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Summary. We prove that the sums Sj of independent random vectors satisfy

P ( max ||Sk|| > 3t) <2 max P(||Sk|| >t), t¢t>0.
1<k<n 1<k<n

1. Introduction and result. Let {Xy}ren, N = {1,2,3,...}, be a
sequence of independent random vectors defined on a probability space
(2,F,P). Set Sp = > 11 Xk, So = 0. The main result of this paper is
inspired by the following statement on p. 23 in [13]:

“It is known that if the inequality

t
(+) P(max 1S:]| > t) < K max p<||5iy| > )
1<i<n 1<i<n L
holds true for each n = 1,2,..., for each t > 0, and for all sequences of

independent random vectors with values in an arbitrary Banach space F,
then L > 3 and K > 2. We do not know if

t
P(max |S:ll > t) < 2 max P<!51H > >.”
1<i<n 1<i<n 3
In this paper we prove
THEOREM. If X1,..., X, are independent random vectors, then for each
t>0,

1.1 P( t) <2 max P ).
(1.1) 1?]?§)<n\|5k‘|>3 < 1?]?;1 1Skl > ?)

2010 Mathematics Subject Classification: Primary 60E15; Secondary 11Y65.
Key words and phrases: maximal inequalities, 1" dependence, continued fractions.

DOI: 10.4064/ba61-2-9 [155] © Instytut Matematyczny PAN, 2013



156 7. S. Szewczak

The inequality () with L = K = 4 is stated in [5, Theorem 1(i)]. In
[16, pp. 3-4] the proof of (x) with L = K = 3 by S. Kwapien can be found
(see also [I3| p. 15]). This proof (see also [13 p. 16], [II, p. 149]) uses the
following variant of the Lévy—Ottaviani inequality (cf. [14], [15]):

(1.2)
P(|[Snll > t)
P t
(f?ax ISl > s + ) 1 — maxi<pen P([Sn — Sil[ > 5)’

where s is such that max;<g<, P(||Sn, — Skl > s) < 1. It should be pointed
out that () with K = (3++/5)/2, L = 3 is stated without proof in [I3]
p. 23] (on p. 28 this result is attributed to J. Sawa).

There are many important applications of the Lévy—Ottaviani inequality
(cf. |2 p. 296, [7]), for example it proved to be useful for verification of the
Anscombe condition (cf. [4, p. 103], [6, p. 17]) and relative stability (cf. [1],
[I7, Theorem 2]).

The paper is organized as follows: in the next section we prove , while
in the last section we generalize it to dependent vectors and give applications
to moment inequalities.

s,t >0,

2. Proof of Theorem. We use Etemadi’s approach (cf. [5, p. 215], [2]
p. 288]), instead of ((1.2]) as in [13]. For fixed s,t > 0and k = 1, ..., n consider
the sets

Cr ={||Sn — Sn—jl| <s+tforall 0 <j <k, |S,— Sp—il >s+t}.
The sets Ci, k =1,...,n, are disjoint and

n

U Cr = { max ||Sp — Sp—kl > s—i—t} { max ||S, — Skl > s+t}.

~ 1<k<n 0<k<n
Since {[|Sn|| < [|Sn — Sn—kll > s +t} C {||Sn—kl|l > s} we obtain

n
P( S, — S t S <t>: P(Cy; 1S, < t
s [1Su = Sell > s 44 [Sull 1) = P(Cis 5]l < )

k=1
n

< D PAC 5=l > 9) = 2 PCOP(ISn-+] > )
k=1

< max P(||Sn_s| > S)P< max [|S, — Sk > s—i—t).
1<k<n 0<k<n

Thus we get

(2.1) P(Oréll?éin [Sn = Skll > s +t; [|[Sall < t)

< max P(||Sk]| > s)P( max ||Sn — Sk > s +t).
1<k<n 0<k<n
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The above inequality and the obvious inclusion

{ masx 1Skl > s+2t} € {118l > thU{ max (1S, — Skl > s+4; Sall <t}
1<k<n 0<k<n

yield
. < .
(22)  P(max Sl > s+ 2t) < P(IS,]] > 1) + max P(ISe] > s)

Thus (1.1) follows from ([2.2)) for s = ¢.

3. Dependent random vectors. Let { X} }ren be a sequence of random
vectors defined on a probability space ({2, F, P). Define

* = supsu PAnB)
Vn =sup p{P<A>P<B>

where F™ is the o-field generated by X, Xpi1,..., Xpym, m € N. For
properties of the coefficient ¢, see [3, Vol. I, Chapter 5|. In this section
we provide some inequalities for sequences of dependent random vectors
satisfying 1] < oo. Among such sequences are digits of the regular continued
fraction expansion of irrational numbers. In this case ¢} < 2In2 < 1.39 (with
respect to the Gauss measure) and ¢f < 123:% < 1.62 (with respect to the
Lebesgue measure) (cf. [9, Corollary 1.3.15, p. 49| and [3], Vol. I, Proposition
5.2(I)(c), p. 153]).

It is not difficult to see from the first part of the proof of the Theorem
(details are left to the reader) that for n > 1 and s,t > 0,

:P(A)P(B)>0,Ae FF, Be ﬁk}

(3.1) p( max [|Sn — Skl > s+ ]Sy < t)
0<k<n
< P(||S P( S, — S t),
< ¥7 max P(|[Sk]| > s)P( max [[Sn — Sill > s+
and for s such that ¢ max;<j<p P(||Sn — Skl > s) <1,
P(||Snl > t)
1 — ¢ maxi<g<n P(|[Sn — Skl > 5)
(apply (3.1) to X}V := X,,_py1, k=1,...,n). In particular,

(33) (U +ui) max P(ISi] > 1) > P max |15, — Sl > 2t).

3.2 P( S t><
(3.2) @?é%” Kl >s+t) <

Further, by the second part of the proof of the Theorem,
(3.4) P( max || Skl > s+ 2t>
1<k<n

< P(ISull > ) + i max P(ISi]l > $)P( max (1S, = Sell > s +1),
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and for s such that ¢} max<g<p P(||Sk|| > s) < 1,

P(|[Sull > 1)
3.5 P(max S >s+2t>§ .
(3.5) 2, 155 T 0 maxicien P(ISH] > 5)
Thus by (3.4) we get
COROLLARY. Let X1,...,X,, be a sequence of random vectors such that

Y} < 0o. Then
(36)  P(max il > 3t) < (L+vf) max P(ISi] > o).

A generalization of for the coefficient qﬁ (see [3, Vol. I, Definition 3.3,
p. 67]), which is weaker than ¢* and asymmetric (cf. [3, Vol. I, Proposition
5.2(IIT)(a), p. 153]), is due to losifescu (cf. [8, Théoréme 3, pp. 327-328], [10]
Lemma 1.1.6, p. 8]). An extension of the latter is formula (13) in [I7], p. 69],
while the analogue of is stated in [I7, Proposition 8, p. 68].

As a simple application of these inequalities we consider moment inequal-
ities. Let ¢ > 1. Then setting in (3.5))

. 1/q
= (@ + v299]) max E(IS:9) "
we see by Markov’s inequality that for every t > 0,

P(max ”SkH>S+2t> (1 + /Y7 /29)P(||Sn| > t).

1<k
Therefore integration yields
+

B( (s 1561 ) ) <20+ VTTBIS,

This and the inequality
((a—=0)")?>299 — b7, a,b>0,
with a = maxj<g<y, HSkH and b = s give
(3.7) 220~ 1( Vi/24)? max E(||Sk||?) > F max [|Sk||?
1<k<n

(cf. [I8, p. 339]). More generally we have

PROPOSITION. Let X1,..., X, be a sequence of random vectors such that
YF < oo and ¢ : RT — RT be a non-decreasing function. Then

(38)  B(e(max [Si])) <200+ w) max B(e(3]Si])).

1<k<n

We adapt the proof due to S. Kwapieni (cf. [12]). Setting s = ¢ in (3.5))
yields
P([[Sall > t)

1 — ¢} maxi<p<n P(||Skl| > t)

P( max || Sy > 3t> <
1<k<n
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Define
to =1 f{t:2 : P(||S t <1}7
0 m wl 1211632(11 (H kH > ) -

and let kg be such that

g% (I[Sk]l > to) (1Sko Il = to)

Then 297 P(||Sk,|| > to) > 1 and
1
1 — 4§ maxj<pen P(||Sk| > ¢
for t > to, while 2¢7 P(||Sk,|| > t) > 1 for t < tg. Therefore,

P(max 1kl > 3t) < 2P(ISull > 1) + 261 P(Sk, || > 1)

) =2

for all t € RT. Hence, by Proposition 0.2.1 of [13], applied to ¢(t/3),
B(p( max [19:])) < 2B(e(31S0)) + 201 E(e(3lIk, ),
SRS
which concludes the proof of the Proposition.

REMARK. For independent random vectors the Proposition was obtained
by S. Kwapienn (cf. [12]) with constant 6; here we have replaced it by 4.
Observe also that for ¢(t) = t* from we get constant 324, while
gives 200. On the other hand, for ¢ = 8 the inequality gives 36992,
while yields 26244.
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