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Summary. Let F/E be a Galois extension of number fields with Galois group D2n . In
this paper, we give some expressions for the order of the Sylow p-subgroups of tame kernels
of F and some of its subfields containing E, where p is an odd prime. As applications,
we give some results about the order of the Sylow p-subgroups when F/E is a Galois
extension of number fields with Galois group D16.

1. Introduction. Let F be a number field, OF the ring of integers in F ,
and K2(F ) the Milnor K-group of F . The tame symbol on F induces, for
each finite prime ideal p, a homomorphism

τp : K2(F )→ k∗p

defined by

τp{a, b} ≡ (−1)νp(a)νp(b)a
νp(b)

bνp(a)
(mod p),

where νp denotes the p-adic valuation. The tame kernel of F is the kernel
of τ , where

τ =
⊕

τp : K2(F )→
⊕
pfinite

k∗p .

In 1973, Quillen [6] proved that the K-group K2(OF ) coincides with the
tame kernel, and K2(OF ) is finite.

There are many results describing the structure of the tame kernels of
algebraic number fields and relating them to the class numbers of appropri-
ate fields. The 2-primary part of the tame kernel K2(OF ) for number fields
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F has been intensively studied (see [3], [6]–[8]). Furthermore, there are also
some results concerning the p-primary part of the tame kernel when p is odd
(see [2], [4], [12]–[14]). Let F/E be a Galois extension of number fields with
Galois group D2n . The second author [12] obtained some results on tame
kernels in the case n = 3, i.e., Gal(F/E) = D8.

In this paper, we prove some expressions for the order of the Sylow
p-subgroups of tame kernels of F and some of its subfields containing E
for any integer n ≥ 3. As applications, in Section 3, we give some results
about the order of the Sylow p-subgroups when F/E is a Galois extension
of number fields with Galois group D16.

2. Main results. Throughout the paper we use the following notation:

• D2n is the dihedral group of order 2n, i.e., D2n = 〈σ, τ | σ2n−1
= 1,

τ2 = 1, τστ−1 = σ−1〉.
• Em/E is a finite extension of number fields of degree m.
• A(p) denotes the Sylow p-subgroup of a finite group A.
• |A| denotes the order of a finite group A.
• x =p y means vp(x) = vp(y), where x, y ∈ Z.
• Cm is a cyclic group of order m.
• V4 is Klein’s four group.

Now, we start with some well-known facts which will be the basis of this
paper.

Let F/E be a finite extension of number fields. In algebraic K-theory, a
transfer trF/E is defined which is a group homomorphism

trF/E : K2(F )→ K2(E).

Denote by K2(F/E) the kernel of the map trF/E : K2(OF ) → K2(OE).
Obviously, the Sylow p-subgroup K2(F/E)(p) of K2(F/E) is the kernel of
the map trF/E : K2(OF )(p)→ K2(OE)(p).

Lemma 1. For every prime p - (F : E),

K2(OF )(p) ∼= K2(F/E)(p)×K2(OE)(p).

Lemma 2. If L is an intermediate field of F/E, then

trF/E = trL/E ◦ trF/L.

Lemma 3. If F/E is a Galois extension with Galois group G, then for
every prime p - (F : E), the homomorphism j : K2(OE)(p) → K2(OF )(p)
induced by E ⊂ F is injective, and the transfer trF/E : K2(OF )(p) →
K2(OE)(p) is surjective. Moreover, j ◦ trF/E = NF/E, where NF/E(x) =∏
σ∈G σ(x).
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Lemma 4 ([12, Theorem 1]). Let E4/E be a Galois extension with Galois
group V4 = {1, a, b, ab}, E2

a the fixed field of 〈a〉, E2
b the fixed field of 〈b〉,

and E2
ab the fixed field of 〈ab〉. Then for every odd prime p,

K2(E4/E)(p) ∼= K2(E2
a/E)(p)×K2(E2

b /E)(p)×K2(E2
ab/E)(p),

and

|K2(OE4)| |K2(OE)|2 =p |K2(OE2
a
)| |K2(OE2

b
)||K2(OE2

ab
)|.

Let E2n/E be a Galois extension with Galois group D2n . In order to
get the main theorem, we give the following basic information about the
dihedral group D2n .

For every σiτ ∈ D2n (0 ≤ i ≤ 2n−1 − 1, i an integer), we have (σiτ)2 =
σi(τσiτ) = σiσ−i = 1, i.e., σiτ is of order 2. Furthermore, 〈σiτ〉 and 〈σjτ〉
are conjugate subgroups iff 2 | i+ j. Therefore, the non-trivial subgroups of
D2n and the corresponding fixed fields are as follows:

• 2n−1 + 1 subgroups of order 2: 〈σ2n−2〉 and 〈σiτ〉 (0 ≤ i ≤ 2n−1 − 1, i

an integer). The corresponding fixed fields are respectively E2n−1
and

E2n−1

i . Moreover, 〈σ2iτ〉 (0 ≤ 2i ≤ 2n−1− 2) are conjugate subgroups,
and 〈σ2i+1τ〉 (1 ≤ 2i+ 1 ≤ 2n−1 − 1) are conjugate subgroups.

• 2n−2 + 1 subgroups of order 4: 〈σ2n−3〉 and 〈σ2n−2
, σiτ〉 (0 ≤ i ≤

2n−2− 1, i an integer), where 〈σ2n−3〉 is a cyclic group of order 4, and

every subgroup 〈σ2n−2
, σiτ〉 is isomorphic to V4. The corresponding

fixed fields are respectively E2n−2
and E2n−2

i .

• 2n−m + 1 subgroups of order 2m (3 ≤ m ≤ n − 1): 〈σ2n−m−1〉 and

〈σ2n−m
, σiτ〉 (0 ≤ i ≤ 2n−m − 1, i an integer), where 〈σ2n−m−1〉 is a

cyclic group of order 2m, and every subgroup 〈σ2n−m
, σiτ〉 is isomor-

phic to D2m . The corresponding fixed fields are respectively E2n−m

and E2n−m

i .

Theorem 1. Let E2n/E be a Galois extension of number fields with

Galois group D2n, E2 the fixed field of 〈σ〉, and E2n−1

0 the fixed field of 〈τ〉,
E2n−1

1 the fixed field of 〈στ〉. Then for every odd prime p,

(2.1) K2(E2n/E2)(p) ∼= K2(E2n−1

0 /E)(p)×K2(E2n−1

1 /E)(p),

and

(2.2) |K2(OE2n )| |K2(OE)|2 =p |K2(OE2)| |K2(O
E2n−1

0
)| |K2(O

E2n−1
1

)|.

Proof. To prove (2.1), we will construct a map

ϕ : K2(E2n/E2)(p)→ K2(E2n−1

0 /E)(p)×K2(E2n−1

1 /E)(p),

and prove that it is an isomorphism.
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From trE2n/E = tr
E2n−1

i /E
◦ tr

E2n/E2n−1
i

= trE2/E ◦ trE2n/E2 , we get

tr
E2n−1

i /E
◦ tr

E2n/E2n−1
i

(a) = trE2/E ◦ trE2n/E2(a) = trE2/E(1) = 1 for every

a ∈ K2(E2n/E2)(p), hence tr
E2n/E2n−1

i
(a) ∈ K2(E2n−1

i /E)(p), i = 0, 1.

Thus for every a ∈ K2(E2n/E2)(p) we can define

ϕ(a) = (tr
E2n/E2n−1

0
(a), tr

E2n/E2n−1
1

(a)).

Obviously, ϕ is a homomorphism.

If tr
E2n/E2n−1

0
(a) = tr

E2n/E2n−1
1

(a) = 1, then a · τ(a) = a · στ(a) = 1,

hence σ(a) = a, so j◦trE2n/E2(a) = a·σ(a)·σ2(a) · · ·σ2n−1−1(a) = a2n−1
= 1.

This implies a = 1 since a ∈ K2(E2n/E2)(p). So ϕ is injective.

For every b ∈ K2(E2n−1

0 /E)(p), by Lemma 3, there exists c∈K2(OE2n )(p)
such that

b = j ◦ tr
E2n/E2n−1

0
(c) = N

E2n/E2n−1
0

(c) = c · τ(c);

then

NE2n/E(c) = j ◦ trE2n/E(c)

= j ◦ tr
E2n−1

0 /E
◦ tr

E2n/E2n−1
0

(c) = j ◦ tr
E2n−1

0 /E
(b) = 1.

Thus

j ◦ trE2n/E2(b) = j ◦ trE2n/E2(c · τ(c)) = NE2n/E(c) = 1.

Hence b ∈ K2(E2n/E2)(p), so K2(E2n−1

0 /E)(p) can be considered as a sub-

group of K2(E2n/E2) (p). Similarly, K2(E2n−1

1 /E)(p) can also be considered
as a subgroup of K2(E2n/E2)(p).

If d ∈ K2(E2n−1

0 /E)(p) ∩ K2(E2n−1

1 /E)(p), it is obvious that d is fixed
by τ and by στ then it is fixed by σ. Since d ∈ K2(E2n/E2)(p), we have

trE2n/E2(d) = d2n−1
= 1. So d = 1, i.e.,

K2(E2n−1

0 /E)(p) ∩K2(E2n−1

1 /E)(p) = 1.

Thus, we have proved (2.1). By (2.1), we have

(2.3) |K2(E2n/E2)(p)| = |K2(E2n−1

0 /E)(p)| |K2(E2n−1

1 /E)(p)|.
By Lemma 1, we conclude that

|K2(OE2n )| =p |K2(E2n/E2)| |K2(OE2)|,

|K2(O
E2n−1

i
)| =p |K2(E2n−1

i /E)| |K2(OE)|, i = 1, 2.

Substituting this in (2.3) proves (2.2).

Theorem 2. Let E2n/E be a Galois extension of number fields with
Galois group D2n, its subgroups and the corresponding fixed fields as stated
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above. Then for every odd prime p and every m ∈ Z, 0 ≤ m ≤ n − 2, we
have

(2.4) |K2(O
E2n−m )| |K2(OE)|2

=p |K2(OE2)| |K2(O
E2n−m−1

0
)| |K2(O

E2n−m−1
1

)|.

Proof. By Theorem 1, we have proved (2.4) in the case m = 0. Next, we
will prove it for 1 ≤ m ≤ n− 2.

Every subgroup 〈σ2n−m−1〉 is a normal subgroup of D2n , and the corre-

sponding fixed field is E2n−m
. Since E2n/E is a Galois extension, by Galois

theory E2n−m
/E is a Galois extension and Gal(E2n−m

/E) ∼= D2n/〈σ2n−m−1〉.
Then

Gal(E2n−m
/E) ∼= D2n−m , 1 ≤ m ≤ n− 3,(2.5)

Gal(E4/E) ∼= V4.(2.6)

By (2.5) and Theorem 1, we get (2.4) in the case 1 ≤ m ≤ n − 3. By (2.6)
and Lemma 4, we get (2.4) in the case m = n− 2. The proof is complete.

Theorem 3. Let E2n/E be a Galois extension of number fields with
Galois group D2n, its subgroups and the corresponding fixed fields as stated
above. Then for every odd prime p and every m ∈ Z, 2 ≤ m ≤ n − 1, we
have

|K2(OE2n )| |K2(O
E2n−m

0
)|2 =p |K2(O

E2n−m+1 )| |K2(O
E2n−1

0
)|2,

|K2(OE2n )| |K2(O
E2n−m

1
)|2 =p |K2(O

E2n−m+1 )| |K2(O
E2n−1

1
)|2,

and

|K2(O
E2n−m

i
)|

=p

{
|K2(O

E2n−m
0

)|, 0 ≤ i ≤ 2n−m − 1, i an even integer,

|K2(O
E2n−m

1
)|, 0 ≤ i ≤ 2n−m − 1, i an odd integer.

Proof. Since E2n/E is a Galois extension, by Galois theory so is

E2n/E2n−m

i . Moreover,

Gal(E2n/E2n−2

i ) ∼= V4, 0 ≤ i ≤ 2n−2 − 1,(2.7)

Gal(E2n/E2n−m

i ) ∼= D2m , 3 ≤ m ≤ n− 1, 0 ≤ i ≤ 2n−m − 1.(2.8)

From (2.7) and Lemma 4, we get

(2.9) |K2(OE2n )| |K2(O
E2n−2

i
)|2

=p |K2(O
E2n−1 )| |K2(O

E2n−1
i

)| |K2(O
E2n−1

2n−1+i

)|,

where 0 ≤ i ≤ 2n−2 − 1.
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From (2.8) and Theorem 1, we get

(2.10) |K2(OE2n )| |K2(O
E2n−m

i
)|2

=p |K2(O
E2n−m+1 )| |K2(O

E2n−1
i

)| |K2(O
E2n−1

2n−m+1+i

)|,

where 3 ≤ m ≤ n− 1, 0 ≤ i ≤ 2n−m − 1.
Therefore, for 2 ≤ m ≤ n− 1 and 0 ≤ i ≤ 2n−m − 1, we have

(2.11) |K2(OE2n )| |K2(O
E2n−m

i
)|2

=p |K2(O
E2n−m+1 )| |K2(O

E2n−1
i

)| |K2(O
E2n−1

2n−m+1+i

)|.

Since 〈τ〉, 〈σ2τ〉, . . . , 〈σ2n−1−2τ〉 are conjugate subgroups, we conclude that
K2(O

E2n−1
0

)(p), K2(O
E2n−1

2
)(p), . . . , K2(O

E2n−1

2n−1−2

)(p) are all isomorphic, so

(2.12) |K2(O
E2n−1

0
)(p)| = |K2(O

E2n−1
2

)(p)| = · · · = |K2(O
E2n−1

2n−1−2

)(p)|.

Similarly,

(2.13) |K2(O
E2n−1

1
)(p)| = |K2(O

E2n−1
3

)(p)| = · · · = |K2(O
E2n−1

2n−1−1

)(p)|.

Hence, when i is an even integer, we have

(2.14) |K2(OE2n )| |K2(O
E2n−m

i
)|2 =p |K2(O

E2n−m+1 )| |K2(O
E2n−1

0
)|2.

When i is an odd integer, we have

(2.15) |K2(OE2n )| |K2(O
E2n−m

i
)|2 =p |K2(O

E2n−m+1 )| |K2(O
E2n−1

1
)|2.

So the theorem is proved.

3. Applications. Let E16/E be a Galois extension of number fields
with Galois group D16 = 〈σ, τ |σ8 = 1, τ2 = 1, τστ−1 = σ−1〉. Its non-trivial
subgroups and the corresponding fixed fields are as follows:

• 9 subgroups of order 2: {1, σ4}, {1, σiτ} (0 ≤ i ≤ 7). The correspond-
ing fixed fields are respectively E8, E8

i (0 ≤ i ≤ 7). Furthermore,
{1, τ}, {1, σ2τ}, {1, σ4τ} and {1, σ6τ} are conjugate subgroups, so E8

0 ,
E8

2 , E8
4 and E8

6 are isomorphic subfields. Similarly, {1, στ}, {1, σ3τ},
{1, σ5τ} and {1, σ7τ} are conjugate subgroups, so E8

1 , E8
3 , E8

5 and E8
7

are isomorphic subfields.
• 5 subgroups of order 4: {1, σ2, σ4, σ6}, {1, σ4, τ, σ4τ}, {1, σ4, στ, σ5τ},
{1, σ4, σ2τ, σ6τ} and {1, σ4, σ3τ, σ7τ}. The corresponding fixed fields
are respectively E4, E4

0 , E4
1 , E4

2 and E4
3 .

• 3 subgroups of order 8: {1, σ, σ2, σ3, σ4, σ5, σ6, σ7}, {1, σ2, σ4, σ6, τ,
σ2τ, σ4τ, σ6τ} and {1, σ2, σ4, σ6, στ, σ3τ, σ5τ, σ7τ}. The corresponding
fixed fields are respectively E2, E2

0 and E2
1 .
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Proposition 1. Let E16/E be a Galois extension of number fields with
Galois group D16, its subgroups and the corresponding fixed fields as stated
above. Then for every odd prime p, we have

|K2(OE16)| |K2(OE)|2 =p |K2(OE2)| |K2(OE8
0
)| |K2(OE8

1
)|,(3.1)

|K2(OE8)| |K2(OE)|2 =p |K2(OE2)| |K2(OE4
0
)| |K2(OE4

1
)|,(3.2)

|K2(OE4)| |K2(OE)|2 =p |K2(OE2)| |K2(OE2
0
)| |K2(OE2

1
)|,(3.3)

|K2(OE16)| |K2(OE4
0
)|2 =p |K2(OE8)| |K2(OE8

0
)|2,(3.4)

|K2(OE16)| |K2(OE4
1
)|2 =p |K2(OE8)| |K2(OE8

1
)|2,(3.5)

|K2(OE4
0
)| =p |K2(OE4

2
)|,(3.6)

|K2(OE4
1
)| =p |K2(OE4

3
)|,(3.7)

|K2(OE16)| |K2(OE2
0
)|2 =p |K2(OE4)| |K2(OE8

0
)|2,(3.8)

|K2(OE16)| |K2(OE2
1
)|2 =p |K2(OE4)| |K2(OE8

1
)|2,(3.9)

|K2(OE8)| |K2(OE2
0
)|2 =p |K2(OE4)| |K2(OE4

0
)|2,(3.10)

|K2(OE8)| |K2(OE2
1
)|2 =p |K2(OE4)| |K2(OE4

1
)|2.(3.11)

Proof. The formulae (3.1)–(3.9) follow at once from Theorems 2 and 3.
By Galois theory, E8/E2

0 is a Galois extension with Galois group V4; its
three subextensions are E4/E2

0 , E4
0/E

2
0 and E4

2/E
2
0 . By Lemma 4, we get

|K2(OE8)| |K2(OE2
0
)|2 =p |K2(OE4)| |K2(OE4

0
)| |K2(OE4

2
)|. Hence, we get

(3.10) by (3.6). Similarly, we get (3.11) from (3.7).

Example. Let Q16 = Q(i, 8
√

2
√

2 +
√

2). It is easy to verify that
Gal(Q16/Q) = D16, where

σ(i) = i, σ
(

8
√

2

√
2 +
√

2
)

=
8
√

2

√
2−
√

2 ζ8,

τ(i) = −i, τ
(

8
√

2

√
2 +
√

2
)

=
8
√

2

√
2 +
√

2.

Furthermore,

Q8 = Q(i,
4
√

2), Q8
0 = Q

(
8
√

2

√
2 +
√

2
)
,

Q8
1 = Q

(
8
√

2

√
2 +
√

2 +
8
√

2

√
2−
√

2 ζ8

)
, Q8

2 = Q
(

(1 + i)
8
√

2

√
2 +
√

2
)
,

Q8
3 = Q

(
8
√

2

√
2 +
√

2 +
8
√

2

√
2−
√

2 ζ3
8

)
,

Q8
4 = Q

(
i

8
√

2

√
2 +
√

2
)
, Q8

5 = Q
(

8
√

2

√
2 +
√

2 +
8
√

2

√
2−
√

2 ζ5
8

)
,
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Q8
6 = Q

(
(1− i) 8

√
2

√
2 +
√

2
)
, Q8

7 = Q
(

8
√

2

√
2 +
√

2 +
8
√

2

√
2−
√

2 ζ7
8

)
,

Q4 = Q(i,
√

2), Q4
0 = Q(

4
√

2), Q4
1 = Q((1 + i)

4
√

2), Q4
2 = Q(i

4
√

2),

Q4
3 = Q((1− i) 4

√
2),

Q2 = Q(
√
−1), Q2

0 = Q(
√

2), Q2
1 = Q(

√
−2).

For every odd prime p, we know that K2(OQ2)(p) = K2(OQ2
0
)(p) =

K2(OQ2
1
)(p) = K2(OQ4)(p) = 1. By Proposition 1, we have

|K2(OQ4
i
)| =p |K2(OQ4

j
)|, 0 ≤ i, j ≤ 3,

|K2(OQ8
i
)| =p |K2(OQ8

j
)|, 0 ≤ i, j ≤ 7,

|K2(OQ8)| =p |K2(OQ4
0
)|2 =p |K2(OQ4

1
)|2,

|K2(OQ16)| =p |K2(OQ8
0
)|2 =p |K2(OQ8

1
)|2.
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