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Summary. Let F/E be a Galois extension of number fields with Galois group Dz». In
this paper, we give some expressions for the order of the Sylow p-subgroups of tame kernels
of F' and some of its subfields containing F, where p is an odd prime. As applications,
we give some results about the order of the Sylow p-subgroups when F/FE is a Galois
extension of number fields with Galois group Dig.

1. Introduction. Let F' be a number field, Op the ring of integers in F',
and Ky(F') the Milnor K-group of F. The tame symbol on F' induces, for
each finite prime ideal p, a homomorphism

T Ko(F) — k;
defined by
) av»(©®)
bve(a)
where v, denotes the p-adic valuation. The tame kernel of F'is the kernel

of 7, where
Tz@Tp : Ko(F) — @ k:;
p finite

In 1973, Quillen [6] proved that the K-group K3(Op) coincides with the
tame kernel, and K5(Op) is finite.

There are many results describing the structure of the tame kernels of
algebraic number fields and relating them to the class numbers of appropri-
ate fields. The 2-primary part of the tame kernel Ko(Op) for number fields

Tpfa, b} = (~1)»@% (mod p),
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F has been intensively studied (see [3], [6]—[8]). Furthermore, there are also
some results concerning the p-primary part of the tame kernel when p is odd
(see [2], [, [12]-]14]). Let F'/E be a Galois extension of number fields with
Galois group Dan. The second author [12] obtained some results on tame
kernels in the case n = 3, i.e., Gal(F/E) = Ds.

In this paper, we prove some expressions for the order of the Sylow
p-subgroups of tame kernels of F' and some of its subfields containing F
for any integer n > 3. As applications, in Section 3, we give some results
about the order of the Sylow p-subgroups when F/FE is a Galois extension
of number fields with Galois group Dqg.

2. Main results. Throughout the paper we use the following notation:

-1

Dan is the dihedral group of order 27, i.e., Don = (0,7 | 02" =1,
2 =1,7017 ! =07 1).

E™/E is a finite extension of number fields of degree m.

A(p) denotes the Sylow p-subgroup of a finite group A.

|A| denotes the order of a finite group A.

x =, y means vp(x) = vp(y), where z,y € Z.

Cy, 18 a cyclic group of order m.

Vy is Klein’s four group.

Now, we start with some well-known facts which will be the basis of this
paper.
Let F/E be a finite extension of number fields. In algebraic K-theory, a
transfer trp g is defined which is a group homomorphism
trp/p: Ky(F) — Ka(E).

Denote by Ks(F/E) the kernel of the map trp/p @ K2(Or) — Ka(Og).
Obviously, the Sylow p-subgroup Ky(F'/E)(p) of Ko(F/E) is the kernel of
the map trp/p : K2(OF)(p) = K2(Og)(p)-

LEMMA 1. For every prime p{ (F : E),
K2(Or)(p) = K2(F/E)(p) x K2(Og)(p)-
LEMMA 2. If L is an intermediate field of F/E, then
trp/p =trppotre/ .

LEMMA 3. If F/E is a Galois extension with Galois group G, then for
every prime p { (F' : E), the homomorphism j : Ko(Og)(p) — K2(Or)(p)
induced by E C I is injective, and the transfer trp/p : K2(Or)(p) —
K5(Og)(p) is surjective. Moreover, j o trp/p = Np/p, where Np/p(z) =

HJEG’ O'(ﬂj‘)
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LEMMA 4 ([I2, Theorem 1]). Let E*/E be a Galois extension with Galois
group Vi = {1,a,b,ab}, E? the fived field of (a), E? the fized field of (b),
and E?, the fived field of (ab). Then for every odd prime p,

Ko (E*/E)(p) = K2(E/E)(p) x K2(Ej/E)(p) x K2(E3/E)(p),
and

| K2(Op1)| |1 K2(0E) | =p | K2(0g2)| | K2(Op2 )| K2(Opp, )|

Let E2"/E be a Galois extension with Galois group Dan. In order to
get the main theorem, we give the following basic information about the
dihedral group Dan.

For every o7 € Dan (0 < i <2771 — 1, i an integer), we have (0'7)? =
ol(roir) = o'o™t =1, i.e., o'7 is of order 2. Furthermore, (¢'7) and (o77)
are conjugate subgroups iff 2|7 + j. Therefore, the non-trivial subgroups of
Dayn and the corresponding fixed fields are as follows:

e 271 4 1 subgroups of order 2: (02" ") and (o'7) (0 <i <2t —1,i
an integer). The corresponding fixed fields are respectively E?"" and
Efnil. Moreover, (o'7) (0 < 2i < 2"~! —2) are conjugate subgroups,
and (0% *17) (1 <2i+1 <2771 — 1) are conjugate subgroups.

e 22 1 1 subgroups of order 4: (62" ") and (02" *,o'7) (0 < i <

2"_3> is a cyclic group of order 4, and
every subgroup (02" ", o'r) is isomorphic to V4. The corresponding
fixed fields are respectively E?2"? and El?n%.

e 2™ 4 1 subgroups of order 2™ (3 < m < n—1): (¢2""") and
(62" oi7) (0 < i < 2™ — 1, i an integer), where (¢ ") is a
cyclic group of order 2™, and every subgroup (02" ", o'7) is isomor-

2"=2 1,4 an integer), where (o

2n—2

phic to Dom. The corresponding fixed fields are respectively B2 "
and Ezn "

THEOREM 1. Let E*"/E be a Galois extension of number fields with
Galois group Don, E? the fived field of (o), and Eon_1 the fized field of (T),
E?" " the fized field of (o7). Then for every odd prime p,
(21)  Ka(BY/E*)(p) = Ka(ES"/E)(p) x Ka(E{"/E)(p),
and

(2.2)  [Ka(Opn)| |1 Ka(Op)|* =p [K2(Ope2)| | Ka(O ggn-1)| | K2(O ggn-1)-
Proof. To prove (2.1), we will construct a map

p: Ko (B JE*)(p) = Ka(E§ /E)(p) x K2(Ej

2n1 2n1

/E)(p),

and prove that it is an isomorphism.
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From trpen ) p = trEiQn_1/E o trEQn/EiQn_l = trgz/p o trgem g2, we get
trEian/E o trEzn/Eign—1 (a) = trpe/potrgen jpo(a) = trpz p(1l) =1 for every
a € Ko(E*" /E?)(p), hence U o an—1 (a) € Ko(EX" /E)(p), i = 0, 1.

Thus for every a € Ko(E*" /E?)(p) we can define

p(a) = (trEQn/Egn—l (a),trEQn/E%n_l (a)).
Obviously, ¢ is a homomorphism.

If trE2n/E(2)n71(a) = trEzn/E%nq(a) =1, then a - T(oi) =a- UT(CL)1 =1,
hence o(a) = a, so jotrgen /g2 (a) = a-o(a)-0%(a)---0*" “a) =a¥ =1
This implies a = 1 since a € K2(E?"/E?)(p). So ¢ is injective.

2n—1

Forevery b € Ko(E§ /E)(p), by Lemma 3, there exists c€ Ko (O gan ) (p)

such that
b=jo trEQn/Egnfl (c) = NEzn/Egnq (¢c)=c-7(c);
then
Npon jp(c) = j o trgen /p(c)
=jo tI'E,gn—l/E otrE2n/Egn—1 (¢c)=3jo tI'Egn—l/E(b) = 1.
Thus
jotrgon pa(b) = jotrgem pa(c-7(c)) = Npon p(c) = 1.

Hence b € Ko(E2" /E%)(p), so K2(EX"' /E)(p) can be considered as a sub-
group of Ko(E?" /E?) (p). Similarly, Ko (E%nil/E)(p) can also be considered
as a subgroup of Ko(E%"/E?)(p).

Ifd e KQ(Egnfl/E)(p) N Ky(E?" /E)(p), it is obvious that d is fixed
by 7 and by o7 then it is fixed by o. Since d € Ko(E?"/E?)(p), we have
trgen g2 (d) = @' =1.%d=1,ie.,

2n71 2n71

Ky(Eg  /E)(p)NKx(ET /E)(p) =1.
Thus, we have proved (2.1). By (2.1), we have

2n—1 2n—1

(23)  |Ka2(B*/E*)(p)| = |K2(ES" /E)(0)| |Ka2(EY /E)(p)].
By Lemma 1, we conclude that
| K2(Opan )| =p [Ka(B*" /E?)| | Ka(Op2)]
[K2(Opon-1)| =p [Ka(EF/B)|[K>(Op)|,  i=1,2
Substituting this in (2.3) proves (2.2).

THEOREM 2. Let E?"/E be a Galois extension of number fields with
Galois group Dan, its subgroups and the corresponding fized fields as stated
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above. Then for every odd prime p and every m € Z, 0 < m < n — 2, we
have

(24)  [K2(Opon-m)| |K2(OF)?
= [K2(Op2)| [K2(O gan-rno1)| Kol O )|
Proof. By Theorem 1, we have proved (2.4) in the case m = 0. Next, we
will prove it for 1 < m <n — 2.
Every subgroup <O_2n—m—1> is a normal subgroup of Don, and the corre-
sponding fixed field is E2"~". Since E?" /E is a Galois extension, by Galois

theory E2" " /E is a Galois extension and Gal(E2" " /E) = Don /(¢2" ™).
Then

(2.5) Gal(E* " /E) 2 Dyn-m, 1<m<mn-—3,
(2.6) Gal(E*/E) = V.

By (2.5) and Theorem 1, we get (2.4) in the case 1 < m < n — 3. By (2.6)
and Lemma 4, we get (2.4) in the case m = n — 2. The proof is complete.

THEOREM 3. Let E?"/E be a Galois extension of number fields with
Galois group Dan, its subgroups and the corresponding fized fields as stated
above. Then for every odd prime p and every m € Z, 2 < m < n —1, we
have

‘K2(OE2’H)| |K2(OE3n—m)’2 :p ‘Kz(OEQn—m+1)‘ ’K2(OEgn—l)|2,
‘K2(0E2n)| |K2(OE%n—m)’2 :p |K2(OE27L777L+1)| |K2(OE%7L71)|2,
and
B \KQ((’)Egn—m)\7 0<¢<2"™ — 1,4 an even integer,
TP E2(Open-m)], 0<0 <27 — 1,0 an odd integer.
1
Proof. Since E?"/E is a Galois extension, by Galois theory so is
E* /E?"™™. Moreover,
2.7)  Gal(E*/E¥
(2.8)  Gal(E*"/E

7

) &V, 0<i<2m?_1,
)= Dom, 3<m<n-—1 0<i<2"™—1.

gn—m

From (2.7) and Lemma 4, we get
(2.9) |K2(OEzn)||K2(OE?n_2)|2
=p [K2(0 gan-1)] [K2(O gon-1)] [K2(O pon-1 )],

an—l4i

where 0 < <2772 _ 1.
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From (2.8) and Theorem 1, we get
(2.10)  [Ka(Opgen)| [K2(O )2
Ei
= |Ea(O ganms)| | KO )| [Ka(Opns )],

where 3<m<n—1,0<i<2"™m — 1.
Therefore, for 2<m <n—1and 0 <i<2" "™ — 1, we have

(211)  |[Ka(Open )| [K2(O i)
:p |K2(OE2n—m+1)| |K2(OE12n—l)| |K2( EQn 1 )|

on—m+14;
Since (1), (o27), ..., (c¥"" 27') are conjugate subgroups, we conclude that
K5(O B2 1)(p), Kg( B 1)(p), .-, Ka2(Op, an-1 )(p) are all isomorphic, so
—1_2
(212)  [E2(Opan-1)(p)] = [K2(O E;n—l)(p)l == Ka(Opent )]
Similarly,
213)  1Ko(O e )(9)] = [Ka(Opyr (1) = = | KOt (0]

Hence, when ¢ is an even integer, we have

(214) |K2(OE271 )‘ ’K2(OE12n_m)|2 :p |K2(OE27L777L+1 )| |K2(OE§TL71 )|2
When ¢ is an odd integer, we have

(2.15)  |Ka(Opan)| sz(oE?nfm)P =p |K2(0 gon—m+1)| |K2(0E%n71)y2.

So the theorem is proved.

3. Applications. Let E'®/E be a Galois extension of number fields
with Galois group Dig = (0, 7|0® =1, 72 =1, To77! = 0~ 1). Its non-trivial

subgroups and the corresponding fixed fields are as follows:

e 9 subgroups of order 2: {1,0*}, {1,0%7} (0 <i < 7). The correspond-
ing fixed fields are respectively E®, EY (0 < i < 7). Furthermore,
{1,7}, {1,027}, {1,0*7} and {1,057} are conjugate subgroups, so E,
ES, E§ and E§ are isomorphic subfields. Similarly, {1,007}, {1,037},
{1,0%7} and {1,077} are conjugate subgroups, so Ef, E§, ES and E3
are isomorphic subfields.

e 5 subgroups of order 4: {1,0?%, 0%, 0%}, {1,0%, 7,0%7}, {1,0% o7,0°7},
{1,0% 0%7,0%7} and {1,0% 037,077}. The corresponding fixed fields
are respectively F4, E¢, Et, E§ and Fj.

e 3 subgroups of order 8: {1,0,02% 0% 0% 0% 0% 07}, {1,02% 0% 05 1,
o7, 07,057} and {1,02,0%, 05 or1,0%7, 057, 677}. The corresponding
fixed fields are respectively E?2, Eg and E?.
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PROPOSITION 1. Let E'6/E be a Galois extension of number fields with
Galois group Dig, its subgroups and the corresponding fixed fields as stated
above. Then for every odd prime p, we have

3.1) | K2(Opo)| | K2(Op)* =p [K2(Op2)| | K2(Ops)| [ K2(Ops )l
| K2(Ops)| | K2(Op)* =p | K2(Op2)| [K2(Ops)| [K2(Ops)],
| K2(Op)| [K2(OF)|* =p |K2(Op2)| [ K2(Opz )| [K2(Opz)],

| K2(Op0)| [Ka(Opgs)* =p |K2(Ops)| [K2(Ops) P,

|[Ka(Ops)| 1 K2(Opn) [P =p | K2(Ops)| [Ka(Ops) P,

[K2(Ops)| =p [K2(Ops)l;
[ K2 (Ops)| =p [K2(Op)l,

| K2(Op0)| [Ka(Op2)* =p |K2(Ops)| [K2(Ops) P,

|[K2(Op0)| |[Ka(Op)* =p |K2(Ops)| [K2(Ops) P,
0) | K2(Ops)| K2 (Opz) * =p [Ka(Op)| [K2(Opy)I,

1) | K2(Ops)| 1 K2(Op2)I” =p [Ka(Ops)| [ K2(Ogy) .

)-(3.

Proof. The formulae (3 1 9) follow at once from Theorems 2 and 3.
By Galois theory, E®/EZ is a Galois extension with Galois group Vj; its
three subextensions are F*/EZ2, E}/E2 and Ej/EZ2. By Lemma 4, we get
Ka(Opo)| [K2(Oga) > =y [Ka(Opo)] [Ka(Ogs)| |K2(Opy)l. Hence, we get
(3.10) by (3.6). Similarly, we get (3.11) from (3.7).

ExaMPLE. Let Q¢ = Q(i,vV2v2+v2). It is easy to verify that
Gal(Q'%/Q) = D1g, where

o(i) =i, a(% 2+\/§>:\8/§ 2 - V2¢,

(i) = —i, T(efz\/z n ﬁ) — ¥2\/24 V2.

Furthermore,

Q* = QG V2), @8=@(€f2 2+2),

@ =Q(V2\2+Vv2+¥22-v2¢), @ =0(1+)¥2v/2+v2),
Q5 =Q(V2y/2+v2+ V2y/2-v2¢),

Q(i¥V2y/2++v2), @ =0(V2y2+vI+V2y2-v3Q),

&)
00
Il
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@G_Q(1ﬂf2\/2+\f) Q?I@(%\/2+\f2+§/§\/2f\/§§),
=Q(i,v2), Q=0Q(V2), Qf=0Q(1+4)v2), Q3=Quv?2),

@3— Q((1 —4)V2),

Q*=Q(W-1), Q=0Qv2), Qi=Q(H/-2).

For every odd prime p, we know that K3(Og2)(p) = K2(Ogz)(p) =
K3(Oqz2)(p) = K2(Ogs)(p) = 1. By Proposition 1, we have

3(0g)| = [Ka(Ogn)l,  0<ij<3
K>(Ogs)| = [Ka(Og)l,  0<ij<T,
115(0ga)| = |Ka(Ogy) =5 | Kol Ogy) .
[K2(Ogue)| = [Ka(Ogg)I? = [Ka(Ogy)I2
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