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Summary. Let E be an oriented, smooth and closed m-dimensional manifold with m ≥ 2
and V ⊂ E an oriented, connected, smooth and closed (m − 2)-dimensional submanifold
which is homologous to zero in E. Let Sn−2 ⊂ Sn be the standard inclusion, where Sn

is the n-sphere and n ≥ 3. We prove the following extension result: if h : V → Sn−2 is
a smooth map, then h extends to a smooth map g : E → Sn transverse to Sn−2 and
with g−1(Sn−2) = V . Using this result, we give a new and simpler proof of a theorem of
Carlos Biasi related to the ambiental bordism question, which asks whether, given a smooth
closed n-dimensional manifold E and a smooth closed m-dimensional submanifold V ⊂ E,
one can find a compact smooth (m + 1)-dimensional submanifold W ⊂ E such that the
boundary of W is V .

1. Introduction. The extension problem is whether, given topological
spaces X, Y , a subspace A ⊂ X and a continuous map f : A → Y , one
can find a continuous map g : X → Y such that g|A = f . For example, if
Dn is the unit n-disk, with boundary ∂(Dn) = Sn−1 = the unit (n − 1)-
sphere, then the identity map Id : Sn−1 → Sn−1 cannot be extended to a
map g : Dn → Sn−1, and this non-extension result has as a consequence
the famous Brouwer fixed-point theorem, which asserts that each continuous
map g : Dn → Dn has a fixed point. In fact, this is a particular case of
a stronger non-extension result: let Mn be any n-dimensional, connected
and closed manifold and Wn+1 an (n + 1)-dimensional compact manifold
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whose boundary is Mn. Then Id : Mn →Mn cannot be extended to a map
Wn+1 →Mn. More generally, the same is valid if we replace Id : Mn →Mn

by a map of closed manifolds, g : Mn → V n, which induces an isomorphism
in homology, g∗ : Hn(Mn)→ Hn(V n), with any coefficients; for example, if
g is a homotopy equivalence. Inspired by this setting, we prove the following
extension result.

Theorem 1. Let E be an oriented , smooth and closed m-dimensional
manifold , with m ≥ 2, and V ⊂ E an oriented , connected , smooth and closed
(m − 2)-dimensional submanifold which is homologous (with Z-coefficients)
to zero in E. Let Sn−2 ⊂ Sn be the standard inclusion, where n ≥ 3. Then
every smooth map h : V → Sn−2 has a smooth extension g : E → Sn

transverse to Sn−2 and with g−1(Sn−2) = V .

Theorem 1 gives a method to attack the ambiental bordism question,
which asks whether, given a smooth closed n-dimensional manifold E and a
smooth closed m-dimensional submanifold V ⊂ E, one can find a compact
smooth (m + 1)-dimensional submanifold W ⊂ E such that the boundary
of W is V ; in this case, we say that V bounds in E. If V = Sm and E =
Sm+2, such a W is called a Seifert surface for the knot Sm → Sm+2. Hirsch
considered a related question in his old paper [3]; specifically, he showed
that if V is an m-dimensional connected closed and oriented manifold which
bounds, then there exists an embedding of V into Rn which is a boundary
in Rn when n ≥ 2m. In [6], Sato showed that every connected, closed and
oriented submanifold V m ⊂ Sm+2 bounds in Sm+2. In [1], C. Biasi obtained
the following result, which in particular gives Sato’s result: denote by i :
V → E the inclusion map and suppose E and V are oriented. Suppose that
(V, i) bounds as an element of the oriented cobordism group Ωm(E). Then V
bounds in E in the following cases: (i) n = m+2; (ii) m ≤ 3 and n ≥ m+2;
(iii) m = 4, n ≥ 6 and n 6= 7 (evidently, [(V, i)] = 0 in Ωm(E) is always a
necessary condition for V to be a boundary in E). Using Theorem 1, we give
a new and simpler proof of case (i).

2. Proofs. Homology and cohomology will be understood with Z-co-
efficients. To simplify notation, if X ⊂ Y and α ∈ Hr(X), we use the same
notation α ∈ Hr(Y ) for the image of α under the homomorphism induced
by the inclusion X → Y . If W is an n-dimensional, oriented and closed
manifold, we will denote by µW ∈ Hn(W ) its fundamental homology class.

To prove Theorem 1, denote by η → V and ν → Sn−2 the normal bun-
dles of V in E and Sn−2 in Sn, and by D(η), D(ν), S(η) and S(ν) the
associated disk bundles and sphere bundles. The symbols DP , DL and DA

will be used to denote, respectively, the Poincaré, Lefschetz and Alexan-
der duality isomorphisms, with the convention that the domains of these
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maps are the cohomology Z-modules. Denote by D(η)∗ ⊂ D(η) the sub-
set of non-zero vectors, and by Uη ∈ H2(D(η), D(η)∗) the Thom class
of η. By excision, Uη can be considered as lying in H2(E,E − V ), and
DL : Hs(D(η), S(η)) ∼= Hs(D(η), D(η)∗) → Hm−s(D(η)) can be seen as an
isomorphism DL : Hs(E,E − V ) → Hm−s(E); in this setting, the inclusion
map i : V → E can be viewed as the zero section. Write j : E → (E,E−V )
for the inclusion map. Let e ∈ H2(V ) be the Euler class of η.

We assert that j∗i∗(µV ) = DA(e) in Hm−2(E,E − V ). In fact, a basic
property of Thom classes (sometimes used as their definition) is that Uη =
D−1
L i∗(µV ) (see, for example, [2, Chapter 6, Section 11]). Also, the composite

homomorphism

DA(ji)∗D−1
L : Hm−2(E)→ H2(E,E − V )→ H2(V )→ Hm−2(E,E − V )

coincides with j∗ : Hm−2(E) → Hm−2(E,E − V ); this follows from the
fact that the duality isomorphisms are essentially the cap product with the
fundamental homology classes. The Euler class e is given by e = (ji)∗(Uη),
and thusDA(e) = DA(ji)∗D−1

L i∗(µV ) = j∗i∗(µV ), which shows the assertion.
Since by hypothesis µV = 0 in Hm−2(E), we get e = 0, and we assert that

this implies that η is a trivial vector bundle. In fact, it is well known that the
2-dimensional oriented vector bundles over V are in one-to-one correspon-
dence with the homotopy classes of maps from V into a classifying space
BSO(2), [V,BSO(2)]. A model for BSO(2) is the complex projective space
CP∞ = limn CPn (with the weak topology). CP∞ is an Eilenberg–MacLane
space of type (Z, 2), and so [V,CP∞] is in one-to-one correspondence with
H2(V,Z); choosing a generator α ∈ H2(CP∞,Z) ∼= Z, this correspondence
can be given by [f ] ∈ [V,CP∞] 7→ f∗(α) ∈ H2(V,Z). On the other hand,
it is also well known that the Euler class of the oriented 2-dimensional uni-
versal vector bundle over CP∞ (which is the complex canonical line bundle)
is either α or −α. If f ∈ [V,CP∞] classifies η → V , then the natural-
ity of the Euler classes show that, up to sign, f∗(α) is the Euler class e
of η. It follows that f∗(α) = 0 and thus f is homotopic to a constant
map, so that η is a trivial bundle. This outline follows from bundle the-
ory and the material of [2, Chapter 7, Sections 13 and 14]; alternatively, see
[8, Part III].

Since η and ν are trivial bundles, P := D(η) and T := D(ν) are trivial
disk (smooth) bundles over V and Sn−2, respectively. Moreover, P and T
can be considered as tubular neighbourhoods of V in E and Sn−2 in Sn,
respectively. Set M := E − int(P ), A := S(η) = ∂(M) = ∂(P ), N :=
Sn − int(T ) and B := S(ν) = ∂(N) = ∂(T ). By Proposition 4.3 of [1], there
exists a cross section r : V → A such that r∗(µV ) = 0 in Hm−2(M). Note
that, since S1 is a Lie group, any (smooth) bundle X → B with fibre S1 has
the following property:
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for any (smooth) sections s1, s2 : B → X, there exists a (smooth) bundle
isomorphism g : X → X inducing the identity on B and such that s2 = gs1.

Consequently, there exists a (smooth) bundle isomorphism g : A→ V ×
S1 such that g(r(v)) = (v, 1) for every v ∈ V , where 1 ∈ S1. Let G :
P → V × D2 be a (smooth) bundle isomorphism such that G|A = g and
G(v) = (v, 0) for every v ∈ V , where 0 is the centre ofD2. We identify T with
Sn−2 ×D2 in the standard way; then B = Sn−2 × S1 and N = Dn−1 × S1,
with ∂(Dn−1) = Sn−2. Let H : V × D2 → Sn−2 × D2 = T be defined
by H(v, w) = (h(v), w). Then HG : P → T is transverse to Sn−2 and
(HG)−1(Sn−2) = V . Thus an extension of f := (H|V×S1)g : A → B to a
smooth map M → N gives an extension as stated in Theorem 1. To obtain
this extension, the first step is to find a continuous extension M → N .

Since N is an Eilenberg–MacLane space of type (Z, 1), a continuous ex-
tension M → N of f exists if and only if δ(if)∗(θ) = 0 in H2(M,A), where
i : B → N is the inclusion map, δ : H1(A) → H2(M,A) is the coboundary
homomorphism and θ is a generator of H1(N) ∼= Z (see [7, Theorem 12,
p. 428]). The diagram

H1(A)
DP //

δ
��

Hm−2(A)

k∗
��

H2(M,A)
DL // Hm−2(M)

where k : A→M is the inclusion, is commutative (see [4, p. 379]). It follows
that δ(if)∗(θ) = 0 if and only if k∗(DP (if)∗(θ)) = 0.

Now, we assert that DP (if)∗(θ) = ±r∗(µV ). In fact, set f ′ = H|V×S1 :
V × S1 → B. By the Künneth formula for cohomology, (if ′)∗(θ) = u1 × u2,
where u1 ∈ H0(V ) and u2 ∈ H1(S1) are generators. Moreover, µV×S1 =
µV × µS1 . By property 21 in [7, p. 255], with α a generator of H0(S1), we
obtain

DP (if ′)∗(θ) = (if ′)∗(θ) ∩ µV×S1 = (u1 ∩ µV )× (u2 ∩ µS1) = µV × α.
Thus, since g(r(v)) = (v, 1), by the Künneth formula for homology, we de-
duce that DP (if ′)∗(θ) = ±(gr)∗(µV ). It follows that DP (if)∗(θ) = ±r∗(µV ),
because g : A→ V ×S1 is a homeomorphism and f = f ′g. Since k∗(r∗(µV ))
= 0, we obtain δ(if)∗(θ) = 0, and consequently we get the required con-
tinuous extension M → N of f . This extension can be slightly modified to
give a map M → N which is smooth in a collar neighbourhood of A in M .
This last map can be approximated, without changing its values in a smaller
collar neighbourhood of A in M , by a smooth map M → N . Together with
HG : P → T , this gives the desired smooth map E → Sn (for the approx-
imation theorems for smooth maps used here and in the next corollary, see
for example [5] and [9]).
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Corollary (C. Biasi, [1]). Let E be an oriented , smooth and closed m-
dimensional manifold with m ≥ 2, V ⊂ E an oriented , pathwise connected ,
smooth and closed (m − 2)-dimensional submanifold , and i : V → E the
inclusion map. If (V, i) bounds as an element of the oriented cobordism group
Ωm−2(E), then V bounds in E.

Proof. Consider S3 as the one-point compactification {(x, y, z) ∈ R3 |
x2+y2+z2 < 1}∪{∞} and S1 = {(x, y, z) ∈ R3 | x2+y2 = 1/4, z = 0} ⊂ S3,
and let h : V → S1 be a constant map. Let j : Wm−1 → E be a map that
realizes the cobordism of (V, i) in Ωm−2(E) and let k : V → Wm−1 be
the inclusion map. Since i = jk and µV = 0 in Hm−2(Wm−1), µV = 0
in Hm−2(E). Evidently, the inclusion S1 → S3 has the properties of the
standard inclusion Sn−2 → Sn used in Theorem 1, hence this theorem applies
to h : V → S1; as in its proof, denote by P a closed tubular neigbourhood
of V in E and by T the closed tubular neighbourhood of S1 in S3 given
by the product of S1 and an orthogonal 2-disk of radius 1/4. In the same
way, set M = E − int(P ), A = ∂(M) = ∂(P ), N = S3 − int(T ) and
B = ∂(N) = ∂(T ). As we have seen, h : V → S1 extends to a smooth
map F : E → S3 transverse to S1 and with F−1(S1) = V . Consider the
Seifert surface D ⊂ S3 for S1, D = {(x, y, z) ∈ R3 | x2 + y2 ≤ 1/4, z = 0}.
Because of the construction of F in the proof of Theorem 1, it is transverse
to D at every point in F−1(D) ∩ P . Then there exists an ε-approximation
F ′ : E → S3 for F which is smooth, transverse to D and with F ′|P = F|P .
Then F ′|P

−1(S1) = V , and for ε sufficiently small the points of E−P cannot
be mapped by F ′ into S1. The Thom transversality theorem then implies that
F ′−1(D) = W is an (m− 1)-dimensional submanifold of E whose boundary
is F ′−1(S1) = V , and the proof is finished.
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