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Summary. Consider the sequence (Cn)n≥1 of positive numbers defined by C1 = 1 and
Cn+1 = 1 + C2

n/4, n = 1, 2, . . . . Let M be a real-valued martingale and let S(M) denote
its square function. We establish the bound

E|Mn| ≤ CnESn(M), n = 1, 2, . . . ,

and show that for each n, the constant Cn is the best possible.

1. Introduction. Square function inequalities play an important role
in both classical and noncommutative probability theory, harmonic analysis,
potential theory and many other areas of mathematics. The purpose of this
paper is to establish a sharp bound between the first moments of a martingale
and its square function, with a constant depending on the length of the
martingale.

We start with some definitions. Throughout the paper, (Ω,F ,P) will
be a given probability space, filtered by a nondecreasing family (Fn)∞n=0 of
sub-σ-fields of F . Let M = (Mn)n≥1 be a real-valued martingale adapted to
(Fn)n≥1 and let dM = (dMn)n≥1 stand for its difference sequence:

dM1 =M1, dMn =Mn −Mn−1, n = 2, 3, . . . .

A martingale M is called simple if for any n = 1, 2, . . . the random variable
Mn takes only a finite number of values. For any nonnegative integer n, let
Sn(M) be given by

Sn(M) =
( n∑
k=1

|dMk|2
)1/2

.

Then one defines the square function S(M) by S(M) = limn→∞ Sn(M).
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For p > 0, let ‖M‖p = supn ‖Mn‖p = supn(E|Mn|p)1/p. We will be inter-
ested in inequalities between the moments of M and S(M). Such estimates
(without using the martingale concept or word) appeared for the first time
in the classical papers of Khintchine [9], Littlewood [10], Marcinkiewicz [11]
and Paley [14]. For more recent results in this direction, we refer the inter-
ested reader to the survey [3] by Burkholder or the monograph [13] by the
author.

For example, the inequality
(1.1) cp‖M‖p ≤ ‖S(M)‖p ≤ Cp‖M‖p if 1 < p <∞,
valid for all martingales, was proved by Burkholder in [2]. Later, Burkholder
refined his proof and showed that (cf. [3]) the inequality holds with c−1p =
Cp = p∗ − 1, where p∗ = max{p, p/(p− 1)}. Furthermore, the constant cp is
optimal for p ≥ 2, Cp is the best for 1 < p ≤ 2 and the proof carries over to
the case of martingales taking values in a separable Hilbert space. The right
inequality of (1.1) does not hold for general martingales if p ≤ 1, nor does
the left one if p < 1. It was shown by the author in [12] that c1 = 1/2 is the
best constant. In the remaining cases the optimal values of cp and Cp are
not known. Let us mention here a related result of Cox [5], who identified
the best constant in the corresponding weak type inequality: we have
(1.2) P(S(M) ≥ 1) ≤

√
e ‖M‖1

(see also Bollobás [1]). Our objective is to compare the first moments of Mn

and Sn(M) for each fixed n, and the novelty lies in the sharp dependence of
the constants on n. Here is the precise statement of our main result.

Theorem 1.1. Let (Cn)n≥1 be the sequence of numbers given by C1 = 1
and Cn+1 = 1 + C2

n/4, n = 1, 2, . . . . Then for any real martingale M and
any n ≥ 1,

(1.3) ‖Mn‖1 ≤ Cn‖Sn(M)‖1.
For each n the constant Cn is the best possible.

Unfortunately, there seems to be no explicit formula for the sequence
(Cn)n≥1. However, an easy analysis shows that this sequence increases to 2;
thus, letting n → ∞ in (1.3) we obtain the inequality ‖M‖1 ≤ 2‖S(M)‖1,
proved by the author in [12]. It is worth mentioning here the following version
of (1.3) in the reverse direction: in the proof of (1.2), Cox [5] actually showed
the more exact estimate

P(Sn(M) ≥ 1) ≤
(

n

n− 1

)(n−1)/2
E|Mn|, n ≥ 1.

A few words about the method of proof are in order. The technique
used in this paper has its roots in the theory of moments, introduced by
Kemperman in [8]. This approach, when applicable, always leads to a sharp
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inequality and provides an example of a martingale attaining equality or
nearly so. The argument rests on the construction of an appropriate sequence
of special functions and is closely related to a method invented by Burkholder
in [4] (see the discussion in Section 2). In the literature, there are several
papers in which the method of moments has been successfully implemented.
We refer the reader to the works of Cox [5], [6], Cox and Kemperman [7] and
Kemperman [8]. The main problem is that the technique has the drawback
of computational complexity, which sometimes makes it difficult to push the
calculations through. This happens also in our case, and to overcome this
difficulty, we slightly modify the method, which enables us to simplify the
technicalities.

We have organized the paper as follows. The next section contains the
description of the approach which is used in the proof of Theorem 1.1. In
Section 3 we exploit this method: we introduce a family of special functions
and establish appropriate statements about them. This enables us to deduce
the desired bound (1.3). The final part of the paper is devoted to proving
the optimality of the constant Cn.

2. On the method of proof. Let V : R × [0,∞) → R be a given
function, let n be a fixed integer and suppose that we are interested in
showing that for any simple martingale M ,

(2.1) EV (Mn, Sn(M)) ≤ 0.

For instance, the choice V (x, y) = |x|−Cn|y| leads to moment estimates stud-
ied in this paper. Conditioning on M1 if necessary, we may and will assume
that the starting variable of M is constant almost surely. To study (2.1), we
introduce a family of auxiliary functions. Namely, for any k = 1, 2, . . . , let
us define UVk : R× [0,∞)→ R by

(2.2) UVk (x, y) = sup
{
EV
(
Mk,

√
y2 − x2 + S2

k(M)
)}
,

where the supremum is taken over all simple martingalesM starting from x.
In the language of these functions, (2.1) can be rephrased as UVn (x, |x|) ≤ 0
for all x. In particular, only the case y = |x| seems to be of impor-
tance. However, the inductive step below requires the analysis of UVn on
its whole domain. Observe that UV1 (x, y) = V (x, y), since M1 ≡ x and√
y2 − x2 + S2

1(M) ≡ y. Moreover, we have

(2.3) UV2 (x, y) = sup{EV (x+D,
√
y2 +D2) : ED = 0}

and, conditioning on M2,

(2.4) UVk+1(x, y) = sup
{
EUVk (x+D,

√
y2 +D2) : ED = 0

}
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for k = 2, 3, . . . . Both equalities (2.3) and (2.4) involve the evaluation of
supEh(D) over all centered random variables D, where h is a given function.
This is a standard problem of the theory of moments (see Kemperman [8])
and can be solved “graphically” as follows: the required supremum is equal
to the height, at location x = 0, of the upper boundary of the convex hull of
the graph of h. However, for V (x, y) = |x|−Cy the iterative computations of
the heights become complicated and simplifying the above approach becomes
desirable.

To describe the appropriate modification, let us note the following prop-
erty of the sequence (UVk )k≥1. Namely, ifM is a martingale satisfyingM1≡ x,
then by (2.3) and (2.4),

UVn (x, |x|) = EUVn (M1, S1(M))(2.5)

≥ EUVn−1(M2, S2(M)) ≥ . . . ≥ EUV1 (Mn, Sn(M))

= EV (Mn, Sn(M)).

Thus, if we have UVn (x, |x|) ≤ 0 for all x, we indeed get (2.1). The idea is
that one may search for other functional sequences (in place of (UVk )k≥1),
for which the above chain of inequalities holds true (in the last line, we allow
the bound “≥”, instead of equality).

Specifically, we have the following statement.

Theorem 2.1. Let V : R × [0,∞) → R be a given function and let
n ≥ 1 be a fixed integer. Suppose that (Uk)

n
k=1 is a sequence of real-valued

functions on R× [0,∞) which satisfy the following three conditions:

(i) Un(x, |x|) ≤ 0 for all x ∈ R.
(ii) U1(x, y) ≥ V (x, y) for all x ∈ R and y ≥ 0.
(iii) For each k = 1, . . . , n − 1 there is a function Ak : R × [0,∞) → R

such that if x, d ∈ R and y ≥ 0, then

Uk+1(x, y) +Ak(x, y)d ≥ Uk
(
x+ d,

√
y2 + d2

)
.

Then (2.1) holds true.

Proof. Fix k ∈ {1, . . . , n − 1}. Apply (iii) to x = Mn−k, y = Sn−k(M)
and d =Mn+1−k−Mn−k, and take the conditional expectation of both sides
with respect to Fn−k. We obtain

Uk+1(Mn−k, Sn−k(M)) ≥ E[Uk(Mn−k+1, Sn−k+1(M)) | Fn−k]
and thus, integrating both sides, we get

EUk+1(Mn−k, Sn−k(M)) ≥ EUk(Mn−k+1, Sn−k+1(M)).

Combining this with (ii), we see that the chain (2.5) (with inequality in the
last line and UVk replaced by Uk) is valid. It remains to apply (i) and the
claim follows.
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This methodology is closely related to the approach invented by Burkhol-
der in [4] (see also [2] for a related technique concerning martingale trans-
forms). Let us say a few words about this interesting connection. Suppose
that we are given a function V : R × [0,∞) → R and we want to establish
the inequality (2.1) for all simple martingales and for all values of n. To
handle this problem, we apply the formula (2.2) for each n, thus obtaining
an infinite sequence (UVn )n≥1. It follows directly from the definition that
the sequence is nondecreasing: indeed, if M is any simple martingale, then
the sequence (M1,M2, . . . ,Mn−1,Mn,Mn,Mn+1,Mn+2, . . .) is also a simple
martingale, so by the definition of UVn+1,

UVn+1(x, y) ≥ EV (Mn,
√
y2 − x2 + S2

n(M)).

Thus, taking the supremum over all M gives monotonicity. Therefore it
makes sense to speak about the limit

UV (x, y) = lim
n→∞

UVn (x, y).

Now, if UV is finite on R × [0,∞), one easily checks that a version of (2.5)
holds true (all UVk ’s are replaced by UV and there is inequality in the last
line). These observations lead us to the following analogue of Theorem 2.1,
which can be found, in a slightly different form, in [4].

Theorem 2.2. Let V : R× [0,∞)→ R be a given function. Suppose that
U is a real-valued function on R× [0,∞) which satisfies the following three
conditions:

(i) U(x, |x|) ≤ 0 for all x ∈ R.
(ii) U(x, y) ≥ V (x, y) for all x ∈ R and y ≥ 0.
(iii) There is a measurable function A : R × [0,∞) → R such that if

x, d ∈ R and y ≥ 0, then

U(x, y) +A(x, y)d ≥ U
(
x+ d,

√
y2 + d2

)
.

Then (2.1) holds true for all simple martingales M and all integers n.

For further details, examples and the proof of the above statement, we
refer the reader to the works [4], [12] and Chapter 8 in [13].

3. Proof of (1.3). For the sake of clarity, we have decided to split
this section into two parts. The first subsection contains the proofs of three
technical facts which are needed later; in the second part, we introduce ap-
propriate special functions and establish (1.3).

3.1. Technical lemmas. Throughout this subsection, we assume that
C is a fixed number in the interval [1, 2).
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Lemma 3.1. For any x, d ∈ R such that |x| ≤
√
C − 1 we have

|x+ d| −
√
C
√
x2 + 1 + Cd2 ≤

√
C − 1 (−1 + xd).

Proof. By continuity, we may assume that C > 1 and |x| <
√
C − 1.

Observe that it suffices to show the weaker bound

(3.1) x+ d−
√
C
√
x2 + 1 + Cd2 −

√
C − 1 (−1 + xd) ≤ 0.

Indeed, having done this, we substitute −x,−d in place of x, d, obtaining

−x− d−
√
C
√
x2 + 1 + Cd2 −

√
C − 1 (−1 + xd) ≤ 0,

and the two inequalities above yield the desired statement. To prove (3.1),
consider its left-hand side as a function of d and denote it by F (d). Note
that F tends to −∞ as d → ±∞: this follows at once from the assumption
|x| <

√
C − 1. Thus, it suffices to check that F (d) ≤ 0 for all d such that

F ′(d) = 0. It is straightforward to verify that the latter equation is equiva-
lent to

d =

(
x2 + 1

C(C2 − (1−
√
C − 1x)2

)1/2

(1−
√
C − 1x)

and the inequality F (d) ≤ 0 can be rewritten in the form
√
C − 1 + x ≤

(
x2 + 1

C
[C2 − (1−

√
C − 1x)2]

)1/2

.

However, we have

C2 − (1−
√
C − 1x)2 =

√
C − 1 (

√
C − 1 + x)(C + 1−

√
C − 1x),

so squaring the above inequality and dividing by
√
C − 1+x, we obtain the

equivalent bound
√
C − 1 + x ≤ x2 + 1

C

√
C − 1 (C + 1−

√
C − 1x).

This estimate, in turn, can be transformed into

(x−
√
C − 1)(

√
C − 1x− 1)2 ≤ 0,

which is of course valid.

Lemma 3.2. For any y ≥ 0, d ∈ R and x ≥
√
C − 1 y we have

|x+ d| − C
√
y2 + d2 ≤ x− 2

√
C − 1 y + (C − 1)d.

Proof. If d ≤ −x, the bound is equivalent to

−Cd− C
√
y2 + d2 ≤ 2(x−

√
C − 1 y),

which holds true: the left-hand side is nonpositive, while the expression on
the right is nonnegative. Suppose then that d > −x. Then the desired esti-
mate takes the form

(2− C)d− C
√
y2 + d2 ≤ −2

√
C − 1 y.
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Clearly, the left-hand side, considered as a function of d, is concave. A straight-
forward analysis of its derivative shows that this function attains its max-
imum at d = (2 − C)y/

(
2
√
C − 1

)
, and the maximal value is precisely the

right-hand side.

Lemma 3.3. Assume that the numbers x, y ≥ 0 and d ∈ R satisfy the
conditions x ≥

√
C − 1 y and |x+ d| ≤ (C/2)

√
y2 + d2. Then

(3.2) − C

2

√
(C2/4 + 1)(y2 + d2)− (x+ d)2 − (C − 1)d

≤ x− 2
√
C − 1 y.

Proof. If d is nonnegative, then the left-hand side is not larger than
−(C/2)

√
y2 + d2 ≤ −Cy/2 and the right-hand side is at least −

√
C − 1 y

≥ −Cy/2, so the assertion is valid. Let us turn to the case when d ≤ 0.
Assume first that x ≤ Cy/2; then the discriminant of

(3.3) d 7→ (C2/4 + 1)(y2 + d2)− (x+ d)2

is nonpositive and hence the left-hand side of (3.2) is concave as a function
of d (denoted by G(d)). However, G(0) ≤ x−2

√
C − 1 y, as we have already

proved above, and

G′(0) =
C

2

x√
(C2/4 + 1)y2 − x2

− (C − 1).

Since x ≥
√
C − 1 y, we obtain

G′(0) ≥ C
√
C − 1√

(C − 2)2 + 4
− (C − 1),

and the expression on the right is nonnegative: after some straightforward
manipulations, this is equivalent to (2 − C)3 ≥ 0. Hence G(d) ≤ G(0) for
d ≤ 0, which is exactly what we need.

It remains to deal with the case d ≤ 0 and x > Cy/2. The assumption
|x+ d| ≤ (C/2)

√
y2 + d2 is equivalent to saying that d ∈ [d−, d+], where

d± =
−x± C

2

√
(1− C2/4)y2 + x2

1− C2/4
.

This time the discriminant of the binomial (3.3) turns out to be nonnegative,
so the function G(d) (the left-hand side of (3.2)) is convex. Thus, all we need
is the bound G(d±) ≤ x − 2

√
C − 1 y. Let us first handle the upper bound

for G(d−). We have x+ d− ≤ 0, so

G(d−)− x+ 2
√
C − 1 y = (2− C)d− + 2

√
C − 1 y

=
4
[
x+ C

2

√
(1− C2/4)y2 + x2

]
2 + C

+ 2
√
C − 1 y
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and the latter expression is an increasing function of x. Thus, we will be
done if we show G(d−) ≤ x − 2

√
C − 1 y for x = Cy/2. This amounts to

proving that (
4C

C + 2
+ 2
√
C − 1

)
y ≤ 0,

or equivalently (C − 2)(C2 + C − 2) ≤ 0, which is evident.
Finally, we turn to the upper bound for G(d+). We have x+ d+ ≥ 0 and

hence

G(d+)− x+ 2
√
C − 1 y = −Cd+ − 2(x−

√
C − 1 y)

=
4C
[
x− C

2

√
(1− C2/4)y2 + x2

]
4− C2

− 2(x−
√
C − 1 y).

The latter expression, considered as a function of x, is nonincreasing: indeed,
its derivative equals

4C

4− C2
− 2C2

(4− C2)
√
(1− C2/4)y2/x2 + 1

− 2 ≤ 4C

4− C2
− C3

4− C2
− 2

= C − 2 ≤ 0,

where the first bound above follows from the assumption x > Cy/2. Thus,
we will be done if we show G(d+) ≤ x− 2

√
C − 1 y ≤ 0 for x = Cy/2. This

is equivalent to (2
√
C − 1− C)y ≤ 0, or (C − 2)2 ≥ 0.

3.2. A family of special functions. Let 1 ≤ C ≤ 2 be a fixed number.
Consider the function UC : R× [0,∞)→ R given by

(3.4) UC(x, y) =

{
−(C/2)

√
(C2/4 + 1)y2 − x2 if |x| ≤ Cy/2,

|x| − Cy if |x| > Cy/2.

Note that U2 is precisely the special function used by the author in [12] in
the proof of the estimate ‖M‖1 ≤ 2‖S(M)‖1. We will also need an auxiliary
function AC on R× [0,∞), defined by

AC(x, y) =

{
(C/2)x

/√
(C2/4 + 1)y2 − x2 if |x| ≤ Cy/2,

(C2/4) sgnx if |x| > Cy/2.

Let (Cn)n≥1 be the sequence introduced in Section 1 and let n ≥ 1
be fixed. For any k = 1, . . . , n, let Uk = UCn+1−k ; furthermore, for k =
1, . . . , n − 1, let Ak = ACn−k . Finally, put V (x, y) = |x| − Cny. We will
show that the sequence (Uk)

n
k=1 has all the necessary properties listed in

Theorem 2.1.

Lemma 3.4. The conditions (i) and (ii) of Theorem 2.1 are satisfied.

Proof. The property (i) is trivial: we have Un(x, |x|) = UC1(x, |x|) = 0.
The condition (ii) also has a simple proof. Indeed, for |x| ≥ Cny/2 we get
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equality, so we may assume that |x| < Cny/2. Furthermore, we may restrict
ourselves to nonnegative x. Rewrite the majorization in the form

(3.5) Cny ≥ x+
Cn
2

√
(C2

n/4 + 1)y2 − x2

and observe that the right-hand side is increasing as a function of x ∈
[0, Cny/2]: its derivative equals

1− Cn
2

1√
(C2

n/4 + 1)y2/x2 − 1
≥ 1− C2

n

4
≥ 0.

Hence, it suffices to show (3.5) for x = Cny/2; but then both sides are
equal.

We turn to the third condition of Theorem 2.1.

Lemma 3.5. For any k = 1, . . . , n − 1, any x, d ∈ R and any y ≥ 0 we
have

(3.6) Uk
(
x+ d,

√
y2 + d2

)
≤ Uk+1(x, y) +Ak(x, y)d.

Proof. Denote C = Cn+1−k, so that Cn−k = 2
√
C − 1. The function Uk

is defined by the right-hand side of (3.4), while the formulas for Uk+1 and
Ak read

Uk+1(x, y) =

{
−
√
C − 1

√
Cy2 − x2 if |x| ≤

√
C − 1 y,

|x| − 2
√
C − 1 y if |x| >

√
C − 1 y,

and

Ak(x, y) =

{√
C − 1x/

√
Cy2 − x2 if |x| ≤

√
C − 1 y,

C − 1 if |x| >
√
C − 1 y.

Suppose first that x ≤
√
C − 1 y. If |x+ d| ≤ (C/2)

√
y2 + d2, then

Un(x+ d,
√
y2 + d2) = −C

2

√
(C2/4 + 1)(y2 + d2)− (x+ d)2

≤ −
√
C − 1

√
C(y2 + d2)− (x+ d)2

(simply square both sides to verify the latter bound). The discriminant of
the quadratic function d 7→ C(y2 + d2)− (x+ d)2 is nonpositive (because of
the assumption x ≤

√
C − 1 y), so the function

H(d) = −
√
C − 1

√
C(y2 + d2)− (x+ d)2

is concave. Thus H(d) ≤ H(0) +H ′(0)d, or

Un(x+ d,
√
y2 + d2) ≤ −

√
C − 1

√
Cy2 − x2 +

√
C − 1

xd√
Cy2 − x2

,

which is precisely (3.6).
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Next, assume that x ≤
√
C − 1 y and |x + d| > (C/2)

√
y2 + d2. The

bound (3.6) becomes

|x+ d| − C
√
y2 + d2 ≤

√
C − 1

√
Cy2 − x2

(
−1 + xd

Cy2 − x2

)
.

By homogeneity, we may assume that Cy2 − x2 = 1. Then the above in-
equality is precisely the assertion of Lemma 3.1. Therefore, all we need is
the verification of the assumption |x| ≤

√
C − 1 appearing in the statement

of the lemma. But this follows from

x2 = Cx2 − (C − 1)x2 ≤ C(C − 1)y2 − (C − 1)x2 = C − 1.

Finally, we turn to the case |x| ≥
√
C − 1 y. Since Un(x, y) = Un(−x, y)

and An(x, y) = −An(−x, y), we may restrict ourselves to nonnegative x.
Now, if |x+d| > (C/2)

√
y2 + d2, the inequality (3.6) is precisely the assertion

of Lemma 3.2. On the other hand, if |x+d| ≤ (C/2)
√
y2 + d2, then the claim

follows from Lemma 3.3.

4. Sharpness. To prove that for a given n the constant Cn cannot be re-
placed by a smaller number, one could try to construct appropriate examples.
However, we will use a different approach which rests on the properties of
the abstract special functions U of Section 2.

Let n ≥ 1 be a fixed integer and let α < 1 be a given constant. Consider
the sequence (αk)

n
k=1 given by α1 = α, αk+1 = 1 + α2

k/4, k = 1, . . . , n − 1.
Of course, then αn < Cn; furthermore, by the proper choice of α, we may
make αn as close to Cn as we wish. For any 1 ≤ k ≤ n, let

Uαk (x, y) = sup
{
E|Mk| − αnE

√
y2 − x2 + S2

k(M)
}
,

where the supremum is taken over all simple martingales starting from x
(we stress here that the constant above is αn, not αk). Note that Uαk (x, y) =
Uαk (−x, y): this follows from the trivial fact that ifM is a martingale starting
from x, then −M is a martingale starting from −x, and the two sequences
have the same square function. As we have observed in Section 2, Uαk satisfies

Uαk (x, y) = sup{EUαk−1(x+D,
√
y2 +D2) : ED = 0},

and hence, for any centered random variable D we have

(4.1) Uαk (x, y) ≥ EUαk−1(x+D,
√
y2 +D2).

We will prove that

(4.2) Uαk (x, y) ≥ |x| − αn+1−ky for k = 1, . . . , n,

which will immediately yield the claim: indeed, in particular this will give
Uαn (1, 1) ≥ 1 − α > 0, and will imply that no constant smaller than Cn
suffices in (1.3).
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To show (4.2), we use induction. Fix x, y; actually, by the symmetry
of Uαk , we may assume that x ≥ 0. For k = 1 the bound is trivial. Next, fix
1 ≤ k ≤ n−1 and consider a centered random variable D which takes values
in the set {t1, t2}, where t1 = (2− αn−k+1)y/(2

√
αn−k+1 − 1) > 0 and t2 is

a negative number. By (4.1) and the inductive assumption, we get

Uαk+1(x, y)≥ β1Uαk
(
x+ t1,

√
y2 + t21

)
+ β2U

α
k

(
x+ t2,

√
y2 + t22

)
≥ β1

[
x+ t1−αn−k+1

√
y2+ t21

]
+β2

[
|x+ t2|−αn−k+1

√
y2+ t22

]
,

where β1 = −t2/(t1 − t2) and β2 = t1/(t1 − t2). Now let t2 → −∞: as a
result, we obtain

Uαk+1(x, y) ≥ x+ t1 − αn−k+1

√
y2 + t21 + t1(1− αn−k+1)

= x− 2
√
αn−k+1 − 1 y = x− αn−ky.

This completes the proof.
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