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Summary. We study actuarial methods of option pricing in a fractional Black–Scholes
model with time-dependent volatility. We interpret the option as a potential loss and we
show that the fair premium needed to insure this loss coincides with the expectation of
the discounted claim payoff under the average risk neutral measure.

1. Introduction. In [1] Bladt and Rydberg introduced a new method
of option pricing by replacing the option pricing problem with an equivalent
insurance problem. Their idea is to discount risk free and stochastic future
prices according to the risk free interest rate and the so-called expected rate of
return, respectively. With these discounted prices they calculated the price
(fair insurance premium) of a European call option as the expected value
of the difference between the actual price and the strike price (in present
values) when exercising the option. Later on the above actuarial approach
was used to option pricing in many papers (see e.g. [3, 4, 16]).

In the present paper we apply the actuarial approach to option pric-
ing in a fractional Black–Scholes model with time-dependent volatility. Let
(BH

t )t∈[0,T ] be a fractional Brownian motion (fBm) with Hurst parameter
H ∈ (1/2, 1) defined on some probability space (Ω,F , P ), i.e. a continuous
zero-mean Gaussian process with covariance

EBH
t B

H
s = 1

2(t
2H + s2H − |t− s|2H), s, t ∈ [0, T ].

We consider a continuous market model consisting of stock whose price S
evolves under the underlying measure P according to the stochastic differ-

2010 Mathematics Subject Classification: Primary 91B70; Secondary 60G15, 60G22.
Key words and phrases: option pricing, fractional Black–Scholes model, time-dependent
volatility, Girsanov theorem.

DOI: 10.4064/ba61-2-12 [181] c© Instytut Matematyczny PAN, 2013



182 A. Falkowski

ential equation

(1.1) St = S0 +

t�

0

µ(u)Su du+

t�

0

σ(u)Su dB
H
u , t ∈ [0, T ],

with some deterministic functions µ, σ : [0, T ]→ R, and of bond whose price
B is given by

(1.2) Bt = exp(rt), t ∈ [0, T ],

for some r ≥ 0. For σ constant the above model was considered by Valkeila
[15] and Sottinen and Valkeila [13, 14]. Since BH is not a semimartingale
and there is no martingale measure on the market described by (1.1), (1.2),
the classical option pricing methods do not apply. To overcome this diffi-
culty Valkeila [15] and Sottinen and Valkeila [13, 14] proposed to replace
the martingale measure by a measure Q equivalent to P under which the
discounted stock price is given by a geometric fractional Brownian motion.
This measure resembles the martingale measure in the sense that it has the
property that

(1.3) B−1t EQ(St) = S0, t ∈ [0, T ].

In [15] it is proved that such a measure Q, called the average risk neutral
measure, exists and is unique. In [15] and [13, 14] the measure Q is used to
derive an option pricing formula for a European call option. A drawback of
the above papers is the lack of economic justification of the pricing formula
based on Q.

In the present paper we first use a Girsanov-type theorem for Wiener in-
tegrals with respect to fBm to extend the results of Valkeila [15] and Sottinen
and Valkeila [13, 14] on existence and uniqueness of the average risk neutral
measure to the model (1.1), (1.2) with time-dependent volatility. Then we
prove that for a general functional F : C[0, T ] × R → R the fair insurance
premium of the option of the form FT = F (S,K) is equal to

C(FT ) = B−1T EQ(F̃ (S,K)),

where F̃ : C[0, T ] × R → R is some modified functional determined by F .
It is worth noting that F̃ = F if r = 0, and if r > 0 then F̃ = F in the
important case of European options of the form FT (S,K) = f(ST ,K) with
f : R × R → R such that f(cx, cy) = cf(x, y) for c ∈ R+, x, y ∈ R. This
class of options includes call and put options, chooser options, binary options
and others (see Remark 3.4). In particular, the price of the European call
option with expiration time T and strike priceK is given by C((ST−K)+) =
B−1T EQ(ST−K)+, which leads to the analogue of the Black–Scholes formula:

(1.4) C((ST −K)+) = S0Φ(y1)−Ke−rTΦ(y2),
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where

y1 =
log S0

K + rT + 1
2〈σ, σ〉

H
T√

〈σ, σ〉HT
, y2 =

log S0
K + rT − 1

2〈σ, σ〉
H
T√

〈σ, σ〉HT
and

(1.5) 〈σ, σ〉Ht = H(2H − 1)

t�

0

t�

0

σ(u)σ(s)|u− s|2H−2 ds du, t ∈ [0, T ].

2. Preliminaries

2.1. Integration with respect to fBm. Since BH is not a semimartin-
gale, the classical Itô integration theory cannot be used to define the stochas-
tic integral with respect to BH . However, the integral can be easily defined
if we restrict ourselves to deterministic integrands f : [0, T ]→ R such that

‖f‖L1/H
[0,T ]

=
( T�

0

|f(s)|1/H ds
)H

<∞.

To define it, let us denote by E the set of all step functions, i.e. functions
of the form f(t) =

∑n
i=1 fi1(ti−1−ti](t), where 0 = t0 < t1 < · · · < tn = T ,

fi ∈ R. For f ∈ E we define the integral with respect to BH by
T�

0

f(s) dBH
s :=

n∑
i=1

fi(B
H
ti −B

H
ti−1

).

It is easy to see that EBH
t B

H
s = H(2H − 1)

	t
0

	s
0 |u − v|

2H−2 du dv, which
implies that for every f, g ∈ E we have

(2.1) E
( T�

0

f(s) dBH
s

T�

0

g(s) dBH
s

)
= 〈f, g〉HT ,

where 〈f, g〉HT = H(2H − 1)
	T
0

	T
0 f(t)g(s)|t− s|

2H−2 ds dt. In [9] it is proved
that 〈f, g〉HT is an inner product in L1/H

[0,T ], whereas in [6] it is proved that for

every f ∈ L1/H
[0,T ] ,

(2.2)
√
〈f, f〉HT ≤ CH‖f‖L1/H

[0,T ]

.

Therefore we can define the stochastic integral (usually called the Wiener
integral) as follows. Let f ∈ L1/H

[0,T ] and let {fn} be a sequence of step func-

tions such that fn → f in L1/H
[0,T ]. Then by (2.1) and (2.2) the sequence

{
	T
0 fn(s) dB

H
s } is Cauchy in L2(Ω). Since L2(Ω) is complete, we may define	T

0 f(s) dB
H
s ∈ L2(Ω) as the limit of {

	T
0 fn(s) dB

H
s } as n→∞.



184 A. Falkowski

To construct the stochastic integral with respect to the fBm of non-
deterministic integrands we follow Ruzmaikina [10] (see also [2], [12]). Let
Cα be the space of α-Hölder continuous functions on [0, T ]. Since BH ∈Cα
for α < H with probability one, it follows that the Stieltjes integral	T
0 X(s, ω) dBH

s (ω) exists for almost all ω ∈ Ω and X(·, ω) ∈ Cγ with γ >
1− α.

2.2. Girsanov-type theorem. Consider the so-called fundamental mar-
tingale, i.e. the process

(2.3) MH
t =

t�

0

k(t, s) dBH
s ,

where k(t, s) = κ−1H s1/2−H(t − s)1/2−H , κH = 2HB(3/2 −H,H + 1/2) and
B is the Euler beta function. It is obvious that MH is a centered Gaussian
process. Let wHt = λ−1H t2−2H , t ∈ [0, T ], where λH = (2HΓ (3 − 2H)Γ (H +
1/2))/(Γ (3/2 −H)) and Γ stands for the gamma function. It follows from
Theorem 3.1 in [8] thatMH has independent increments and E(MH

t )2 = wHt .
In particular, MH is a martingale. It is easy to verify that the process

Wt =

(
λH

2− 2H

)1/2 t�

0

sH−1/2 dMH
s , t ∈ [0, T ],

is a centered continuous martingale with quadratic variation [W ]t = t. There-
fore, by Lévy’s theorem W is a Brownian motion and we also have

(2.4) MH
t =

(
2− 2H

λH

)1/2 t�

0

s1/2−H dWs, t ∈ [0, T ].

We now recall the Girsanov-type theorem for Wiener integrals with re-
spect to the fBm. In what follows, {Ft}t∈[0,T ] is the σ-field generated by W .

Theorem 2.1 ([5]). Let MH be the fundamental martingale defined by
(2.3) and let rH = (2− 2H)B(3/2−H, 3/2−H). Suppose that f , c are such
that

(2.5) ρH(t) = r−1H t2H−1
d

dt

t�

0

s1/2−H(t− s)1/2−H c(s)
f(s)

ds, t ∈ [0, T ],

is well defined for almost every t with respect to the Lebesgue measure and

(2.6)
T�

0

ρ2H(s) dw
H
s <∞.
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If we define Q on FT by

(2.7)
dQ

dP
= exp

(
−
T�

0

ρH(s) dM
H
s −

1

2

T�

0

ρ2H(s) dw
H
s

)
,

then the process
	·
0 f(s) dB

H
s +

	·
0 c(s) ds has the same finite-dimensional dis-

tributions under Q as
	·
0 f(s) dB

H
s under P .

Theorem 2.2. Under the assumptions of Theorem 2.1, Q defined by
(2.7) is the only measure equivalent to P such that the process

	·
0 f(s) dB

H
s +	·

0 c(s) ds has the same law under Q as
	·
0 f(s) dB

H
s under P .

Proof. Suppose that there exist two measures Q1 and Q2 equivalent to
P such that Y =

	·
0 f(s) dB

H
s +

	·
0 c(s) ds under Q1 and under Q2 has the

same finite-dimensional distribution as X =
	·
0 f(s) dB

H
s under P . It is easy

to check that
t�

0

k(t, s)
c(s)

f(s)
ds =

t�

0

ρH(s) dw
H
s , t ∈ [0, T ].

Hence, by (2.3),MH+
	·
0 ρH(s) dw

H
s =

	·
0 k(·, s)f

−1(s) dYs has under bothQ1

and Q2 the same finite-dimensional distribution asMH=
	·
0 k(·, s)f

−1(s) dXs

under P . From this and (2.4) it follows that the process W̃ defined as

W̃t =Wt +

(
λH

2− 2H

)1/2 t�

0

sH−1/2ρH(s) dw
H
s , t ∈ [0, T ],

is a Brownian motion under both Q1 and Q2. By the Radon–Nikodym theo-
rem there exists a random variable ZT such that Q1(A) =

	
A ZT dQ2 for all

A ∈ FT . Let
Zt = EQ2(ZT | Ft), t ∈ [0, T ].

Since Z is a martingale under Q2, it follows that

Zt = 1 +

t�

0

Hs dW̃s, t ∈ [0, T ],

for some progressively measurable process {Ht}t∈[0,T ]. Note that, since W̃ is
a Q1-martingale, for all A ∈ Ft we have�

A

ZtW̃t dQ2 =
�

A

EQ2(ZT | Ft)W̃t dQ2 =
�

A

ZT W̃t dQ2 =
�

A

W̃t dQ1

=
�

A

EQ1(W̃T | Ft) dQ1 =
�

A

W̃T dQ1 =
�

A

ZT W̃T dQ2.

Therefore ZtW̃t = EQ2(ZT W̃T | Ft), so ZW̃ is also a Q2-martingale. As a
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consequence,
t�

0

Hs ds = [Z, W̃ ]t = 0, t ∈ [0, T ].

It follows that Ht = 0 for a.e. t ∈ [0, T ]. Thus ZT = 1 and Q1(A) = Q2(A)
for all A ∈ FT , which completes the proof.

In general, the verification that assumption (2.6) in Theorem 2.1 holds
true may cause difficulties. We shall give a simple (but convenient for our
purposes) sufficient condition for (2.6) to hold.

Lemma 2.3. If f , c are absolutely continuous on [0, T ] and f(t) 6= 0 for
all t ∈ [0, T ] then ρH given by (2.5) is well defined. Moreover, if for some
C ∈ R,

(2.8)
∣∣∣∣ ddt
(
c(t)

f(t)

)∣∣∣∣ ≤ Ct2H−2, t ∈ (0, T ),

then (2.6) is satisfied.

Proof. First observe that ρH is well defined, because from the rules of
fractional calculus (see Theorem 14.8 in [11]) it follows that the function
t 7→

	t
0 F (x)(t − x)

1/2−Hdx, where F (t) = t1/2−Hc(t)/f(t) for t ∈ [0, T ], is
differentiable a.e. with respect to the Lebesgue measure. We now show that
(2.8) implies (2.6). Since

ρH(t) = r−1H t2H−1
d

dt

t�

0

s1/2−H(t− s)1/2−H c(s)
f(s)

ds

= r−1H t2H−1
d

dt

(
t2−2H

1�

0

u1/2−H(1− u)1/2−H c(ut)
f(ut)

du

)

= r−1H

(
(2− 2H)

1�

0

u1/2−H(1− u)1/2−H c(ut)
f(ut)

du

+ t

1�

0

u1/2−H(1− u)1/2−H d

dt

(
c(ut)

f(ut)

)
du

)
,

using the elementary inequality (a+ b)2 ≤ 2(a2 + b2) we obtain

T�

0

ρ2H(s) dw
H
s

≤ 2r−2H λ−1H

[
(2− 2H)3

T�

0

t1−2H
( 1�

0

u1/2−H(1− u)1/2−H c(ut)
f(ut)

du

)2

dt
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+ (2− 2H)

T�

0

t3−2H
( 1�

0

u1/2−H(1− u)1/2−H d

dt

(
c(ut)

f(ut)

)
du

)2

dt

]
= I1 + I2.

Clearly I1 ≤ C1

	T
0 t

1−2Hdt = (C1/(2 − 2H))T 2−2H for some C1 ∈ R. Fur-
thermore,

I2 ≤ 2r−2H λ−1H (2− 2H)

T�

0

t3−2H
( 1�

0

u1/2−H(1− u)1/2−H
∣∣∣∣ ddt
(
c(ut)

f(ut)

)∣∣∣∣ du)2

dt

≤ 2r−2H λ−1H (2− 2H)C2
T�

0

t3−2H
( 1�

0

u1/2−H(1− u)1/2−Hu2H−1t2H−2 du
)2
dt

= C2

T�

0

t2H−1dt = (C2/2H)T 2H ,

and the proof is complete.

2.3. Absolute continuity of 〈σ, σ〉H . The following lemma gives con-
ditions ensuring absolute continuity of 〈σ, σ〉H defined by (1.5).

Lemma 2.4. If f is an absolutely continuous function on [0, T ] and H ∈
(1/2, 1) then g : [0, T ]→ R given by

g(s) = 2f(s)

s�

0

f(r)(s− r)2H−2 dr, s ∈ [0, T ],

is also absolutely continuous and for every t ∈ [0, T ],
t�

0

g(s) ds =

t�

0

t�

0

f(s)f(r)|s− r|2H−2 dr ds.

Proof. Since f is absolutely continuous, f(r) = f(0)+
	r
0 f
′(u) du. Hence

(2.9)
s�

0

f(r)(s− r)2H−2 dr = f(0)

2H − 1
s2H−1 +

s�

0

( r�
0

f ′(u) du
)
(s− r)2H−2 dr.

Using Fubini’s theorem we obtain
s�

0

( r�
0

f ′(u) du
)
(s− r)2H−2 dr =

s�

0

f ′(u)
( s�
u

(s− r)2H−2 dr
)
du

=

s�

0

f ′(u)
( s�
u

(r − u)2H−2 dr
)
du

=

s�

0

r�

0

f ′(u)(r − u)2H−2 du dr,



188 A. Falkowski

which implies that g is absolutely continuous. Using Fubini’s theorem once
again we have

2

t�

0

f(s)
( s�

0

f(r)(s− r)2H−2 dr
)
ds =

t�

0

f(s)
( s�

0

f(r)(s− r)2H−2 dr
)
ds

+

t�

0

f(r)
( r�

0

f(s)(r − s)2H−2 ds
)
dr

=

t�

0

f(s)
( s�

0

f(r)(s− r)2H−2 dr
)
ds

+

t�

0

f(s)
( t�
s

f(r)(r − s)2H−2 dr
)
ds

=

t�

0

t�

0

f(s)f(r)|s− r|2H−2 dr ds,

which is our claim.

Observe that from Lemma 2.4 it follows that if σ is absolutely continuous
on [0, T ] then

(2.10) 〈σ, σ〉Ht =

t�

0

g(s) ds, t ∈ [0, T ],

where

(2.11) g(t) = 2H(2H − 1)σ(t)

t�

0

σ(s)(t− s)2H−2 ds, t ∈ [0, T ].

Therefore 〈σ, σ〉H is also absolutely continuous.

3. Main results. We consider the model described by (1.1) and (1.2)
with µ ∈ C1[0, T ] and σ ∈ C1[0, T ] such that σ(t) > 0 for t ∈ [0, T ]. We
assume that there are no dividends and no transaction costs.

By Lemma 3.1 and Theorem 4 in [10] the unique pathwise solution of
(1.1) is given by

(3.1) St = S0 exp
( t�

0

µ(s) ds+

t�

0

σ(s) dBH
s

)
, t ∈ [0, T ].

Definition ([1]). The expected rate of return ν of S is defined by the
formula

exp
( t�

0

ν(s) ds
)
= S−10 ESt, t ∈ [0, T ].
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Remark 3.1. By (3.1),

S−10 ESt = exp
( t�

0

µ(s) ds
)
E
(
exp

t�

0

σ(s) dBH
s

)
, t ∈ [0, T ].

Since

(3.2) E exp
( t�

0

σ(s) dBH
s

)
= exp

(
〈σ, σ〉Ht

2

)
(see e.g. [7]), it follows from (2.10) that

(3.3) ν(t) = µ(t) +
g(t)

2
, t ∈ [0, T ],

where g is given by (2.11).
Our aim is to calculate the price C(FT ) for options of the form FT =

F (S,K), where F : C[0, T ] × R → R. Following Bladt and Rydberg [1] we
interpret the price as the fair insurance premium.

Let

S̃t = St exp
(
−
t�

0

ν(s) ds
)
, t ∈ [0, T ], K̃ = Ke−rT .

Definition ([1]). Assume that FT (S̃, K̃) is integrable. The fair pre-
mium of the option FT = F (S,K) is given by

C(FT ) = E(FT (S̃, K̃)).

Definition ([15]). Let Q be a measure equivalent to P . We say that
Q is an average risk neutral measure if under Q the discounted stock price
process is given by

B−1t St = S0 exp

( t�

0

σ(s) dB̃H
s −

〈σ, σ〉Ht
2

)
, t ∈ [0, T ],

where B̃H is a Q-fractional Brownian motion.
Remark 3.2. Note that by (3.2) the average risk neutral measure satis-

fies (1.3).
The main result of the paper is the following theorem.
Theorem 3.3.
(i) The average risk neutral measure exists and is unique.
(ii) For any F : C[0, T ]× R→ R,

(3.4) C(FT ) = B−1T EQ(F̃ (S,K)),

where F̃ : C[0, T ]× R→ R is such that

F̃T (S,K) = erTFT (Se
−r·,Ke−rT ).
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Proof. (i) Note that the Q is the average risk neutral measure if and only
if the process

(3.5)
t�

0

σ(s) dBH
s +

t�

0

µ(s)ds− rt+ 〈σ, σ〉
H
t

2
, t ∈ [0, T ],

has the same finite-dimensional distribution underQ as
	·
0 σ(s) dB

H
s under P .

Let

c(t) = µ(t)− r +H(2H − 1)σ(t)

t�

0

σ(s)(t− s)2H−2 ds, t ∈ [0, T ].

Fix t ∈ (0, T ). By Lemma 2.4 the function c is absolutely continuous and

(3.6)
t�

0

c(s) ds =

t�

0

µ(s) ds− rt+ 〈σ, σ〉
H
t

2
.

We have ∣∣∣∣ ddt
(
c(t)

σ(t)

)∣∣∣∣ = ∣∣∣∣c(t)σ′(t)− c′(t)σ(t)σ2(t)

∣∣∣∣
≤ sup

t∈[0,T ]

∣∣∣∣c(t)σ′(t)σ2(t)

∣∣∣∣+ ( sup
t∈[0,T ]

1

|σ(t)|

)
|c′(t)|

and

c′(t) = µ′(t) +H(2H − 1)

[
σ′(t)

t�

0

σ(r)(t− r)2H−2 dr

+σ(t)
d

dt

( t�
0

σ(r)(t− r)2H−2
)]

≤ sup
t∈[0,T ]

|µ′(t)|+ sup
t∈[0,T ]

|σ′(t)| sup
t∈[0,T ]

|σ(t)|HT 2H−1

+H(2H − 1)
(

sup
t∈[0,T ]

|σ(t)|
) d
dt

( t�
0

σ(r)(t− r)2H−2
)
.

By (2.9),

d

dt

( t�
0

σ(r)(t− r)2H−2
)
= σ(0)t2H−2 +

t�

0

σ′(u)(t− u)2H−2 du

≤ σ(0)t2H−2 + sup
t∈[0,T ]

∣∣∣∣ σ′(t)2H − 1

∣∣∣∣T 2H−1.

Hence
|c′(t)| ≤ 3K1 + |σ(0)|H(2H − 1) sup

t∈[0,T ]
|σ(t)|t2H−2,
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where K1 = max(supt∈[0,T ] |µ′(t)|, supt∈[0,T ] |σ′(t)| supt∈[0,T ] |σ(t)|HT 2H−1),
which implies that∣∣∣∣ ddt

(
c(t)

σ(t)

)∣∣∣∣ ≤ K2 +K3t
2H−2 ≤

(
K2

T 2H−2 +K3

)
t2H−2

with

K2 = sup
t∈[0,T ]

∣∣∣∣c(t)σ′(t)σ2(t)

∣∣∣∣+ 3K1 sup
t∈[0,T ]

∣∣∣∣ 1

σ(t)

∣∣∣∣ and K3 = sup
t∈[0,T ]

∣∣∣∣σ(0)σ(t)

∣∣∣∣.
Assertion (i) now follows from Lemma 2.3 and Theorems 2.1 and 2.2. Since
ν admits the decomposition (3.3), in much the same way as in the proof of
(3.6) one can show that

t�

0

ν(s) ds =

t�

0

µ(s) ds+
〈σ, σ〉Ht

2
.

Since the process defined by (3.5) has the same distribution under Q as	·
0 σ(s) dB

H
s under P , FT (Se−r·,Ke−rT ) has the same distribution under Q

as FT (S̃, K̃) under P , which completes the proof.

Remark 3.4. (a) If r = 0 then F̃ = F .
(b) If FT (S,K) = f(ST ,K) for some f : R×R→ R such that f(cx, cy) =

cf(x, y), c ∈ R+, x, y ∈ R, then F̃ = F for r ≥ 0. The class of such options
includes for instance the call option (f(x, y) = (x − y)+), the put option
(f(x, y) = (y − x)+), the chooser option for which

f(x, y) =

{
(x− y)+ if C((ST0 −K)+) ≥ C((K − ST0)+),
(y − x)+ otherwise,

for some fixed T0 < T , the binary option cash-or-nothing (f(x, y) = a1{x>y}
or f(x, y) = a1{x≤y}), the binary option asset-or-nothing (f(x, y) = x1{x>y}
or f(x, y) = x1{x≤y}).

Corollary 3.5 (Fractional Black–Scholes formula). The fair insurance
premium of a European call option with expiration time T and strike price
K is given by (1.4).

Proof. By (3.3),

C((ST −K)+)

= e−rT
1√
2π

�

R

(
S0 exp

(√
〈σ, σ〉HT y + rT −

〈σ, σ〉HT
2

)
−K

)+

e−y
2/2 dy

= e−rT
1√
2π

∞�

y0

(
S0 exp

(√
〈σ, σ〉HT y + rT −

〈σ, σ〉HT
2

)
−K

)
e−y

2/2 dy,
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where

y0 =
ln K

S0
− rT +

〈σ,σ〉HT
2√

〈σ, σ〉HT
.

Hence

CT ((ST −K)+)

= S0
1√
2π

∞�

y0

exp

(
−
〈σ, σ〉HT

2
+ y
√
〈σ, σ〉HT −

y2

2

)
dy

− e−rTK(1− Φ(y0))

= S0
1√
2π

∞�

y0

exp

(
−1

2

(
y −

√
〈σ, σ〉HT

)2)
dy − e−rTK(1− Φ(y0))

= S0
1√
2π

∞�

y0−
√
〈σ,σ〉HT

e−y
2/2 dy − e−rTK(1− Φ(y0))

= S0

(
1− Φ

(
y0 −

√
〈σ, σ〉HT

))
− e−rTK(1− Φ(y0))

= S0Φ
(√
〈σ, σ〉HT − y0

)
− e−rTK(Φ(−y0))

= S0Φ(y1)−Ke−rTΦ(y2),
which completes the proof.
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