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Summary. A necessary and sufficient condition is given for reducibility of a symmetric
polynomial whose number of variables is large in comparison to degree.

Let K be a field and τi(x1, . . . , xm) the ith elementary symmetric poly-
nomial of the variables x1, . . . , xm. We shall show

Theorem 1. Let F ∈ K[y1, . . . , yn] \ K and n > max{4, deg F + 1},
τi = τi(x1, . . . , xn). Then F (τ1, . . . , τn) is reducible in K[x1, . . . , xn] if and

only if either F is reducible over K, or

F = cNK(α)/K

(

αn +
n

∑

j=1

αn−jyj

)

, c ∈ K∗, α algebraic over K.

Theorem 2. Let F ∈ K[y1, . . . , yn]\K be isobaric with respect to weights

1, . . . , n (yi of weight i) and n > deg F + 1. Then F (τ1, . . . , τn) is reducible

over K if and only if either F is reducible over K, or F = cyn, c ∈ K∗, or

n = 4, charK 6= 3, K contains a primitive cubic root of 1 and

F = a(y2
2 − 3y1y3 + 12y4), a ∈ K∗.

The last part of Theorem 2 shows that the 4 in the formulation of The-
orem 1 cannot be replaced by 3. The example given at the end of the paper
shows that deg F + 1 cannot be replaced by deg F .

For a polynomial f ∈ K[x1, . . . , xn] and a permutation σ ∈ Sn we set

fσ = f(xσ(1), . . . , xσ(n)).

The proof of Theorem 1 is based on three lemmas.
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Lemma 1. For n ≥ 5 the alternating group An is generated by products

(ab)(cd) of two transpositions with a, b, c, d distinct.

Proof. See [1, p. 342].

Lemma 2. Assume that C ∈ K[x1, . . . , xn] is invariant with respect to

An, but not symmetric. Then for n ≥ 3,

degxn

C ≥ n − 1.

Proof. By the theorem of P. Samuel (see [2, p. 13])

C = A + BDn

where A, B ∈ K[x1, . . . , xn] are symmetric, B 6= 0 and

Dn =
1

2

(

∏

i<j

(xi − xj) +
∏

i<j

(xi + xj)
)

.

For n ≥ 3 we have degxn

Dn ≥ n−1, hence degxn

C ≥ n−1, except possibly
when degxn

A = degxn

BDn. In that case, let α = degxn

A, β = degxn

B,
and let a, b be the leading coefficients of A and B with respect to xn. The
coefficient of xβ+n−1

n in C equals

c = a + bDn−1

and since Dn−1 is not symmetric, c 6= 0, thus again

degxn

C ≥ n − 1.

Lemma 3. If f ∈ K[x1, . . . , xn] \
⋃n

i=1 K[xi] is irreducible over K and

not symmetric, then

degxn

l.c.m.
σ∈Sn

fσ ≥ n − 1.(1)

Proof. Let f depend on exactly r variables, where 1 ≤ r < n. The case
r = 1 is excluded by the conditions that f irreducible and f 6= cxi. For
every subset R of {1, . . . , n} of cardinality r and containing n there exists
σ ∈ Sn such that fσ depends on the variables xi (i ∈ R) exclusively. For
different sets R the forms fσ are projectively different and hence coprime.
For 1 < r < n the number of sets R in question is

(

n−1
r−1

)

≥ n − 1, thus (1)
holds.

Consider now the case r = n and let

G = {σ ∈ Sn : fσ/f ∈ K}, H = {σ ∈ Sn : fσ = f}.

By Bertrand’s theorem (see [1, pp. 348–352]) we have either G = Sn or
G = An or [Sn : G] ≥ n. In the first case, if f τ = f for each transposition τ ,
then fσ = f for all σ ∈ Sn, since Sn is generated by transpositions, thus f is
symmetric, contrary to assumption. Therefore, there exists a transposition
τ = (ij), i 6= j, such that

f τ = cf, c 6= 1.
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Since τ2 = id, we have c2 = 1, thus char K 6= 2, c = −1, and xi = xj implies
f = 0. Since f is irreducible,

f = a(xi − xj), a ∈ K,

and it is easy to see that

degxn

l.c.m.
σ∈Sn

fσ ≥ n − 1.

Consider now the case G = An. By Lemma 1, An is generated by the
products π = (ab)(cd), where a, b, c, d are distinct. Since π2 = id, we have
fπ = cf , where c2 = 1. It follows that (f2)σ = f2 for all σ ∈ An. On the
other hand, H < G gives either H = An or [Sn : H] ≥ n.

If H = An, then by Lemma 2, degxn

f ≥ n − 1, hence (1) holds. If
[Sn : H] ≥ n, then f2 cannot be symmetric, hence by Lemma 2,

degxn

f2 ≥ n − 1,

thus

degxn

f ≥

⌈

n − 1

2

⌉

.

Now, by the definition of G it follows that for τ = (12) we have f τ/f 6∈ K,
hence (f τ , f) = 1, thus

degxn

[f, f τ ] ≥ 2

⌈

n − 1

2

⌉

≥ n − 1,

and (1) holds.

It remains to consider the case [Sn : G] ≥ n. Then among the polynomi-
als fσ there are at least n projectively distinct, hence coprime. Since each
of them is of degree at least 1 in xn, (1) follows.

Proof of Theorem 1. Necessity. If F (τ1, . . . , τn) is reducible over K, then

F (τ1, . . . , τn) = f1f2,(2)

where fν ∈ K[x1, . . . , xn] \ K (ν = 1, 2) and f1 is irreducible over K.

Clearly

degxn

l.c.m.
σ∈Sn

fσ
1 ≤ deg F < n − 1.

If f1 is not symmetric and f1 6∈ K[xi] (1 ≤ i ≤ n), this contradicts
Lemma 3, thus either

f1 is symmetric(3)

or

f1 ∈ K[xi] for some i.(4)
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In the case (3), fν = Fν(τ1, . . . , τn), ν = 1, 2, where Fν ∈ K[y1, . . . , yn] \ K,
and it follows from (2) that

F (τ1, . . . , τn) =

2
∏

ν=1

Fν(τ1, . . . , τn).

By the algebraic independence of τ1, . . . , τn over K,

F = F1F2,

thus F is reducible over K.
In the case (4), since f1 is irreducible over K, we have

f1 = c1NL/K(α + xi), where L = K(α), α algebraic over K, c1 ∈ K.

Since F (τ1, . . . , τn) is symmetric, we have

f1(xj) |F (τ1, . . . , τn) (1 ≤ j ≤ n),

thus
n

∏

j=1

f1(xj)
∣

∣

∣
F (τ1, . . . , τn).

However,
n

∏

j=1

f1(xj) = cn
1

n
∏

j=1

NL/K(α + xj) = cn
1NL/K

(

αn +
n

∑

j=1

αn−jτj

)

,

hence

NL/K

(

αn +
n

∑

j=1

αn−jτj

) ∣

∣

∣
F (τ1, . . . , τn)

and by the algebraic independence of τ1, . . . , τn,

NL/K

(

αn +
n

∑

j=1

αn−jyj

) ∣

∣

∣
F.

Therefore, either F is reducible over K or

F = cNL/K

(

αn +

n
∑

j=1

αn−jyj

)

, c ∈ K∗.

Sufficiency. If F = F1F2, where Fi ∈ K[y1, . . . , yn] \ K, then

F (τ1, . . . , τn) =
2

∏

ν=1

Fν(τ1, . . . , τn),

and since τ1, . . . , τn are algebraically independent,

Fν(τ1, . . . , τn) 6∈ K,

thus F (τ1, . . . , τn) is reducible over K.
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If F = cNK(α)/K(αn +
∑n

j=1 αn−jyj), then

F (τ1, . . . , τn) = cNK(α)/K

(

n
∏

i=1

(α + xi)
)

= c
n

∏

i=1

NK(α)/K(α + xi),

and since n > 1, F (τ1, . . . , τn) is reducible over K.

The proof of Theorem 2 is based on two lemmas.

Lemma 4. For n = 3, τ2
1 + aτ2 is reducible over K only if either a = 0,

or a = −3, char K 6= 3 and K contains a primitive cubic root ̺ of 1. In the

latter case

τ2
1 + aτ2 = (x1 + ̺x2 + ̺2x3)(x1 + ̺2x2 + ̺x3).(5)

Proof. Assuming reducibility we have

τ2
1 + aτ2 = (x1 + αx2 + βx3)(x1 + βx2 + αx3), α, β ∈ K,

which gives

αβ = 1, α + β = a + 2, α2 + β2 = a + 2.

Hence

a + 2 = α2 + β2 = (α + β)2 − 2αβ = (a + 2)2 − 2 = a2 + 4a + 2,

so that a(a + 3) = 0, thus either a = 0, or a = −3 and char K 6= 3. In the
latter case (x − α)(x − β) = x2 + x + 1, hence α and β are two primitive
cubic roots of 1. The identity (5) is easily verified.

Lemma 5. For n = 3, τ2
2 +aτ1τ3 is reducible over K if and only if either

a = 0, or a = −3, charK 6= 3 and K contains a primitive cubic root ̺ of 1.
In the latter case

τ2
2 + aτ1τ3 = (x2x3 + ̺x1x3 + ̺2x1x2)(x2x3 + ̺2x1x3 + ̺x1x2).(6)

Proof. We have

τ2
1 + aτ2 = τ2

3 (τ2(x
−1
1 , x−1

2 , x−1
3 )2 + aτ1(x

−1
1 , x−1

2 , x−1
3 )τ3(x

−1
1 , x−1

2 , x−1
3 )).

Therefore, if

τ2
2 + aτ1τ3 = f1f2, fν ∈ K[x1, x2, x3] \ K (ν = 1, 2),

we obtain

τ2
1 + aτ2 = τ3f1(x

−1
1 , x−1

2 , x−1
3 )τ3f2(x

−1
1 , x−1

2 , x−1
3 ),

where τ3fν(x
−1
1 , x−1

2 , x−1
3 ) ∈ K[x1, x2, x3] \ K, hence by Lemma 4 either

a = 0, or a = −3, charK 6= 3 and K contains a primitive cubic root ̺ of 1.
The identity (6) is easily verified.

Proof of Theorem 2. Necessity. If deg F = 1, then since F is isobaric,
F = cyi, c ∈ K∗, i ≤ n. If cτi is reducible in K[x1, . . . , xn], then i = n. If
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n ≥ 5, then Theorem 1 applies and either F is reducible or

F = cNK(α)/K

(

αn +
n

∑

j=1

αn−jyj

)

, c ∈ K∗.(7)

Since F is isobaric, we have α = 0 and F = cyn.

It remains to consider the case 2 ≤ deg F < n − 1 ≤ 3, hence n = 4 and
deg F = 2. We distinguish the following subcases:

F = y2
1 + ay2 =: F1, a 6= 0,

F = y1y2 + ay3 =: F2, a 6= 0,

F = ay2
2 + by1y3 + cy4 =: F3, ab 6= 0, or ac 6= 0, or bc 6= 0,

F = y2y3 + ay1y4 =: F4, a 6= 0,

F = y2
3 + ay2y4 =: F5, a 6= 0.

We have F1(τ1, τ2) = x2
4 +(a+2)τ ′

1 +(τ ′2
1 +aτ ′

2), where τ ′

i = τi(x1, x2, x3). If
F1(τ1, τ2) = (x4 +g)(x4 +h), where g, h are linear forms over K in x1, x2, x3,
then gh = τ ′2

1 + aτ ′

2, hence by Lemma 4, a = −3, charK 6= 3 and without
loss of generality

g = b(x1 + ̺x2 + ̺2x3), h = b−1(x1 + ̺2x2 + ̺x3), b ∈ K∗.

Therefore,

b + b−1 = −1, b̺ + b−1̺2 = −1, b̺2 + b−1̺ = −1.

The first equation gives b = ̺ or b = ̺2, thus either b̺2 + b−1̺ 6= −1 or
b̺+ b−1̺2 6= −1, a contradiction. Therefore F1(τ1, τ2) is irreducible over K.
Since

F1(τ1, τ2) = τ2
4 F5(τ2(x

−1
1 , . . . , x−1

4 ), τ3(x
−1
1 , . . . , x−1

4 ), τ4(x
−1
1 , . . . , x−1

4 )),

the same applies to F5(τ2, τ3, τ4) (cf. proof of Lemma 5).

We have further

F2(τ1, τ2, τ3) = τ ′

1x
2
4 + (τ ′2

1 + (a + 1)τ ′

2)x4 + (τ ′

1τ
′

2 + aτ ′

3),

hence, if F2(τ1, τ2, τ3) is reducible over K then

F2(τ1, τ2, τ3) = (τ ′

1x4 + bτ ′2
1 + cτ ′

2)(x4 + dτ ′

1), b, c, d ∈ K,

and

τ ′

1τ
′

2 + aτ ′

3 = bdτ ′3
1 + cdτ ′

1τ
′

2.

Since τ ′

1, τ
′

2, τ
′

3 are algebraically independent, it follows that a = 0, a contra-
diction. Therefore F2(τ1, τ2, τ3) is irreducible over K. Since

F2(τ1, τ2, τ3) = τ2
4 F4(τ1(x

−1
1 , . . . , x−1

4 ), . . . , τ4(x
−1
1 , . . . , x−1

4 ))

the same applies to F4(τ1, . . . , τ4) (cf. proof of Lemma 5).
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It remains to consider F3. We have

F3(τ1, . . . , τ4) = a(τ ′

1x4 + τ ′

2)
2 + b(x4 + τ ′

1)(τ
′

2x4 + τ ′

3) + cτ ′

3x4

= (aτ ′2
1 + bτ ′

2)x
2
4 + ((2a + b)τ ′

1τ
′

2 + (b + c)τ ′

3)x4 + (aτ ′2
2 + bτ ′

1τ
′

3).

If aτ ′2
1 + bτ ′

2 were the leading coefficient with respect to x4 of a proper
factor over K of F3(τ1, . . . , τ4), then since it does not divide aτ ′2

2 + bτ ′

1τ
′

3,
the complementary factor of F3(τ1, . . . , τ4) would be x4 + dτ ′

1, d ∈ K∗,
which implies a = 0, bτ ′

1τ
′

2 + (b + c)τ ′

3 = bdτ ′

1τ
′

2 + (b/d)τ ′

3, d = 1, c = 0,
a contradiction.

If aτ ′2
1 + bτ ′

2 is not the leading coefficient of any proper factor of
F3(τ1, . . . , τ4) and the latter polynomial is reducible over K, then aτ ′2

1 +bτ ′

2 is
reducible over K, hence, by Lemma 4, either b = 0, or b = −3a, charK 6= 3
and K contains a primitive cubic root ̺ of 1. In the former case

F3(τ1, . . . , τ4) = a(τ ′

1x4 + d1τ
′2
1 + e1τ

′

2)(τ
′

1x4 + d2τ
′2
1 + e2τ

′

2);

a(d1τ
′2
1 + e1τ

′

2)(d2τ
′2
1 + e2τ

′

2) = aτ ′2
2 ; d1 = d2 = 0,

(ae1 + ae2)τ
′

1τ
′

2 = 2aτ ′

1τ
′

2 + cτ ′

3, c = 0, a contradiction.

In the latter case, by Lemmas 4 and 5, either

F3(τ1, . . . , τ4) = a((x1 + ̺x2 + ̺2x3)x4 + d(x2x3 + ̺x1x3 + ̺2x1x2))

× ((x1 + ̺2x2 + ̺x3)x4 + d−1(x2x3 + ̺2x1x3 + ̺x1x2))

or

F3(τ1, . . . , τ4) = a((x1 + ̺2x2 + ̺x3)x4 + d(x2x3 + ̺2x1x3 + ̺x1x2))

× ((x1 + ̺2x2 + ̺x3)x4 + d−1(x2x3 + ̺x1x3 + ̺2x1x2)).

In the first subcase

d(x2x3 + ̺x1x3 + ̺2x1x2)(x1 + ̺2x2 + ̺x3)

+ d−1(x2x3 + ̺2x1x3 + ̺x1x2)(x1 + ̺x2 + ̺2x3)

= − τ ′

1τ
′

2 + (c/a − 3)τ ′

3,

in the second subcase

d(x2x3 + ̺2x1x3 + ̺x1x2)(x1 + ̺2x2 + ̺x3)

+ d−1(x2x3 + ̺x1x3 + ̺2x1x2)(x1 + ̺x2 + ̺2x3)

= − τ ′

1τ
′

2 + (c/a − 3)τ ′

3.

In both subcases, the right-hand side is invariant with respect to the conju-
gation ̺ 7→ ̺2 and to any permutation σ ∈ S3. The first condition implies
d = ±1,±̺,±̺2, the second condition eliminates the second subcase and in
the first subcase restricts d to ±1. Thus we obtain

d(6x1x2x3 − x2
1x2 − x2

2x3 − x2
3x1 − x1x

2
2 − x2x

2
3 − x3x

2
1)

= −τ ′

1τ
′

2 + (c/a − 3)τ ′

3,
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d(9τ ′

3 − τ ′

1τ
′

2) = −τ ′

1τ
′

2 + (c/a − 3)τ ′

3, d = 1, c = 12a.

Sufficiency. In view of Theorem 1 it suffices to consider n = 4 and
F = y2

2 − 3y1y3 + 12y4. Then

F (τ1, . . . , τ4) = (x1x4 + x2x3 + ̺(x2x4 + x1x3) + ̺2(x3x4 + x1x2))

× (x1x4 + x2x3 + ̺2(x2x4 + x1x3) + ̺(x3x4 + x1x2)).

Example. Take F =
∑n

i=2(−1)i xn−i
1 xi. We have deg F = n − 1 and

F (τ1, . . . , τn) =
n

∏

i=1

(τ1 − xi).

This example also shows that the estimate in Lemma 3 cannot be improved.

References

[1] R. Fricke, Lehrbuch der Algebra, Vieweg, Braunschweig, 1924.
[2] L. Smith, Polynomial Invariants of Finite Groups, A K Peters, Wellesley, MA, 1995.

A. Schinzel
Institute of Mathematics
Polish Academy of Sciences
P.O. Box 21
00-956 Warszawa, Poland
E-mail: schinzel@impan.gov.pl

Received December 13, 2005 (7494)


