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Summary. The paper contains some sufficient conditions for Marczewski-Burstin repre-
sentability of an algebra A of sets which is isomorphic to P(X) for some X. We characterize
those algebras of sets which are inner MB-representable and isomorphic to a power set. We
consider connections between inner MB-representability and hull property of an algebra
isomorphic to P(X) and completeness of an associated quotient algebra. An example of
an infinite universally MB-representable algebra is given.

1. Introduction. Let Y be a nonempty set and let F be a family of
subsets of Y. Following the idea of Burstin and Marczewski we define

S(F)y={ACY:(VPeF)FQeF)(QCANPorQ C P\ A}

and
So(F)={ACY:(VPe F)3BQ e F)(QcC P\ A}

Then S(F) is an algebra of subsets of Y, and Sy(F) is an ideal on Y. Note
that Y € S(F) so S(F) is a field of sets. (See [12], [4].)

We say that an algebra A (respectively, a pair (A,7Z), where Z is an
ideal contained in an algebra A) of subsets of Y has a Marczewski-Burstin
representation (for short, an MB-representation) if there exists a family F
of subsets of Y such that A = S(F) (respectively, (A4,Z) = (S(F), So(F))).
If additionally F C A (respectively, F N A = () then we say that (A,7)
is inner (respectively, outer) MB-representable. Observe that if F is empty
or if the empty set belongs to F then (S(F),So(F)) = (P(Y),P(Y)). We
exclude this case from our considerations.
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The operations S and Sy were introduced by Marczewski [15] who applied
them to the family of all perfect subsets of a Polish topological space Y. Thus
he obtained a new pair of a g-algebra and a o-ideal of sets, latter studied by
several authors. An old result of Burstin [9] states that the pair consisting of
the o-algebra of Lebesgue measurable sets in R and the o-ideal of Lebesgue
null sets in R is of the form (S(F), So(F)), where F consists of the perfect
sets of positive measure. (Burstin worked earlier than Marczewski and he did
not use the operations S and Sy explicitly.) MB-representations of several al-
gebras and ideals of sets were recently considered in [4], [1], [8], [10], [13], [16].

Certain algebras of sets have rather natural MB-representations (e.g. the
sets with the Baire property or the sets with nowhere dense boundary).
On the other hand, the constructions of collections F MB-representing the
interval algebra or the algebra of Borel sets are nontrivial and need (in the
case of Borel sets) some special set-theoretical assumptions [4], [1].

We know only two ideas leading to a construction of a non-MB-repre-
sentable algebra [1], [3], and only one example of such an algebra is given
in ZFC ([3]). On the other hand, for every Boolean algebra A there exists
a set Y and a family F C P(Y) such that S(F) is isomorphic to A and
So(F) = {0} (see [3]). P. Koszmider [11] has proposed the following defini-
tion. A Boolean algebra A is called universally MB-representable if whenever
B C P(Y) is an algebra of sets isomorphic to A, then B = S(F) for some
F C P(Y). It is easy to see that a finite Boolean algebra A is universally
MB-representable. For a family F of MB-generators we can take B\ {0} for
an algebra B isomorphic to A, or (what is equivalent) the family of atoms
of B.

The following problem seems natural: “Is the algebra P(X) of all sub-
sets of some infinite set X universally MB-representable?” We discuss sev-
eral aspects of this question in this paper. We find some sufficient condi-
tions for the MB-representability of an algebra of sets which is isomorphic
to P(X), and we obtain a characterization of such algebras which are inner
MB-representable. This characterization seems to be the most useful result
of this paper and enables us to study connections between properties of pairs
(A, H(A)) (where H(A) is the ideal of hereditary sets of A) such as: hull
property, inner MB-representability, and the completeness of the quotient al-
gebra A / H(A). We also give two examples: of an MB-representable algebra
of sets which is neither inner nor outer MB-representable, and of an outer
MB-representable algebra which is not strongly outer MB-representable. Al-
though the full answer to the problem of universal MB-representability of
algebras P(X) remains open, we give a new example of an infinite universally
MB-representable algebra.

An early version of this paper is [6]. Some applications of the main results
have recently been obtained in [7].
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2. Useful facts and notation

DEFINITION 1. Let F1,F2 C P(Y). We say that Fi, Fy are mutually
coinitial if Fi is dense in Fy and vice versa, i.e., any set in one of the
families F1, F» has a subset belonging to the other one.

Fact 1 ([4]). If Fi,F2 are mutually coinitial then (S(Fi),So(F1)) =
(S(F2), So(F2)). Conversely, if (S(F1),So(F1)) = (S(Fa),So(F2)) and
Fi C S(F;) fori=1,2 then F1,Fo are coinitial.

Fact 2 ([2]). (A,Z) is inner MB-representable if and only if (A,T) =
(S(A\TZ),So(A\TL)). Moreover, if (A,Z) is inner MB-representable then so
is (A, H(A)).

Consider now a Boolean algebra A C P(Y') with maximal element Y, iso-
morphic to a power set algebra P(X). The isomorphism means that there ex-
ists a monomorphism @ : P(X) — P(Y) such that #(X) =Y and A = im(P)
(i.e. A=®(P(X))). (By a morphism from one Boolean algebra to another
one we understand a function preserving the Boolean algebra operations.)

Denote by Z the union of all atoms of A, i.e.

(1) z = o({«}).
zeX

Then we have two homomorphisms of Boolean algebras

¢1:P(X)—P(Z) and Py:P(X)—PY\Z2)

defined by
(2) P1(A) =d(A)NZ,
(3) Py(A) = D(A)\ Z,

for any A € P(X). Observe that @; is a monomorphism and ¢,(X) = Z,
@9(X) =Y \ Z. We can describe @1 by the formula

@1(A) = | J 2({z}) for A € P(X).
€A
Denote by J the kernel of @5 (in symbols, J = Ker @3). Then
(4) g={aepx) a4 = |Jo({z})}.
€A

Note that J contains all finite subsets of X. Moreover J = P(X) if and
only if Z =Y or (what is equivalent) if @y is the zero-homomorphism. By
standard algebraic considerations, the algebra B of subsets of Y\ Z defined
by

(5) B = im(&7)



242 A. Bartoszewicz

is isomorphic to the quotient algebra P(X)/J. The symbols Z,®1, P, T, B
defined respectively by (1)-(5) retain their meaning throughout the paper.
If @(A) =P (A) U @2(14), we will write @ = <¢1, @2>

For any A € P(X) denote by [A] the equivalence class of A in the quotient
Boolean algebra P(X)/J.

Fact 3. For any ideal J C P(X) which contains all finite subsets of
X there exists a set Y and a monomorphism @ : P(X) — P(Y) such that
D = (D1,P2), P(X) =Y and Kerdy = J.

Proof. Set Y = X UW where W is the Stone space for the quotient alge-
bra P(X)/J or the space described in [3, Th. 4] (assume that X N W = ().
Then we can define $(A) = AUVY([A]) for A C X, where ¥ is an isomor-
phism between P(X)/J and the corresponding Stone algebra of clopen sets,
or the algebra constructed in [3, Th. 4|, respectively. We have ¢;(A) = A
and $2(A) = V([4]). =

REMARK 1. Observe that if the quotient Boolean algebra P(X)/J is
atomic, we do not need the Stone representation in our construction. For W
we can take At(P(X)/J), i.e. the set of atoms of P(X)/J, and $3(A) =
{a € At(P(X)/J) : a < [A]} where < denotes the natural order in the
Boolean algebra.

DEFINITION 2. A set of the form &({x}) (belonging to im(®;)) will be
called a multipoint atom of A = im(Q) if its cardinality |@({z})| is greater
than 1.

3. Results. The following theorem gives a sufficient condition for MB-
representability of an algebra 4 isomorphic to P(X).

THEOREM 1. Assume that & : P(X) — P(Y) is a monomorphism,
A = 1im(P) and & = (P1,P3). Let B = im(P2). If (B,{0}) has an MB-
representation (S(Fo), So(Fo)) for some Fo C P(Y \ Z) then A is MB-

representable.

Proof. Suppose that B = S(Fy). Let s be a selector of the family
{P({z}): v € X}. Put f(x) = s(®({z})). Denote by F; the family of multi-
point atoms of A. Let

Fo={f(AAUK:A¢ T, KC DA, K € Fo}.

(For any A ¢ J there exists a K € Fy included in ®2(A) since Sy(Fp) = {0}.)
Take F = F; U Fo. We claim that A = S(F). First let us prove A C S(F).
Let P € A. Consider two cases.

1° If P=®(A) for A € J, then P =®(A). Let F € F. If F € Fy, we
have either F* C P or F' C P°. Assume that F' € Fy. Thus F' = f(B)UK
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for some B ¢ J, and K € Fy with K C $2(B). Hence
FAP=(f(B)\P)JUK = (f(B)\1(A) UK = f(B\A)UK € F;
because [B\ A] = [B] and K C $2(B\ A) = $5(B).

2° Suppose that P = $(A) for some A ¢ J. Then P = &;(A) U Py(A).
Let FF € F. For F € F; we have either F C P or ' C P°. If ' € F5 then
F = f(B)UK for some B ¢ J and K € Fy with K C ®2(B). Consider
the set @2(A) N P2(B) (maybe empty). Then either there exists a K1 € Fy
such that K1 € K N®(AN B) C $2(AN B), or there exists a Ky € Fy
such that Koy C K\ ®2(ANB) C $2(B\ A). In the first case BN A ¢ J
and Q1 = f(ANB)UK; C FNP. In the second case B\ A ¢ J and
Q2= f(B\ A)UKy C F'\ P. So the inclusion A C S(F) has been proved.

To show that S(F) C A assume that P ¢ A. There are the following
three possibilities:

(I) P separates the points of some multipoint atom &({x}) of A. Then

for F' = &({x}) there is no Q € F such that either @ C FNPor Q C F\P.

(II) P = &1(A) UDy(B) where [B] # [A] in P(X)/J. Then AAB ¢ J.

Assume that A\ B¢ J.Let F = f(A\ B)UK, K € Fy, K C (A \ B).

We have FNP = f(A\ B) and F'\ P = K. None of these sets contains a
set Q € F. For B\ A ¢ J the argument is quite similar.

(IIT) P = @1 (A)U S where S C Y\ Z and S ¢ B. Then there exists a set

K € Fy such that any K; € Fp is contained neither in K NS nor in K \ S.

Set F' = f(X)UK. Then neither F'N P nor F'\ P includes any set from F.

Let us make some comments on the above proof. Observe that without
the sets from F; we cannot show that for any P € S(F) the set PN Z is
of the form ®;(A) for some A € P(X). On the other hand, if we do not
use the selector s for the sets ¢({x}), then any set P = |J, 4 #({z}) with
|@({z})] > 1 for x € A belongs to S(F) (even though A does not belong
to J). Note that, for any ideal J C P(X) containing all finite sets, there
exists a monomorphism ¢ such that A = im(Q) satisfies the assumptions
of Theorem 2 and J = Ker®y. This follows from [3, Thm. 4] applied to
P(X)/J and from Fact 3.

The following theorem gives a characterization of inner MB-representabil-
ity of an algebra A isomorphic to P(X).

THEOREM 2. Let A = im(P) where ¢ : P(X) — P(Y) is a monomor-
phism, ® = ($1,Ps) and let B = im(Py). Then A is inner MB-representable
if and only if the following two conditions are satisfied simultaneously:

(x) the set of all x € X such that @({z}) is a multipoint atom of A,
belongs to J,
(xx) the algebra B is atomic and the atoms of B cover Y \ Z.
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Proof. Suppose that A = S(F) where F C A. Then A = S(A\ H(A))
(Fact 2) where H(A) is the ideal of hereditary sets in .4, that is,

H(A)={Ae A: (VB C A)(Be A}

For A = im(®) we have H(A) = {®1(A): Ae J & (Vz € A)(|o({z})|=1)}.
Hence the families A\ H(A) and F = F; U F, are mutually coinitial where
Fi is the set of multipoint atoms of A, and Fy consists of the sets of the
form F = &1(B) UPy(B) for B ¢ J. Thus S(A\ H(A)) = S(F) (Fact 1).
Denote by Ag the set of all x € X such that ¢({z}) contains more than
one point. Consider @1(Ag) = U e, P({z}). Then &1(Ag) € A if and only
if &1(Ap) = @(Ap), which means that Ap € J. On the other hand, we have:

e F C ®1(Ap) for any multipoint atom F,
o for any F' = ¢1(B)UP2(B) with B € P(X), either the set Ao N P1(B)
contains a multipoint atom of A, or F N ®1(Ag) = 0.

So @1(Ag) € S(A\H(A)) = A and consequently Ay € J. Condition (*) has
been proved.

To show (), consider an arbitrary y € Y \ Z. The singleton {y} does
not belong to A. Hence there exists a set F' € F such that y € F'and F'\ {y}
has no subsets from F.

Consequently, there exists F' = $2(A) U P1(A) such that y € P2(A) and
no proper subset of @2(A) belongs to B. (If not, i.e. if ®3(B) C P2(A), then
either I} = @2(B)U@1(B) - F\{y} or Fy = ¢2<A\B)U@1(A\B) - F\{y})
Hence ®@5(A) is an atom of B and y € P(A).

Conversely, suppose that (x) and (xx) are satisfied. Denote by At(B5)
the family of all atoms of B. Let ®3(A) € At(B). Consequently, [A] €
At(P(X)/J). It follows that for any B € P(X) exactly one of the sets
AN B and A\ B belongs to J. Denote by F; the family of multipoint
atoms of A, and by F» the family of sets of the form F = @1(A) U $2(A)
where @9(A) € At(B). We will show that A = S(F). First we prove that
A C S(F). We have A C S(A\ Z) for any proper ideal Z in A (|4]). Since
F and A\ H(A) are mutually coinitial, we have A C S(A\ H(A)) = S(F).

To prove S(F) C A suppose that P ¢ A. Then we have one of the
following possibilities:

(i) P separates the points of some atom &({z}) of A. Then F = ¢({z})
contains no subsets of F'N P and of F'\ P which belong to F.
(ii) P separates the points of some atom 7" € At(B). Then we can choose
a set A such that T = ®3(A) and &1(A) does not contain any multipoint
atom (by (*)). The set F = ®1(A)UT = P1(A) UPy(A) is a “bad” set in F
for P (i.e., PN F and F'\ P do not contain any set from F).
(iii) P = #1(A) U D where D does not separate points of any atom of
B but D # ®3(A). Then one of the sets ®2(A) \ D or D \ P2(A) contains
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aT € At(B). Let T' = ®3(B). Then we can choose a set B so that either
D1(B) C @1(A) or &1(B)NP1(A) =0, respectively, and B does not contain
any multipoint atom of A. Then the set F' = $1(B)UT = &,(B) U Py(B) is
“bad” for P. =

REMARK 2. If the set ®2(X) = Y \ Z is empty, then A = S(At(A)).
This representation is evidently inner.

THEOREM 3. Let @ : P(X) — P(Y) be a monomorphism and A =
im(®P). Let & = (P1,Py) and B = im(P3). If B is atomic and the atoms of
B cover the set Y \ Z then A is MB-representable.

Proof. Let Fi be the family of multipoint atoms of A. Let s be a selector
of the family {#({z}): v € X} and f(z) = s(®({x}). Put

Fo={f(A)UDy(A): Aec P(X), P2(A) € At(B)}.

Take F = F1 U Fs. Combining the reasonings from the proofs of Theorems 1
and 2 we obtain A= S(F). m

Now we give examples of pairs (A,Z) where A is an algebra isomorphic
to a power set and Z C A is an ideal with some interesting properties.

DEFINITION 3. Let Z ¢ A C P(Y) where 7 is an ideal and A is an
algebra. We say that:

(i) the pair (A,Z) has the hull property provided for every U C Y there
isaV € A (called a hull of U) such that U C V and for every
WeAif U C W then V\W € Z;

(ii) (A,Z) is complete provided the quotient algebra A/7 is complete.

(iii) (A,Z) is topological provided (A,Z) = (S(7\ {0}),So( \ {0})) for
some topology 7 on Y'; then 7 forms the ideal of nowhere dense sets
and A forms the algebra of sets with nowhere dense boundary in 7.

Baldwin [5] showed that:

(a) if (A,Z) has the hull property then (A,Z) has an inner MB-repres-
entation;

(b) the hull property and completeness of (A, 7) do not follow from each
other.

In [2] the authors gave an example of a pair (A, Z) which is inner MB-repres-
entable but does not have the hull property. Any topological pair (A4,7) is
complete and has the hull property.

Now, we are in a position to prove:

THEOREM 4. (1) There ezxists an algebra A isomorphic to P(X) such
that (A, H(A)) is complete but is not inner MB-representable, and
consequently does not have the hull property.
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(2) There exists an algebra A isomorphic to P(X) such that (A, H(A))
has an inner MB-representation but does not have the hull property.

(3) If the algebra A is isomorphic to P(X) and (A, H(A)) has the hull
property then this pair is complete.

Proof. (1) Let A = im(®) for a monomorphism ¢ : P(X) — P(Y),
& = (91, Do) where:

oY =ZUT for Z= (X x{0})U (X x {1}) and some T # 0,

o O({a}) = {{z} x {0}, {z} x {1}}.
Let J be a maximal ideal in P(X). Then ®(A) = &1(A) U P3(A) where
Py(A) = for A € J and $3(A) =T for A € P(X)\ J. The pair (A, {0}) is
complete, because A/{(} is isomorphic to A and consequently to P(X). On
the other hand, A is not inner MB-representable because @({z}) is a mul-
tipoint atom for every x € X. Note that, as opposed to Baldwin’s example,
the algebra A/H(A) = A/{0} is atomic.

(2) Let now A = im(®) for a monomorphism @ : P(X) — P(Y) with
& = (91, Py) where

o &({x}) is singleton for every z € X,

o {X,:a <2} bea family of almost disjoint subsets of X with |X,|=w,
o J = Nacow Ja, where {J, : @ < 2¥} is a family of maximal ideals in
P(X) with the following properties:

)

(a) (Va < 29)([X]<¥ € Ja),

(b) Va < 2¥) (X4 ¢ Ja), and consequently,

(c) (Va, B < 2°)(a # B = Xa € Tp).

Then for o # (3 we have [X,] # [Xj3] in P(X)/J, and [X,] is an atom
in P(X)/J because for every B € P(X) we have either BN X, € J or
Xo\B € J.So |At(P(X)/T)| = 2¥. Take W and &3 as in Remark 1. Let
Y =XUW and ¢1(A) = A for any A C X. Then for B = im($3) we have
|At(B)| = 2¢. Moreover, |B| < 2¥ because B is a homomorphic image of
P(X) and |P(X)| = 2. Hence there exists a set F which is a union of some
atoms of B but E does not belong to B. (We have 2%° different sets which are
unions of atoms of B.) We claim that E does not have a hull. Indeed, if E C
&1 (B)UPy(B) then there exists an X, such that £ C &1 (B\ X,)UP2(B\X4)
and &1 (X,) U Py(X,) & H(A).

(3) Assume that (A, H(A)) (where A is isomorphic to P(X)) has the
hull property. Then (A, H(.A)) is inner MB-representable. So conditions ()
and (#*) of Theorem 2 are satisfied. We claim that P(X)/J is complete.
Indeed, if not then there exists a set F which is a union of atoms of an
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algebra B = im(®2) (isomorphic to P(X)/J) and does not belong to 5.
(The supremum in B is simply the union of a family of sets because the
atoms of B cover all the set Y\ Z.) By the same arguments as in (2), the
set E does not have a hull.
We now show that the algebra A/H(A) is also complete. Recall that
by (%), the set
Ay={r € X : |2({z})| > 1}

belongs to J. Define Jy = {A € J : AN Ay = (0}. We can consider J as an
ideal in P(X) and also in P(X \ Ap). Observe that

H(A)={B(A) : Ac T and (Vz € A)(|o({z})| = 1}

is the image of 73 under the monomorphism &. Hence by standard algebraic
considerations we observe that

e A/H(A) is isomorphic to P(X)/Jo.
e P(X)/Jo is isomorphic to the direct sum of P(X \ Ag)/Jo and P(Ap).
e P(X\ Ap)/Jo is isomorphic to P(X)/J.

So A/H(A) is isomorphic to the direct sum of two complete algebras P(X)/J
and P(Ap). Consequently, the pair (A, H(.A)) is complete. =

REMARK 3. The proof of part (2) of Theorem 4 shows that the impli-
cation in Theorem 1 cannot be reversed. Indeed, the constructed algebra A
is MB-representable (even inner MB-representable) but it is not the case for
the pair (B,{60}). The family F for which (B,{6}) = (S(Fo), So(Fo)) must
contain all atoms of B and consequently S(Fp) = P(Y \ Z).

REMARK 4. Both assumptions in (3) are essential. Indeed, if we take the
algebra P(R) and the ideal of all countable sets, then such a pair has the hull
property but is not complete [5]. (The ideal of countable sets is not equal
to H(P(R)).)

On the other hand, consider the following example. Define A C P(w)
as the algebra generated by all possible unions of the sets {2n,2n + 1},
n € w, and finite sets. Then H(.A) is the ideal of finite sets. It is not difficult
to see that the pair (A, H(A)) has the hull property and that A/H(A) is
isomorphic to P(w)/fin, hence the pair (A, H(.A)) is not complete.

Recently, making use of Theorem 2 the author has obtained the following
results:

THEOREM 5 ([7]). The following two conditions are equivalent:

(I) there exists a set Y and an algebra A C P(Y') isomorphic to P(w),
with (A, H(A)) complete, which is inner MB-representable but not
topological,



248 A. Bartoszewicz

(IT) there exists an ideal J C P(w) such that P(w)/J is isomorphic
to P(wr).

Some consequences of Steprans’ results [14] and Theorem 5 lead to the
following

COROLLARY 1 ([7]). The ezistence of a pair (A,T) which is complete
and has the hull property but is not topological is consistent with ZFC.

In [1] the authors strengthened the notion of outer MB-representability
of an algebra of sets. We say that an algebra A C P(X) is strongly outer MB-
representable if for any family C C P(X) such that A C C and |C| = | A there
exists a family F C P(X) disjoint from C for which A = S(F). Evidently,
if A is strongly outer MB-representable then it is outer MB-representable.
Now, we show that the converse does not hold.

THEOREM 6. There exist algebras of sets Ay, As which are isomorphic
to some power sets and additionally have the following properties:

(a) Ay is outer MB-representable but not strongly outer MB-represen-
table.
(b) Az is MB-representable but neither inner nor outer MB-representable.

Proof. The proof is based on two simple observations:

OBSERVATION 1. If an algebra A of sets has an atom A such that |A| = 2
then A is not outer MB-representable.

Indeed, let A = {z,y}. Suppose that A = S(F) for some family F of
sets. Since A does not belong to H(.A), there exists an F' € F such that
FCA If F={z}or F={y} then F € A, which is impossible because A
is an atom. So F' = {z,y} and the representation is not outer.

OBSERVATION 2. If an infinite algebra of sets A has an atom A such that
1 < |A| < oo then A is not strongly outer representable.

Indeed, let C = AUP(A). Then A C C and |A| = |C|. But if A = S(F)
then there exists a set F' € F such that ' C A and hence F € C. So, the
representation is not strongly outer.

Now we are in a position to construct the algebras with the desired
properties.

(a) Let A; be an algebra with an infinite number of atoms such that
any atom A contains exactly three points. A set B belongs to A
if and only if B is the union of atoms. (Then A is isomorphic to
P(X) where | X| = |At.A|.) By Observation 2, A; is not strongly
MB-representable. On the other hand, A4; = S(F) where F consists
of all sets which have exactly two elements and are contained in atoms

of Aj.
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(b) Let X be an infinite set and Ay = im(®) for a monomorphism @ :
P(X) — P(Y) and @ = (P1,P3). Assume that |¢({z})| = 2 for all
x € X and J is a proper maximal ideal in P(X). Then Ay is MB-
representable by Theorem 1 but it is not inner MB-representable by
Theorem 2 and it is not outer MB-representable by Observation 1. m

The next theorem shows that there exists an infinite universally MB-
representable algebra.

THEOREM 7. Let X be an infinite set. Then the algebra A consisting of
the finite and cofinite subsets of X is universally MB-representable.

Proof. Standard algebraic considerations show that any monomorphism
®: A — P(Y) is of the form #(A) = (U, P({z}) if A is finite, and
D(A) =Upea @(x)UT, where T =Y \ U, cx P({z}), if Ais cofinite. Denote
by A’ the image of A under @. Let s be a selector of the family &({z}). Put
f(z) = s(P({z})) € ({x}) for x € X. If F is the family of all multipoint
atoms @({z}) and F, consists of all sets of the form f(®1(A)) UT for A
cofinite, then A" = S(F; U F,). The proof of this fact is quite similar to the
proof of Theorem 2. u
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