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David FÄRM and Tomas PERSSON

Presented by Feliks PRZYTYCKI

Summary. We study sets of non-typical points under the map fβ 7→ βx mod 1 for non-
integer β and extend our results from [Fund. Math. 209 (2010)] in several directions. In
particular, we prove that sets of points whose forward orbit avoid certain Cantor sets, and
the set of points for which ergodic averages diverge, have large intersection properties. We
observe that the technical condition β > 1.541 found in the above paper can be removed.

1. β-shifts. Let [x] denote the integer part of the real number x, and let
bxc denote the largest integer strictly smaller than x. Let β > 1. With any
x ∈ [0, 1] we associate the sequence d(x, β)=(d(x, β)n)∞n=0∈{0, 1, . . . , bβc}N
defined by

d(x, β)n := [βfnβ (x)],

where fβ(x) = βx (mod 1). The closure, with respect to the product topol-
ogy, of the set

{d(x, β) : x ∈ [0, 1)}
is denoted by Sβ and called the β-shift. We will denote the set of all finite
words occurring in Sβ by S∗β. The sets Sβ and S∗β are invariant under the left
shift σ : (in)∞n=0 7→ (in+1)

∞
n=0 and the map d(·, β) : x 7→ d(x, β) satisfies the

equality σn(d(x, β)) = d(fnβ (x), β). If we equip Sβ with the lexicographical
ordering then the map d(·, β) is strictly increasing. Let d−(1, β) be the limit
in the product topology of d(x, β) as x approaches 1 from below. Then the
subshift Sβ satisfies

(1) Sβ = {(jk)∞k=0 : σn(jk)
∞
k=0 ≤ d−(1, β) ∀n}.

Note that d−(1, β) = d(1, β) if and only if d(1, β) contains infinitely many
non-zero digits.
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Parry proved in [7] that the map β 7→ d(1, β) is strictly increasing. For
a sequence (jk)

∞
k=0 there is a β > 1 such that (jk)

∞
k=0 = d(1, β) if and only

if σn((jk)
∞
k=0) < (jk)

∞
k=0 for every n > 0. The number β is then the unique

positive solution of the equation

1 =

∞∑
k=0

dk(1, β)

xk+1
.

One observes that the fact that the map β 7→ d(1, β) is strictly increasing
together with (1) implies that Sβ1 ⊆ Sβ2 if and only if β1 ≤ β2.

If x ∈ [0, 1] then

x =

∞∑
k=0

dk(x, β)

βk+1
.

This formula can be seen as an expansion of x in the non-integer base β,
and thereby generalises the ordinary expansion in integer bases.

We let πβ : Sβ → [0, 1) be defined by

πβ : (ik)
∞
k=0 7→

∞∑
k=0

ik
βk+1

.

Hence, πβ(d(x, β)) = x for any x ∈ [0, 1) and β > 1.
We define cylinder sets as

[i0 · · · in−1] := {(jk)∞k=0 ∈ Sβ : ik = jk, 0 ≤ k < n},
and say that n is the generation of the cylinder [i0 · · · in−1]. We will also
call the half-open interval πβ([i0 · · · in−1]) a cylinder of generation n. The
set [i0 · · · in−2] will be called the parent cylinder of [i0 · · · in−1].

Note that if d(1, β) has only finitely many non-zero digits, then Sβ is a
subshift of finite type, so there is a constant C > 0 such that

(2) Cβ−n ≤ |πβ([i0 · · · in−1])| ≤ β−n.

2. Transversality and large intersection classes. In [2], Falconer
defined Gs, 0 < s ≤ n, to be the class of Gδ sets F in Rn such that
dimH(

⋂∞
i=1 fi(F )) ≥ s for all sequences (fi)

∞
i=1 of similarity transforma-

tions. He characterised Gs in several equivalent ways and proved among
other things that countable intersections of sets in Gs are also in Gs.

In [5], the following approximation theorem was proven, where Gs are
restrictions of Falconer’s classes to the unit interval.

Theorem 1. Let β ∈ (1.541, 2) and let (βn)∞n=1 be any sequence with
βn ∈ (1.541, β) for all n, such that βn → β as n→∞. Assume that E ⊂ Sβ
and πβn(E ∩ Sβn) is in the class Gs for all n. If F is a Gδ set such that
F ⊃ πβ(E), then F is also in the class Gs.
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When expanding a number x in base β > 1 as d(x, β) = (xk)
∞
k=0, one

can consider how often a given word y1 . . . ym occurs. If the expression

#{i ∈ {0, . . . , n− 1} : xi . . . xi+m−1 = y1 . . . ym}
n

converges as n → ∞, it gives an asymptotic frequency of occurrence of the
word y1 . . . ym in the expansion of x to base β. Theorem 1 was used in [5]
to prove the following.

Proposition 1. For any sequence (βn)∞n=1 of bases such that βn ∈
(1.541, 2) for all n, the set of points for which the frequency of any finite
word does not converge in the expansion to any of these bases, has Hausdorff
dimension 1.

The reason for the condition β ∈ (1.541, 2) in Theorem 1 and Proposi-
tion 1 is that in [5], we needed some estimates on the map

(3)
∞∑
k=1

ak − bk
βk1

7→
∞∑
k=1

ak − bk
βk2

, (a1, a2 . . . ), (b1, b2 . . . ) ∈ Sβ1 ,

when β1<β2, provided by the following transversality lemma by Solomyak [9].

Lemma 1. Let x0 < 0.649. There exists a constant δ > 0 such that if
x ∈ [0, x0] then

|g(x)| < δ ⇒ g′(x) < −δ
for any function of the form

(4) g(x) = 1 +
∞∑
k=1

akx
k, where ak ∈ {−1, 0, 1}.

The condition x0 < 0.649 in Lemma 1 introduces the condition β >
1/0.649 or for simplicity β > 1.541. But, when studying the map defined
in (3), the coefficients in the power series (4) will not be free to take values in
{−1, 0, 1}—they will be the difference of two sequences from Sβ. This allows
us to remove the condition x0 < 0.649, which is done by using Lemma 2
below instead of Lemma 1.

Lemma 2. Let β > 1. There exists a constant δ > 0 such that if x ∈
[0, 1/β] then

|g(x)| < δ ⇒ g′(x) < −δ
for any function of the form

g(x) = 1 +

∞∑
k=1

(ak − bk)xk, where (a1, a2 . . . ), (b1, b2 . . . ) ∈ Sβ.

This lemma was stated and proved in [4], where it was used for other pur-
poses. We refer to [4] for the proof, where in fact, the lemma was proved with
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the condition x∈ [0, 1/β] replaced by the weaker condition x∈ [0, 1/β + ε],
where ε is a small positive constant. In this note we will however only need
the weaker form stated above.

Replacing Lemma 1 by Lemma 2 in the proofs of [5], we immediately
get the following improved versions of Theorem 1 and Proposition 1. Note
that allowing β > 1 instead of β ∈ (1, 2) only affects notation slightly by
adding new symbols to the shift space Sβ. The proofs in [5] go through
almost verbatim. Also the result from [3], which is used in [5] to prove
Proposition 1, is easily extended from β ∈ (1, 2) to β > 1.

Theorem 2. Let β > 1 and let (βn)∞n=1 be any sequence with βn < β for
all n, such that βn → β as n→∞. Assume that E ⊂ Sβ and πβn(E ∩ Sβn)
is in the class Gs for all n. If F is a Gδ set such that F ⊃ πβ(E), then F is
also in the class Gs.

Proposition 2. For any sequence (βn)∞n=1 of bases such that βn > 1 for
all n, the set of points for which the frequency of any finite word does not
converge in the expansion to any of these bases, has Hausdorff dimension 1.

3. Schmidt games and avoiding Cantor sets. In [8], Schmidt in-
troduced a set-theoretic game which can be seen as a metric version of the
Banach–Mazur game (see for example [6]). We present here a modified ver-
sion of Schmidt’s game that was used in [5].

Consider the unit interval [0, 1] with the usual metric and a set E ⊂ [0, 1].
Two players, Black and White, play the game in [0, 1] with two parameters
0 < α, γ < 1 according to the following rules:

In the initial step Black chooses a closed interval B0 ⊂ [0, 1].

Then the following step is repeated. At step k, White chooses a closed
interval Wk ⊂ Bk such that |Wk| ≥ α|Bk|. Then Black chooses a
closed interval Bk+1 ⊂Wk such that |Bk+1| ≥ γ|Wk|.

We say that E is (α, γ)-winning if there is a strategy that White can
use to make sure that

⋂
kWk ⊂ E, and α-winning if this holds for all γ. As

was shown in [5], the following proposition easily follows from the methods
in [8].

Proposition 3.

(a) If E is α-winning for α = α0, then E is α-winning for all α ≤ α0.
(b) If Ei is α-winning for i = 1, 2, . . ., then

⋂∞
i=1Ei is also α-winning.

(c) If E is α-winning, then the Hausdorff dimension of E is 1.

In [5], the following proposition was proven.



Non-Typical Points for β-Shifts 127

Proposition 4. For any β ∈ (1, 2) and any x ∈ [0, 1],

Gβ(x) =

{
y ∈ [0, 1] : x /∈

∞⋃
n=0

fnβ (y)

}
.

is α-winning for any α ≤ 1/16.

The set Gβ(x) consists of points for which the forward orbit under fβ
is bounded away from x. One can also think of Gβ(x) as the union over
all δ > 0, of sets of points with orbits not falling into a hole of radius δ
around x.

Let us at this point compare our result with a result by Dolgopyat (1) [1].
He proved that if E is a set of Hausdorff dimension strictly smaller than 1,
and f is a piecewise expanding map on an interval, then the set of points
for which the orbit under f avoids the set E, has full Hausdorff dimension.
Dolgopyat’s result is stronger in the sense that the result holds for a much
larger class of maps. However, it does not give any intersection property, and
in this sense our result is stronger, since we can treat countably many dif-
ferent maps at the same time, whereas Dolgopyat’s result only gives results
for one fixed map.

Here, we will extend our results in the spirit of Dolgopyat, and instead
of considering only orbits avoiding a point, we consider orbits avoiding a
more general set E. In doing so, we will prove that the set of points that
avoid a set E is α-winning, and so get a stronger statement than only full
Hausdorff dimension, which is the result of Dolgopyat.

However, we will need to impose some restrictions on the set E. More
precisely, we will prove the following proposition which shows that we can
avoid entire Cantor sets instead of just single points. We consider sets of the
form

Gfβ (πβ(ΣA)) =

{
y ∈ [0, 1) : πβ(ΣA) ∩

∞⋃
n=0

fnβ (y) = ∅
}
,

where ΣA denotes a subshift of finite type. Then πβ(ΣA) is a Cantor set in
[0, 1]. Hence Gfβ (πβ(ΣA)) is the set of points with forward orbit bounded
away from the Cantor set πβ(ΣA). One can also think of Gfβ (πβ(ΣA)) as
the union over all δ > 0 of sets of points with orbits not falling into a hole
consisting of a δ-neighbourhood of πβ(ΣA).

Proposition 5. Let β > 1 and let ΣA ⊂ Sβ be a subshift of finite type
such that there is a finite word i0 . . . in from Sβ \ΣA. Then there exists α > 0

(1) We are grateful to a referee for pointing out this paper to us.
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such that

Gfβ (πβ(ΣA)) =

{
y ∈ [0, 1) : πβ(ΣA) ∩

∞⋃
n=0

fnβ (y) = ∅
}

is α-winning.

A quick look at Proposition 3 gives us the following corollary.

Corollary 1. Let N ∈ N, β1, . . . , βN > 1 and for each 1 ≤ n ≤ N ,
let ΣAn ⊂ Sβn be such that there is a finite word i1 . . . ikn from Sβn \ ΣAn.
Then the set

N⋂
n=1

Gfβn (πβ(ΣAn))

has Hausdorff dimension 1.

The reason why the N in Corollary 1 must be finite is that the α0 from
Proposition 5 will depend on β and ΣA. When taking intersections we need a
uniform α for which the sets are α-winning, to be able to say anything about
the intersection. See Remark 2 at the end of the paper for an estimate of α.
If we have uniform estimates on α, then we can take countable intersections
in Corollary 1.

Before giving the proof of Proposition 5, we note that if Sβ is a subshift
of finite type, then Proposition 5 is easy to prove. Indeed, then there is a
constant C > 0 such that

(5) C ≤
|πβ([i0 . . . ik])|

βk+1
≤ 1

for all cylinders [i0 . . . ik]. Using (5), it is not hard to see that there is an
α0 > 0 such that each time White plays she can introduce the word i0 . . . in
that is missing in ΣA. By (5) this implies that the word i0 . . . in occurs
regularly in {y} =

⋂
kWk, and this means that

⋃∞
n=0 f

n
β (y) is bounded away

from πβ(ΣA). Hence Proposition 5 need only be proved in the case when Sβ
is not of finite type.

The case when Sβ is not of finite type is much more difficult, since we
have no uniform lower bound on the size of cylinders, such as (2). The key
step in proving Proposition 4 was the following theorem from [5]. It will be
used in the proof of Proposition 5.

Theorem 3. Let β ∈ (1, 2) and let (βn)∞n=1 be any sequence with βn ∈
(1, β) for all n such that βn → β as n→∞. Let also E ⊂ Sβ and α ∈ (0, 1).
If πβn(E ∩ Sβn) is α-winning for α = α0 for all n, then πβ(E) is α-winning
for any α ≤ min{1/16, α0/4}.
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Remark 1. The condition β ∈ (1, 2) in Theorem 3 comes from the fact
that in [5], we chose to work with β < 2 to simplify notation. It is not
difficult to extend the proof of Theorem 3 so that it holds for all β > 1.

The condition β ∈ (1, 2) was only used in Subsection 5.1 of [5]. There we
use the fact that in any cylinder πβ([i0 . . . in]), White needs at most a factor
2 to make sure that the game continues in πβ([i0 . . . in0]), thereby avoiding
the cylinder πβ([i0 . . . in1]) which may have bad properties. If β > 2, a factor
2 is still enough for White to avoid the cylinder πβ([i0 . . . inbβc]) which may
have bad properties. The factor 2 is not enough for White to choose any
other cylinder πβ([i0 . . . ink]) in one move, but after a couple of moves, the
game is played in such a small set that at most two of these cylinders remain,
so White can pick at least one of them. That is all what is needed for the
strategy to work.

Proposition 5 follows from Theorem 3 and Remark 1 once we have proven
the following proposition.

Proposition 6. Let β > 1 be such that Sβ is not of finite type and let
ΣA ⊂ Sβ be a subshift of finite type. Then there exist α > 0 and β0 < β
such that

Gβ′(πβ′(ΣA)) =

{
y ∈ [0, 1) : πβ′(ΣA) ∩

∞⋃
n=0

fnβ′(y) = ∅
}

is α-winning for any β′ ∈ [β0, β] such that Sβ′ is of finite type.

To prove Proposition 6, we need some lemmata.

Lemma 3. Let β > 1 and let i0 . . . in be a finite word in S∗β such that
i0 . . . inj0 . . . jm ∈ S∗β for all finite words j0 . . . jm ∈ S∗β. Then |π([i0 . . . in])|
= β−n−1 and

|πβ([i0 . . . inj0 . . . jm])| = β−n−1|πβ([j0 . . . jm])|
for all finite words j0 . . . jm ∈ S∗β.

Proof. It is clear that σn+1([i0 . . . in]) = Sβ, so fn+1
β (πβ([i1 . . . in])) =

[0, 1), where fn+1
β is just a scaling with factor βn+1 on πβ([i0 . . . in]). Thus,

πβ([i0 . . . in]) is just a smaller copy of [0, 1).

Lemma 4. Let β>1, M ∈N and k ∈ N be such that (d(1, β)n)Mn=00
k1∈S∗β.

If β0 ∈ (1, β) is such that (d(1, β)n)Mn=00
k1 ∈ S∗β0, then for all i0 . . . in ∈ S∗β0

such that M = max{m : in−m . . . in = (d(1, β)n)mn=0}, we have

|πβ′([i0 . . . in])| ≥ β−(n+k+2) for all β′ ∈ [β0, β].

Proof. Let β′ ∈ [β0, β]. From (1) and the maximality of M we conclude
that i0 . . . in−Mj0 . . . jm ∈ S∗β′ for all j0 . . . jm ∈ S∗β′ . From Lemma 3 we then

get |πβ([i0 . . . in])| ≥ |πβ([i0 . . . in0k+1])| = β−(n+k+2).
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Lemma 5. Let β > 1 and M ∈ N. There exist ε > 0 and β0 < β such
that for any β′ ∈ [β0, β] and for any interval I ⊂ [0, 1], there exists a cylinder
πβ′([i0 . . . in]) such that max{m : in−m . . . in = (d(1, β)n)mn=0} ≥M and

|πβ′([i0 . . . in]) ∩ I| > ε|I|.
Moreover, if Sβ′ is of finite type, then

|πβ′([i0 . . . in]) ∩ I| > σβ′ |πβ′([i0 . . . in])|,
where σβ′ > 0 is independent of I.

Proof. Let β′ ∈ [β0, β] be as in Lemma 4 and let I ⊂ [0, 1] be an inter-
val. Note that all cylinders in this proof will be with respect to Sβ′ . Let n
be the smallest generation for which there is a cylinder contained in I. Let
πβ′([i0 . . . in−1]) be one of these generation n cylinders in I. By the minimal-
ity of n we know that the parent cylinder, πβ′([i0 . . . in−2]), covers at least
one endpoint of I. If πβ′([i0 . . . in−2]) does not cover I, let m be the smallest
generation for which there is a cylinder contained in I \πβ′([i0 . . . in−2]). Let
πβ′([j0 . . . jm−1]) be one of these generation m cylinders. By the minimality
of m we know that the parent cylinder, πβ′([j0 . . . jm−2]), covers the other
endpoint of I.

Together, the cylinders πβ′([i0 . . . in−2]) and πβ′([j0 . . . jm−2]) cover I.
Indeed, if not, then there is a smallest generation l for which there is
a cylinder πβ′([k0 . . . kl−1]) between πβ′([i0 . . . in−2]) and πβ′([j0 . . . jm−2]).
Consider its parent cylinder πβ′([k0 . . . kl−2]). If πβ′([k0 . . . kl−2]) intersected
one of πβ′([i0 . . . in−2]) and πβ′([j0 . . . jm−2]), then it would have to contain
it. But this is impossible since the minimality of n and m implies l ≥ n,m.
Thus, πβ′([k0 . . . kl−2]) is also between πβ′([i0 . . . in−2]) and πβ′([j0 . . . jm−2]),
which contradicts the minimality of l.

Consider the one of πβ′([i0 . . . in−2]) and πβ′([j0 . . . jm−2]) that covers at
least half of I. Let us assume it is πβ′([i0 . . . in−2]); the argument in the other
case is the same.

If max{m : in−m−2 . . . in−2 = (d(1, β)n)mn=0} ≥ M , then we can choose
the set πβ′([i0 . . . in−2]) ∩ I as long as ε ≤ 1/2 and we get the first claim.
The second claim, that |πβ′([i0 . . . in−2])∩ I| > σβ′ |πβ′([i0 . . . in−2])|, follows
from the fact that |πβ′([i0 . . . in−1]) ⊂ I and (2), since Sβ′ is of finite type.

Assume instead that

max{m : in−m−2 . . . in−2 = (d(1, β)n)mn=0} = N < M.

Then i0 . . . in−2(d(1, β)n)MM−N−1 ∈ S∗β′ by (1). By Lemma 4 there is a k that
only depends on β and M such that

|πβ′([i0 . . . in−2(d(1, β)n)MM−N−1])| ≥ β−(n+M+k+1)

≥ β−(M+k+2)|πβ′([i0 . . . in−2])|.
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Since |πβ′([i0 . . . in−2])| ≥ |I|/2, we conclude that if ε ≤ β−(M+k+2)/2,
then we can choose the cylinder πβ′([i0 . . . in−2(d(1, β)n)MM−N−1]) ⊂ I. This
ensures the truth of both claims and we are done.

We are now ready to prove Proposition 6.

Proof of Proposition 6. Note that since ΣA is of finite type while Sβ is
not, there is an M > 1 such that (d(1, β)n)Mn=0 is not allowed in ΣA. For
this M choose ε and β0 as in Lemma 5. Let β′ ∈ [β0, β] be such that Sβ′ is
of finite type, and let α = ε/2.

Assume that Black has chosen his first interval B0. We will construct a
strategy that White can use to make sure that

⋂
kWk = {x} ⊂ Gβ′(ΣA), or

equivalently that (fnβ (x))∞n=0 is bounded away from πβ′(ΣA).
Each time Black has chosen an interval Bk, Lemma 5 ensures that White

can choose Wk ⊂ πβ′ [i0 . . . in] ∩Bk, where

max{m : in−m . . . in = (d(1, β)n)mn=0} ≥M
and |Wk| ≥ σ(β′)|πβ′ [i0 . . . in]|. Since β′ < β, there is an N such that
(d(1, β)n)Nn=0 /∈ Sβ′ . This implies that for the cylinders πβ′([i0 . . . in]) that oc-
cur here, the numbers max{m : in−m . . . in = (dn(1, β))mn=0} will be bounded
by N .

If White plays like this, she ensures that the sequence d(x, β′) contains
the word (d(1, β)n)Mn=0 regularly. Thus, fnβ (x) is always in a cylinder outside
πβ′(ΣA). If fnβ (x) were bounded away from the endpoints of these cylinders,
then (fnβ (x))∞n=0 would be bounded away from πβ′(ΣA). But α = ε/2, so
there is a factor 2 left after placing Wk in πβ′ [i0 . . . in]∩Bk. White can place
Wk in the middle of πβ′ [i0 . . . in] ∩Bk, thereby avoiding the endpoints.

We conclude that Gβ′(ΣA) is α-winning and we are done.

Remark 2. The α in Proposition 6 can be extracted quite easily from
the proofs. Let M be such that (dk(1, β))Mk=0 is not at word in ΣA. Take

k such that (dj(1, β))Mj=00
k1 < d(1, β). Then α = β−(M+k+1)/4 is small

enough. It follows that in Proposition 5, α = β−(M+k+1)/16 is small enough.
Note that these values for α are not optimal, but they make it possible to
extend Corollary 1 to countable intersections, for some cases.
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