¢ P, then
P-trind X = co.

Proof. We will apply Proposition 4.2. For each ¢ > 1 let L; be an arbitrary
partition between the compact sets A; = {(0,(z;)) € {0} x I*® : z; = 0}
and B; = {(0,(x;)) € {0} xI*® : z; = 1} in X. It suffices to show that
ﬂij\il L; ¢ P for every N > 1. Consider, for each ¢ > 1, a partition L between
A; and B; in Y such that L; N X = L;. Note that for every i there exists an
integer n; > 2 such that for each n > n; the set L? = LN ({1/n} xI") is a
partition between {1/n} x A and {1/n} x B in {1/n} x I". Let N be an
arbitrary integer and n = max{ny,...,ny, k(N)}. Note that

(ﬂ L”) ({1/n} x Ep) = ((Nj L;.) N {1/n} x Ey)

(ﬂL) ({1/n} x Ey)

is a closed subset of ﬂi:l L;. Moreover, C' ¢ P by the assumption. Hence
ﬂfi 1 Li ¢ P. The proposition is proved.

Let us recall the following.

PROPOSITION 4.4 (|7, Lemma 5.2]). Let L;;, j =1,...,p, be partitions
between the opposite faces A” and B" an 17, where I1<ip<--<ip<n
and 1 < p < n. Then for any k # z], 7 =1,...,p, there s a continuum
Cc ﬂ]: L;; meeting the faces A} and By

Now we are ready to prove

PROPOSITION 4.5. Let L; be a partition between the opposite faces A}
and BP' in the cube 1", i < p, for some p < n. Let also L = (,_; L,
E={(x;) €l":x, € F} CI", where F is a subset of [0,1], and let Qn, Py,
Dy, 1 < a < wi, be the subsets of [0,1] from Proposition 3.6. Then

(i) LNE ¢ Ko if F ¢ Ko,
(i) LOE ¢ M(a) if F = Qa,
(iii) LNE ¢ A(a) if F = P,,
(iv) LNE ¢ M(a)UA(a) if F = D,
(v) LN E is not a Borel set of I" if F' € Brn([0, 1]).
Proof. By Proposition 4.4 there is a continuum C' C L meeting the faces

A7 and B;. Let m, be the projection of I" onto the nth coordinate I, i.e.,
n(Z1,...,Tn) = Ty, and let ﬂg be the restriction of m, to C'. Observe that
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Wg is a continuous mapping of C' onto [0,1]. Notice also that C N E =
(7€)~1(F) and C N E is a closed subset of LN E.

(i) Since F ¢ Ko we have C N E = (7&)~Y(F) ¢ Ko, and so LN E ¢ K.

(ii) Since Q4 ¢ M (), by Proposition 3.3 we have CNE = (7¢)"1(Q.,) ¢
M(«), and hence LN E ¢ M(«).

(iii) Since P, ¢ A(«a), by Proposition 3.3 we have CNE = (7$)~1(P,) ¢
A(ar), and hence LN E ¢ A(a).

(iv) Since Dy, is neither in M («) nor in A(«), Proposition 3.3 shows that
CNE = (79)"1(D,) ¢ M(a)UA(a), and hence LNE has the same property.

(v) Since F is not a Borel set in [0,1], C N E = (7))~ F is not a Borel
set by Proposition 3.3. Hence L N F is not a Borel set in I".

LEMMA 4.1. For every space Y, if trdef Y < wg and tremp Y = oo, then
trdef Y = wy.

Proof. Observe that if trdef Y is finite so trdef Y = def Y > cmp Y™ (the
last inequality can be found in [1]). This contradiction proves the lemma.

PROPOSITION 4.6. Let F' be a non-compact subset of 1 and X from (4.1),
where Ey, = {(z;) € I" : x, € F} for each n > 2. Then trcmp X = oo and
trdef X = Kp-trsur X = wg. Moreover, for any 1 < a < w1 we have:

(i) if F = Qaq, then M(«a)-trind X = oo, A(«a)-trind X = A(a)-trsur X
= —1 and M(«a)-trdef X = wy,
(ii) if F = P,, then A(a)-trind X = oo, M (a)-trind X = M («)-trdef X
= —1 and A(a)-trsur X = wy,
(iii) of F = Dg, then M(a)-trind X = A(a)-trind X = oo, A(a + 1)
NM(a+1)-trind X = —1 and M («)-trdef X = M (a)-trsur X = wo,
(iv) if F € Brn([0,1]), then AB-trind X = oo.

Proof. For each integer m > 1 put k(m) = m + 1. Consider m > 1 and
n > k(m). Let L} be an arbitrary partition between A? and B}* in I" for
each i = 1,..., m. By Proposition 4.5(i) we have E, N(/~; LI ¢ Ko. Hence,
by Proposition 4.3, it follows that tremp X = oo. Then, by Lemma 4.1 and
(4.2), we have trdef X = wp. Observe that for any compact subspace Y of X
and each n > 2 there is a subset of ({1/n} x E,)\ Y homeomorphic to I"~1.
Thus Ko-trsur X > wg. Then, by (4.2), it follows that Ko-trsur X = wy.

(i) By Propositions 4.5(ii) and 4.3 we have M (a)-trind X = oo. It is clear
(see the hierarchy of absolute Borel classes) that M (a)-trdef X < trdef X
= wp. Hence, by Remark 1.1(i), we get M (a)-trdef X = wg. Furthermore,
since Qo € A(a), by Propositions 3.3 and 3.4(ii) it follows that E, =
7,1 (Qa) € A(a). Then Proposition 3.1(i) yields X € A(a). Hence A(a)-
trind X = A(a)-trsur X = —1.
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(ii) Use Propositions 4.5(iii), 4.3 and Remark 1.1(ii) to get A(a)-trind X
= oo and hence A(a)-trsur X = wyg by a similar argument to the one above.
To prove that M(«a)-trind X = M («)-trdef X = —1, it suffices to show
that X € M(«). Since P, € M(«), Propositions 3.3 and 3.4(ii) show that
E, =, (Py) € M(c). Hence I"\ E,, € A(a) and | J;2,(I" \ E,,) € A().
Therefore, X =Y \ Ur—,(I" \ E,) € M(«).

(iii) Use Proposition 4.5(iv) to get M (a)-trind X = A(a)-trind X = oo
and M («a)-trdef X = A(«a)-trsur X = wy as above. Since D, € A(a+ 1) N
M (o + 1), an argument similar to (ii) shows that X € A(a+1)NM(a+1)
and hence A(a) N M («)-trind X = —1.

(iv) By Proposition 4.5(v), E, N (-, L' ¢ AB. Hence Proposition 4.3
yields AB-trind X = oo. The proposition is proved.

Proof of Theorem 1.1. Let m, : I™ — I be the projection onto the nth
factor. For each ordinal v with 1 < o < wy we define

o0

Xo = ({0} x 1)U ({J{1/n} x 7 (Pa).

n=2

Yo = ({0} x I®) U (fj{w} X7 (Qu))

Zo = ({0} x I®) U (U{l/n} X wgl(pa)).
n=2

It follows from Proposition 4.6 that X, Y, and Z, satisfy conditions (i)—(iv).
The second part of Theorem 1.1 is a direct consequence of the following facts.

LEMMA 4.2. Let X be a space with either A(a)-trind X = —1 and M («)-
trind X < p, or A(a)-trind X = g and M(«a)-trind X = —1, where p is an
ordinal or the integer —1. Then A(a) N M (a)-trind X < p.

Proof. We consider only the case A(a)-trind X = —1 and M («)-trind X
< p. We apply induction on g > —1. If p = —1 then X € A(a) N M(a).
Hence A(a) N M («)-trind X = —1. Thus the assertion is valid for p = —1.
Assume that it holds for 4 < v > 0. Let now p = . For each z € X
and each neighborhood U of x there is a neighborhood V' C U of x such
that M(«)-trind BdV < . Note that A(a)-trind BdV = —1. Hence by
the inductive assumption, we have A(a) N M (a)-trind BAV < . Therefore
A(a) N M (a)-trind X < 4. The lemma is proved.

PROPOSITION 4.7. Let X be a space such that A(a)-trind X < p1 and
M (a)-trind X < pg, where py and po are ordinals. Then
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A(a) N M(a)-trind X

p1+n(pe) +1=p2 +n(u) + 1 if AMur) = AMpe),
< {1 if A(p1) > Ap2),
2 if A(pz) > A(p).

Proof. We apply induction on v = max{ui,pu2} > 0. If v = 0 then
p1 = pe = 0. For each z € X and each neighborhood U of x there is a
neighborhood V' C U of z such that A(a)-trind BdV = —1. Observe that
M (a)-trind BdV < 0. Lemma 4.2 implies that A(a) N M (a)-trind BdV < 0.
Hence A(a) N M(«)-trind X < 1, and the assertion is valid for v = 0.
Suppose v > 0 and the assertion holds for every v < v.

CASE 1: A(p1) > A(p2). Then v = py. For each z € X and each neigh-
borhood U of z there is a neighborhood V' C U of x such that A(«)-
trind BAV < pp = v. Since M(a)-trind BAV < po < AMu1) < p1 = v,
by the inductive assumption we have A(«) N M (a)-trind BAV < p;. Hence
A(a) N M(a)-trind X < pg.

Similarly the assertion is valid for A(u1) > A(u2).

CASE 2: A1) = A(p2) and pg > po. Then v = py. For each x € X and
each neighborhood U of x there is a neighborhood V' C U of x such that
A(a)-trind Bd V' < p;. The inductive assumption yields

A(a) N M(a)-trind BAV < pp — 14+ n(p2) + 1 = p1 + n(pe)
< p1 +n(p2) + 1.
Hence A(a) N M(a)-trind X < p; + n(p2) + 1. Analogously the assertion is
valid for e > 1.

CASE 3: u1 = po = p. If pis not a limit ordinal, then for each z € X
and each neighborhood U of z there is a neighborhood V' C U of x such that
M (a)-trind BdV < p — 1. By Case 2, we have

A(a) N M(a)-trindBdV < p+n(p —1) +1 = p+ np).

So A(a) N M(a)-trind X < pg + n(p) + 1. If g is a limit ordinal, then for
each x € X and each neighborhood U of x there is a neighborhood V- C U
of x such that M(a)-trind BdV < pu. By Case 1, we have A(a) N M(«)-
trind BAV < p. Hence A(a) N M (a)-trind X < p + 1. This completes the
proof.

We do not know of any example of a space X such that Cp-ind X = Sp-
ind X =0 and Cg NSp-ind X = 1.

Proof of Theorem 1.2. Let F be a Bernstein set in I. Set X = ({0} xI*°)
U, {1/n} x 7, 1(F)). Then Proposition 4.6 and the hierarchy of absolute
Borel classes show that X is as desired.
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REMARK 4.2. By Proposition 4.6 the space X from (4.1), where FE,, =
{(z;) € I" : 0 < x,, < 1} for each n > 2, has tremp X = oo and trdef X
= Ko-trsur X = wp. Evidently, A(1) N M (1)-trind X = —1.

Recall ([3, Theorem 7.1.6]) that for any space X, trind X < w; or
trind X = oo. In [6] R. Pol showed that for each ordinal 5 < w; there exists
a separable completely metrizable o-compact space Rg with tremp Rg = 3.
Notice that Co-trind Rg = Sp-trind Rg = —1. So it is natural to pose

PROBLEM 4.1. Do there exist for each ordinal 1 < o < w; and each
ordinal 0 < 8 < wy spaces X, g, Yy g such that M(a)-trind X, 3 = A(«)-
trind Y, g = # and A(«a)-trind X, g = M(a)-trind Y, g = —17

REMARK 4.3. Let Q denote the space of rationals. In [6] R. Pol observed
that using Aarts’ argument in the proof of the equality cmp(I" x Q) = n ([1])
one can show that tremp(X x Q) = « for any X € Ky with trind X = a. We
can add that even M (1)-trind(X x Q) = M (1)-trdef(X x Q) = «. (Evidently
A(1)-trind(X x Q) = —1.) Recall (|3]) that for any o < w; there is a space
X, € Kp such that trind X, = a.
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