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On Sums of Four Coprime Squares
by

A. SCHINZEL

Summary. It is proved that all sufficiently large integers satisfying the necessary con-
gruence conditions mod 24 are sums of four squares prime in pairs.

P. Turán asked (see [2, p. 204]) for a characterization of positive integers
that are sums of four squares prime in pairs. In this direction we shall prove

Theorem 1. A positive integer n has a decomposition

(1) n = x21 + x22 + x23 + x24

where

(2) (xi, xj , 6) = 1 for all 1 ≤ i < j ≤ 4

if and only if

(3) n ≡ 3, 4, 7, 12, 15 or 19 (mod24).

Theorem 2. If (3) holds and n is large enough, then n has a decompo-
sition (1) with x1, x2 odd primes and

(4) (xi, xj) = 1 for 1 ≤ i < j ≤ 4.

It seems likely that the condition (2) can be replaced in Theorem 1 by
(4) for n 6= 100, 268, and also that Theorem 2 holds for n > 268. Prof.
J. Browkin has checked that all positive integers n satisfying (3) up to 5 ·104
have a decomposition (1) with (4) and x4 = 1 except n = 100, 247 and 268.

Proof of Theorem 1. Necessity is well known, see [2, p. 204]. In order to
prove sufficiency notice that by (3),

(5) n− 1 ≡ 2, 3, 6, 11, 14 or 18 (mod24),
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hence, by Gauss’s theorem, n − 1 ≡ x21 + x22 + x23, where (x1, x2, x3) = 1.
Thus, by (5) at most one xi is even and at most one divisible by 3. Taking
x4 = 1 we obtain (2).

Lemma 1. The number r(n) of representations of n as the sum of two
squares satisfies r(n) = O(nε) for every ε > 0.

Proof. We have r(n) ≤ 4d(n), where d(n) is the number of divisors of n,
and the relation d(n) = O(nε) is well known.

Lemma 2. For n satisfying (3) let R(n) be the number of pairs 〈p, q〉 of
primes such that

(6) 2 < p ≤
√
n/2, 2 < q ≤

√
n/2

and n− p2 − q2 is representable as x2 + y2, where (x, y) = 1. Then

(7) R(n) > A
n

(log n)5/2

(
1 +O

(
log logn

(log n)1/10

))
,

where A > 0.

Proof. If n satisfies (3), then in the notation of [1, p. 264], q ≤ 1, h = 0,
K | 2. By Lemmas 8 and 10 of [1] the number of pairs 〈p, q〉 of primes satis-
fying (6) and such that (n− p2 − q2)/K has no prime factor ≡ 3 (mod4) is
at least

A
n

(log n)5/2

(
1 +O

(
log logn

(log n)1/10

))
.

Since n − p2 − q2 6≡ 0 mod 4, it follows that n − p2 − q2 = x2 + y2, where
(x, y) = 1. Thus (7) holds.

Lemma 3. The number of solutions 〈p, q, x, y〉 of the equation

n = p2 + q2 + p2x2 + y2,

where p, q, x, y are integers and p > 0, is O(n1/2+ε) for every ε > 0.

Proof. By Lemma 1 the number in question equals∑
0<p≤

√
n

∑
|x|≤ 1

p

√
n

r(n− p2 − p2x2) ≤
∑

0<p≤
√
n

(
2
√
n

p
+ 1

)
O(nε/2)

= O(n1/2+ε/2)
∑

0<p≤
√
n

1

p
+O(n1/2+ε/2) = O(n1/2+ε/2 log n) = O(n1/2+ε).

Proof of Theorem 2. We estimate the number N of pairs 〈x1, x2〉 of odd
primes x1, x2 such that n = x21 + x22 + x23 + x24, (x3, x4) = 1 and neither
(8) x1 = x2

nor
(9) xi |xj for any i = 1, 2; j = 3, 4.
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The number of pairs of odd primes in question such that (8) holds is O(n1/2).
The number of pairs of odd primes in question such that (9) holds is, by
Lemma 3, O(n1/2+ε). Thus, by Lemma 2

N > A
n

(log n)5/2

(
1 +O

(
log log n

(log n)1/10

))
+O(n1/2+ε) > 0

for all sufficiently large n satisfying (3).
By an easy modification of this argument we find that every sufficiently

large integer n 6≡ 0, 1, 5 (mod8) is representable as x21 + x22 + x23 + x24, where
x1, x2 are odd primes, x3, x4 are integers and (x1, x3) = (x2, x4) = 1.

Since the constant in the O-symbol in (7) is ineffective, one cannot de-
termine from the proof here or in Theorem 2 the greatest n for which the
assertion does not hold.
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