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ALGEBRA

Reducibility of Symmetric Polynomials
by
A. SCHINZEL

To Donald G. Lewis on his 80th birthday

Summary. A necessary and sufficient condition is given for reducibility of a symmetric
polynomial whose number of variables is large in comparison to degree.

Let K be a field and 7;(x1,. .., zy,) the ith elementary symmetric poly-

nomial of the variables z1, ..., z,,. We shall show
THEOREM 1. Let F' € Klyi,...,yn] \ K and n > max{4,deg F' + 1},
Ti = Ti(x1,...,xy). Then F(71,...,7,) is reducible in K[xy,...,z,] if and

only if either F is reducible over K, or

n
F = cNgoy/k (a” + Z a"_jyj), c € K*, «a algebraic over K.
j=1

THEOREM 2. Let F' € K[y1,...,yn]\K be isobaric with respect to weights
1,...,n (y; of weight i) and n > deg F'+ 1. Then F(71,...,7,) is reducible
over K if and only if either F' is reducible over K, or F = cy,, c € K*, or
n =4, char K # 3, K contains a primitive cubic root of 1 and

F=a(y? - 3y1ys + 12y4), ac K"
The last part of Theorem 2 shows that the 4 in the formulation of The-

orem 1 cannot be replaced by 3. The example given at the end of the paper
shows that deg F' + 1 cannot be replaced by deg F'.
For a polynomial f € Klz1,...,z,] and a permutation o € &,, we set
7= f@oq), - To(n))-
The proof of Theorem 1 is based on three lemmas.
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LEMMA 1. For n > 5 the alternating group A, is generated by products
(ab)(cd) of two transpositions with a,b, c,d distinct.

Proof. See [1, p. 342]. m

LEMMA 2. Assume that C € Klz1,...,xy,] is invariant with respect to
A, but not symmetric. Then for n > 3,

deg, C>n—1.
Proof. By the theorem of P. Samuel (see [2, p. 13])
C=A+BD,
where A, B € K|z1,...,zy,] are symmetric, B # 0 and

Dy = %(H(% —zj) + H(Sﬂz + xj))
1<) 1<)
For n > 3 we have deg, D, > n—1, hence deg, C > n—1, except possibly
when deg, A = deg, BD,. In that case, let a = deg, A, 8 = deg, B,
and let a,b be the leading coefficients of A and B with respect to x,. The
coefficient of 227" in C equals

c=a+bD,_1
and since D,,_1 is not symmetric, ¢ # 0, thus again
deg, C>n—1. u

LEMMA 3. If f € Klz1,...,2,) \ Ul K[xi] is irreducible over K and
not symmetric, then
(1) deg, lcm.f? >n—1.
" O'een

Proof. Let f depend on exactly r variables, where 1 < r < n. The case
r = 1 is excluded by the conditions that f irreducible and f # cx;. For
every subset R of {1,...,n} of cardinality r and containing n there exists
o € 6, such that f? depends on the variables z; (i € R) exclusively. For
different sets R the forms f7 are projectively different and hence coprime.
For 1 < r < n the number of sets R in question is (::11) >n —1, thus (1)
holds.

Consider now the case r = n and let

G={0€6,:f7/fe K}, H={0€e&,:f"=/f}
By Bertrand’s theorem (see [1, pp. 348-352]) we have either G = &,, or
G =2, or [, : G] > n. In the first case, if f7 = f for each transposition 7,
then f7 = f for all 0 € G,,, since G,, is generated by transpositions, thus f is

symmetric, contrary to assumption. Therefore, there exists a transposition
T = (ij), © # j, such that

ffT=cf, c#1.
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Since 72 = id, we have ¢ = 1, thus char K # 2, ¢ = —1, and z; = xj implies
f = 0. Since f is irreducible,

f=alz; —xj), ackK,
and it is easy to see that
deg, l.cm.f? >n—1.
" oe6,

Consider now the case G = ,,. By Lemma 1, 2, is generated by the

products m = (ab)(cd), where a,b,c,d are distinct. Since 72 = id, we have

f™ = cf, where ¢ = 1. It follows that (f2)° = f2 for all ¢ € 2,. On the
other hand, H < G gives either H =2, or [&,, : H] > n.

If H = A, then by Lemma 2, deg, f > n — 1, hence (1) holds. If
[6,, : H] > n, then f2 cannot be symmetric, hence by Lemma 2,

deg,. . f2 >n—1,
thus

deg, f> {n;ﬂ

Now, by the definition of G it follows that for 7 = (12) we have f7/f & K,
hence (f7, f) = 1, thus

n—1

deg,, [f. /7] = 2[ ] >n—1,

and (1) holds.

It remains to consider the case [&,, : G] > n. Then among the polynomi-
als f7 there are at least n projectively distinct, hence coprime. Since each
of them is of degree at least 1 in z,, (1) follows. m

Proof of Theorem 1. Necessity. If F(ri,...,T,) is reducible over K, then

(2) F(Tl)"'an):flf2a
where f, € K[z1,...,2,) \ K (v =1,2) and f; is irreducible over K.
Clearly
deg, lcm. f/ <degF <n—1.
€6y

If f1 is not symmetric and f1 ¢ Klz;] (1 < ¢ < n), this contradicts
Lemma 3, thus either

(3) f1 is symmetric

or
(4) f1 € K[z;] for some i.
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In the case (3), f, = F,(11,...,7), v = 1,2, where F, € K[y1,...,yn] \ K,
and it follows from (2) that

2
F(r,...,m) = HF,,(Tl,...,Tn).
v=1
By the algebraic independence of 7, ..., 7, over K,
F = FFy,

thus F' is reducible over K.
In the case (4), since f is irreducible over K, we have

fi=aNpg(a+z;), where L= K(a), a algebraic over K, c; € K.
Since F(71,...,T,) is symmetric, we have
i) | F(m,..oom)  (1<7<n),

thus
n
I fi(x) ‘ Fr1,. .. 7)
j=1
However,
n n
Hfl(:cj) H /K (a+x)) —clNL/K<a +Zan JT])
j=1 j=1 j=1
hence
n .
NL/K<Oén + Z Oén_jT]) ‘ F(’Tl, e ,Tn)
j=1
and by the algebraic independence of 7'1, oy T,

NL/K<a +Za” J )‘F

Therefore, either F' is reducible over K or

n
F:CNL/K(a”—i—Za"_jyj), ce K™
j=1
Sufficiency. If F'= F1Fy, where F; € K[y1,...,yn] \ K, then

FTl,.., HF Tlye-osT ,

and since 71, ..., 7, are algebraically 1ndependent,
E,(ri,...,m) € K,

thus F(71,...,7,) is reducible over K.



Reducibility of Symmetric Polynomials 255

If F'=cNgqyk(Q™ + Z?:l o™ Jy;), then

F(Tl, R ,Tn) = CNK(a)/K(H(a —i—.%'z)) = CHNK(Q)/K(CV"F@'Z'):
=1 =1

and since n > 1, F(7y,...,7,) is reducible over K.
The proof of Theorem 2 is based on two lemmas.

LEMMA 4. For n =3, 72 + ary is reducible over K only if either a = 0,

ora = -3, char K # 3 and K contains a primitive cubic root o of 1. In the
latter case
(5) 2+ amy = (z1 4 oz + 0°x3)(x1 + 0°20 + 0x3).

Proof. Assuming reducibility we have
i +amy = (11 + azy + faz) (w1 + Pz + axz), o, fEK,
which gives
af=1, a+f=a+2 o+p2=a+2.
Hence
a+2=a’+p%=(a+B)?*-2a6=(a+2)?—-2=0a’+4a+2,

so that a(a + 3) = 0, thus either a = 0, or a = —3 and char K # 3. In the
latter case (z — a)(x — 3) = 22 + x + 1, hence a and 3 are two primitive
cubic roots of 1. The identity (5) is easily verified. =

LEMMA 5. Forn = 3, 72 +am 73 is reducible over K if and only if either
a=0, ora= -3, char K # 3 and K contains a primitive cubic root o of 1.
In the latter case

(6) 75 +amiTs = (w213 + ox123 + 0°T122) (T2x3 + 0°T1T3 + 0T1T2).
Proof. We have
2+ amy = Tg(Tg(xfl, x;l, $§1)2 + aTl(xfl, x;l, $§1)Tg(xf1, x;l, :cgl))
Therefore, if
5 +anTs = fifs, [y € Kz, mo,23]\ K (v=1,2),
we obtain
i tan =mfile ey ey s fa(en eyt agt),
where 73f,(z7 !, x5, 251) € K[r1,29,23] \ K, hence by Lemma 4 either

a=0, or a =—3, char K # 3 and K contains a primitive cubic root g of 1.
The identity (6) is easily verified. m

Proof of Theorem 2. Necessity. If deg F' = 1, then since F' is isobaric,
F = cy;, ¢ € K*, i < n. If ¢7; is reducible in K[x1,...,zy], then i = n. If
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n > 5, then Theorem 1 applies and either F' is reducible or
n
(7) F:cNK(a)/K(a”—i-Za”’jyj), ce K*.
j=1
Since F' is isobaric, we have o = 0 and F' = cyp,.

It remains to consider the case 2 < degF' < n — 1< 3, hence n =4 and
deg F' = 2. We distinguish the following subcases:

F =y} +ay =: F, a # 0,
F =y1y2 + ayz =: Fy, a#0,
F=ay?+byiys +cys = F3, ab#0, orac#0, or be # 0,
F = yoys + ay1ys =: Fu, a#0,
F = y3 + ayays =: F5, a#0.

We have Fy (11, 72) = 22+ (a+2)7] + (112 + a7}), where 7/ = (21, 29, 23). If
Fi(11,72) = (x4+g)(x4+h), where g, h are linear forms over K in x1, x9, r3,
then gh = 7{> + a7}, hence by Lemma 4, a = —3, char K # 3 and without
loss of generality

g =b(x1 + oo + 0%x3), h=0b"Y(z + oxy + ox3), be K"
Therefore,
b+bl=—1, bo+blo®=—1, b*+blo=—-1.

The first equation gives b = p or b = p?, thus either bo> + b~1p # —1 or
bo+b"10? # —1, a contradiction. Therefore F (71, 72) is irreducible over K.
Since

Fl(Tl,TQ) = T42F5(7'2(:L’1_1, . ,x;l), 7'3(1’1_1, . ,x;l), 7'4(:L’1_1, . ,x;l)),

the same applies to F5(72, 73, 74) (cf. proof of Lemma 5).
We have further

Fy(71,72,m3) = T{2f + (1" + (a + 1)73) 2 + (1175 + a73),
hence, if F5(711, 72, 73) is reducible over K then
Fy(1y,79,73) = (T]24 + bT{2 + cry)(xa +drq), by, d €K,

and
T{Té + aTé = de{g + CdT{Té.

Since 77, 74, T4 are algebraically independent, it follows that a = 0, a contra-
diction. Therefore F5(71, 72, 73) is irreducible over K. Since

Fy(my,72,73) = TZF4(7'1($1_1, . 1:21), A 74(3:1_1, . ,le))

the same applies to Fy(7i,...,7s) (cf. proof of Lemma 5).
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It remains to consider F3. We have
Fy(11,...,71) = a(t]zg + 19)% + b(xg + 7)) (Thas + 75) + cThay
= (ar? + bry)x? + ((2a + b)1y 75 + (b + ) 75)xs + (a7h? + b1y 74).

If ar{?> + bry were the leading coefficient with respect to x4 of a proper
factor over K of Fs(7i,...,71), then since it does not divide ars? + br{7},
the complementary factor of F3(ri,...,74) would be x4 + dr{, d € K*,
which implies a = 0, br{7} + (b+ ¢)15 = bdr{7y + (b/d)74, d = 1, ¢ = 0,
a contradiction.

If arj> + bty is not the leading coefficient of any proper factor of

F3(r1,...,m4) and the latter polynomial is reducible over K, then arj?+b7} is

reducible over K, hence, by Lemma 4, either b = 0, or b = —3a, char K # 3
and K contains a primitive cubic root ¢ of 1. In the former case

F3(7'1, - ,7’4) = a(T{IL’4 -+ d17'{2 + 617’5)(7’{1’4 -+ dgT{Q + 627’5);
a(le{2 + elTé)(dgT{Q +eamh) = a7’é2; di =dy =0,
(aey + ae2)T|Th = 2aT{Th +c74, ¢=0, a contradiction.
In the latter case, by Lemmas 4 and 5, either
F3(t1,...,74) = a((z1 + 0w + 0*x3)x4 + d(w273 + 0m173 + 0°T172))
x ((z1 + 0°wa + 0w3)wy + d ' (waw3 + 0°1173 + 07172))
or
F3(t1,...,71) = a((z1 + 0*22 + 0x3) w4 + d(x273 + 0* 7173 + 07122))
X ((z1 4 w2 + 0x3)ws + d~ (123 + 0w123 + 0°w122)).
In the first subcase
d(zaws + o173 + 0*w122) (21 + 0°T2 + 023)
+ d~N(woas + *w1a3 + 0m132) (71 + 072 + 0°w3)
= — 77+ (¢/a—3)73,
in the second subcase
d(zows + 0*x123 + 0r122) (21 + 02 + o3)
+ d” N (woas + om1w3 + 0°w1w2) (21 + 072 + 0°w3)
= — 1715+ (c/a — 3)74.
In both subcases, the right-hand side is invariant with respect to the conju-
gation o — ¢? and to any permutation o € &3. The first condition implies

d = +1, +p, +0?, the second condition eliminates the second subcase and in
the first subcase restricts d to +1. Thus we obtain

d(6x1x973 — .Z‘%%'Q — :ngg — .Z‘%.%'l — :le% — mx% — .%'31}%)
!/ /
=17 + (¢/a — 3)73,
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d(9my — Tim) = —TiT9 + (¢/a —3)15, d=1, c=12a.
Sufficiency. In view of Theorem 1 it suffices to consider n = 4 and
F = y3 — 3y1ys + 12y4. Then
F(71,..., 1) = (2124 + 2233 + 0(x934 + 2123) + 0 (2304 + 7172))
X (v124 + T2w3 + 0% (T274 + 1173) + 0(T374 + T172)).
ExXAMPLE. Take F = Y"1 ,(~1)" 2} ‘z;. We have deg F = n — 1 and

F(Tl,. . .,Tn) = H(Tl — :L‘l)
=1

This example also shows that the estimate in Lemma 3 cannot be improved.
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