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CONVEX ANALYSIS

Appli
ations of the Rådström�HörmanderEmbedding Theorem to Multifun
tionsbyAnna KUCIAPresented by Czesªaw OLECH
Summary. Using the Rådström�Hörmander theorem on embedding of the hyperspa
eof 
losed 
onvex sets in a Bana
h spa
e, we prove multivalued versions of some resultsknown for real fun
tions.1. Notation and basi
 fa
ts. Throughout the paper X will denote atopologi
al spa
e and Y a metri
 spa
e with a metri
 ̺ or a normed linearspa
e with ̺(x, y) = ‖x − y‖. The open (resp., 
losed) ε-ball in Y arounda nonempty set A ⊂ Y is denoted by B(A, ε) = {y ∈ Y : ̺(y,A) < ε}
=

⋃

{B(a, ε) : a ∈ A} (resp., B(A, ε) = {y ∈ Y : ̺(y,A) ≤ ε}), where
̺(y,A) = inf{̺(y, a) : a ∈ A}. Clearly clB(A, ε) ⊂ B(A, ε), where clF or
clY F denotes the 
losure of F in Y .We denote by 2Y the family of all nonempty 
losed subsets of Y . Weshall 
onsider the following subfamilies of 2Y :

F(Y ) = {A ∈ 2Y : A is bounded},

K(Y ) = {A ∈ F(Y ) : A is compact},and in the 
ase of a normed spa
e Y :
2Y
c = {A ∈ 2X : A is convex},

Fc(Y ) = {A ∈ F(Y ) : A is convex},

Kc(Y ) = {A ∈ K(Y ) : A is convex}.It is known that any subset A ⊂ 2Y 
an be regarded as a (generalized)metri
 spa
e with the Hausdor� distan
e dist(A,C) = inf{ε > 0 : A ⊂2000 Mathemati
s Subje
t Classi�
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B(C, ε) and C ⊂ B(A, ε)}. Balls in the Hausdor� metri
 will be denoted by
B(A, ε).If the spa
e Y is 
omplete, then (F(Y ), dist) is also 
omplete (a resultdue to H. Hahn, 1932) and K(Y ) is a 
losed subset of F(Y ). If Y is 
ompa
t,then so is K(Y ). It is easy to see that 2Y

c is a 
losed subset of 2Y whenever
Y is normed. Thus, if F is a 
omplete (resp., 
ompa
t) subset of a normedspa
e Y , then Fc(F ) is also a 
omplete (resp., 
ompa
t) subset of Fc(Y ).If Y is a Bana
h spa
e, then the spa
es (Fc(Y ), dist) and (Kc(Y ), dist) are
omplete. If Y is separable (resp., separable and normed), then K(Y ) (resp.,
Kc(Y )) is also separable (
f. e.g. [7; 4.5.22℄ and [2; Ch. II℄).Let Y be normed and let A be 2Y

c , Fc(Y ) or Kc(Y ). For A,B ∈ A and
λ ∈ [0,∞) we de�ne: A + B = {a+ b : a ∈ A, b ∈ B}, A +̇ B = cl(A + B),and λA = {λa : a ∈ A}. Clearly, A +̇ B and λA belong to A. Moreover,
A +̇ B = A + B whenever A,B ∈ Kc(Y ). As usual, a set C ⊂ A is 
alled
onvex if αA +̇βB ∈ C for every A,B ∈ C, α+β = 1, α, β ≥ 0. For example,
{A ∈ A : A ⊂ F} is 
losed (resp., 
ompa
t) and 
onvex in A if F ⊂ Y is
losed (resp., 
ompa
t) and 
onvex.By a multifun
tion we mean any set-valued fun
tion. Let X be a to-pologi
al spa
e, Y a (generalized) metri
 spa
e, and ϕ : X → 2Y a mul-tifun
tion. By ϕ(X) we denote ⋃

{ϕ(x) : x ∈ X}. We say that ϕ is lower(resp., upper) semi
ontinuous if for ea
h open (resp., 
losed) A ⊂ Y thepreimage ϕ−(A) = {x ∈ X : ϕ(x) ∩ A 6= ∅} is open (resp., 
losed) in X.We shall use the abbreviations l.s.
. and u.s.
. A multifun
tion ϕ is saidto be Hausdor� lower semi
ontinuous (resp., Hausdor� upper semi
onti-nuous), for short H.l.s.
. (resp., H.u.s.
), if for ea
h x0 ∈ X and ε > 0there exists a neighbourhood U of x0 su
h that ϕ(x0) ⊂ B(ϕ(x), ε) (resp.,
ϕ(x) ⊂ B(ϕ(x0), ε)) whenever x ∈ U . Re
all that any H.l.s.
. multifun
tionis l.s.
. and any u.s.
. multifun
tion is H.u.s.
. In the 
ase of 
ompa
t-valuedmultifun
tions the 
orresponding notions 
oin
ide. If ϕ is H.l.s.
. and H.u.s.
.(resp., l.s.
. and u.s.
.), then it is 
alled H-
ontinuous (resp., V-
ontinuous).Observe that a multifun
tion ϕ : X → A with A ⊂ 2Y is H-
ontinuous(resp., V-
ontinuous) if and only if ϕ 
onsidered as a fun
tion from X to thespa
e A with the Hausdor� distan
e (the Vietoris topology) is 
ontinuous.It is known that generally H-
ontinuity is not preserved under �nite in-terse
tions. Usually, to obtain su
h a result, we assume that the interior ofthe interse
tion is nonempty at every point. The following proposition, per-haps known, is similar (
f. [5; Lemma 2.2 and Prop. 2.3℄, [10; Lemma 2.1℄and [12℄).
Proposition. Let ϕ0 : X → Fc(Y ) and ϕi : X → 2Y

c , i = 1, . . . , n,be H-
ontinuous (resp., lo
ally H-Lips
hitzean) multifun
tions, where Y isnormed (and X metri
, resp.). If ri > 0, i = 1, . . . , n, and ⋂

n

i=0
ϕi(x) 6= ∅
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for every x ∈ X, then ψ : X → Fc(Y ) de�ned by

ψ(x) = ϕ0(x) ∩
n
⋂

i=1

B(ϕi(x), ri)is H-
ontinuous (resp., lo
ally H-Lips
hitzean).Proof. First we 
laim the following: If F ⊂ Y and Gλ ⊂ Y , λ ∈ Λ,are 
onvex, F is bounded with diam(F ) ≤ M , and B(y0, r) ⊂ Gλ for some
y0 ∈ F , r > 0 and every λ ∈ Λ, then for ea
h δ > 0 the following in
lusionholds:

B(F, δ) ∩
⋂

λ∈Λ

B(Gλ, δ) ⊂ B

(

F ∩
⋂

λ∈Λ

Gλ, δ

(

1 +
2M

r

))

.

Indeed, for y ∈ B(F, δ) ∩
⋂

λ∈Λ
B(Gλ, δ) we take y′ ∈ F and yλ ∈ Gλsu
h that ‖y − y′‖ < δ and ‖y − yλ‖ < δ. Then

zλ = y0 +
r

2δ
(y′ − yλ) ∈ B(y0, r) ⊂ Gλ.We put

z =
2δ

r + 2δ
y0 +

r

r + 2δ
y′ =

2δ

r + 2δ
zλ +

r

r + 2δ
yλ.Hen
e z ∈ F ∩

⋂

λ∈Λ
Gλ, F and Gλ being 
onvex and y0, y

′ ∈ F , zλ, yλ ∈ Gλ.Moreover,
‖y − z‖ ≤ ‖y − y′‖ + ‖y′ − z‖ ≤ δ +

∥

∥

∥

∥

2δ

r + 2δ
(y0 − y′)

∥

∥

∥

∥

< δ

(

1 +
2M

r

)

.This proves our 
laim.Let x0 ∈ X. Sin
e ϕ0(x0) is bounded and ϕ0 is H.u.s.
. at x0, thereexist M > 0 and a neighbourhood V of x0 su
h that diam(ϕ0(x)) ≤ M for
x ∈ V . If ϕ0, . . . , ϕn are H-
ontinuous at x0, then for given ε > 0 we take aneighbourhood U ⊂ V of x0 su
h that dist(ϕi(x), ϕi(x0)) < δ′ for x ∈ U and
i = 0, . . . , n, where δ = ε/(1 + 2M/r), r = min{r1, . . . , rn} and 0 < δ′ < δ.So for every x ∈ U , by the �rst part of the proof, we obtain

ψ(x0) ⊂ B(ϕ0(x), δ
′) ∩

n
⋂

i=1

B(B(ϕi(x), ri), δ
′)

⊂ B(ψ(x), δ(1 + 2M/r)) = B(ψ(x), ε),and analogously, ψ(x) ⊂ B(ψ(x0), ε). This proves the H-
ontinuity of ψat x0.If we 
onsider H-lo
ally Lips
hitzean multifun
tions, we take U ⊂ Vsu
h that ϕi|U is H-Lips
hitzean with 
onstant ki, i = 0, . . . , n. Then for
k > k′ > max{k0, . . . , kn} and any x, y ∈ U , x 6= y, we have
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ψ(y) ⊂ B(ϕ0(x), k

′̺(x, y)) ∩
n
⋂

i=1

B(B(ϕi(x), ri), k
′̺(x, y))

⊂ B(ψ(x), k(1 + 2M/r)̺(x, y)).This shows that ψ|U is H-Lips
hitzean.Note that in the following lemma all multifun
tions Φ are of the type
Φ : X → 2A, i.e., the values Φ(x) are 
losed subsets of the spa
e A endowedwith the Hausdor� distan
e.
Lemma. Assume that X is a topologi
al spa
e, Y a metri
 (resp., nor-med) spa
e, A one of the spa
es 2Y , F(Y ) or K(Y ) (resp., 2Y

c , Fc(Y )or Kc(Y )) and x0 ∈ X. Then for any multifun
tions ϕ : X → A and
ψ : X → 2Y (resp., ψ : X → 2Y

c ), the following hold :(a) If Φ(x) = {A ∈ A : A ⊂ ψ(x)} for x ∈ X, then Φ : X → 2A (resp.,
Φ : X → 2Ac ) and(1) ψ is H.l.s.
. at x0 if and only if Φ is H.l.s.
. at x0,(2) ψ is H.u.s.
. at x0 if and only if Φ is H.u.s.
. at x0.(b) If Φ(x) = {A ∈ A : ϕ(x) ⊂ A} for x ∈ X, then Φ : X → 2A (resp.,
Φ : X → 2Ac ) and(3) ϕ is H.l.s.
. at x0 if and only if Φ is H.u.s.
. at x0,(4) ϕ is H.u.s.
. at x0 if and only if Φ is H.l.s.
. at x0.(
) If ϕ(x) ⊂ ψ(x) and Φ(x) = {A ∈ A : ϕ(x) ⊂ A ⊂ ψ(x)} for all
x ∈ X, then Φ : X → 2A (resp., Φ : X → 2Ac ) and(5) ϕ is H.u.s.
. at x0 and ψ is H.l.s.
. at x0 if and only if Φ is H.l.s.
.at x0,(6) ϕ is H.l.s.
. at x0 and ψ is H.u.s.
. at x0 if and only if Φ isH.u.s.
. at x0.Proof. Obviously, (b) is a 
onsequen
e of (
) with ψ(x) = Y for x ∈ X.Sin
e ϕ(x) 6= ∅, (a) is not a spe
ial 
ase of (
), but the proof of (
) givenbelow works also under the assumption ϕ(x) = ∅ for ea
h x ∈ X.Observe that ϕ(x) ∈ Φ(x) under (b) or (
), and {y} ∈ Φ(x) for y ∈ ψ(x)under (a), hen
e Φ(x) 6= ∅. Sin
e ϕ(x) and ψ(x) are 
losed (resp., 
losed and
onvex) subsets of Y , Φ(x) is a nonempty 
losed (resp., 
losed and 
onvex)subset of A, i.e., Φ(x) ∈ 2A (resp., Φ(x) ∈ 2Ac ).In order to prove (5), assume �rst that ϕ is H.u.s.
. at x0 and ψ is H.l.s.
.at x0. We have to �nd for ea
h ε > 0 a neighbourhood U of x0 su
h that

Φ(x0) ⊂ B(Φ(x), ε) for every x ∈ U , i.e., su
h that if A0 ∈ A, x ∈ U and
ϕ(x0) ⊂ A0 ⊂ ψ(x0), then

dist(Ax, A0) < ε for some Ax ∈ A with ϕ(x) ⊂ Ax ⊂ ψ(x).
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Let U be a neighbourhood of x0 su
h that ϕ(x) ⊂ B(ϕ(x0), ε/2) and ψ(x0) ⊂
B(ψ(x), ε/2) for x ∈ U . Fix x ∈ U and A0 ∈ Φ(x0).If A = 2Y or A = F(Y ) (A = 2Y

c or A = Fc(Y )) we take Ax =
ψ(x)∩B(A0, ε/2). Clearly, Ax is 
losed (resp., 
losed and 
onvex) and ϕ(x) ⊂
Ax ⊂ ψ(x), be
ause ϕ(x) ⊂ B(ϕ(x0), ε/2) ⊂ B(A0, ε/2). For ea
h y0 ∈ A0 ⊂
ψ(x0) ⊂ B(ψ(x), ε/2) there exists y ∈ ψ(x) su
h that ̺(y, y0) < ε/2, i.e.,
y ∈ Ax and 
onsequently A0 ⊂ B(Ax, ε/2). (This shows that Ax 6=∅ also for
ϕ≡∅, i.e., in the proof of (1)). Hen
e, dist(Ax, A0)≤ε/2<ε and Ax∈Φ(x).In the 
ase of A = K(Y ) (resp., A = Kc(Y )), we pro
eed in the follo-wing way. Sin
e A0 ⊂ ψ(x0) ⊂ B(ψ(x), ε/2) is 
ompa
t, there exist k ∈ N,
ai ∈ A0 and bi ∈ ψ(x), i = 1, . . . , k, su
h that ̺(y0, {a1, . . . , ak}) < ε/2for every y0 ∈ A0 and ̺(bi, ai) < ε/2. We put Ax = ϕ(x) ∪ {b1, . . . , bk}(resp., Ax = conv(ϕ(x) ∪ {b1, . . . , bk})). Then Ax ∈ A (ϕ(x) being 
on-vex and 
ompa
t), ϕ(x) ⊂ Ax ⊂ ψ(x) (ψ(x) being 
onvex) and A0 ⊂
B({b1, . . . , bk}, ε) ⊂ B(Ax, ε). On the other hand, {b1, . . . , bk} ⊂ B(A0, ε/2)and ϕ(x) ⊂ B(ϕ(x0), ε/2) ⊂ B(A0, ε/2), so Ax ⊂ B(A0, ε/2) (A0 being
onvex). This shows that dist(A0, Ax) < ε.To prove the 
onverse impli
ation in (5) we take a neighbourhood U of
x0 su
h that Φ(x0) ⊂ B(Φ(x), ε) for x ∈ U . If x ∈ U , then A0 = {y0}∪ϕ(x0)(resp., A0 = cl conv(ϕ(x0) ∪ {y0})) belongs to Φ(x0) for any y0 ∈ ψ(x0).Hen
e, dist(A0, Ax) < ε for some Ax ∈ Φ(x) and y0 ∈ A0 ⊂ B(Ax, ε) ⊂
B(ψ(x), ε). Consequently, ψ(x0) ⊂ B(ψ(x), ε) for x ∈ U , i.e., ψ is H.l.s.
.at x0. Sin
e ϕ(x0) ∈ Φ(x0), for every x ∈ U there exists Ax ∈ Φ(x) su
h that
dist(Ax, ϕ(x0)) < ε. Hen
e, ϕ(x) ⊂ Ax ⊂ B(ϕ(x0), ε) for x ∈ U , i.e., ϕ isH.u.s.
. at x0.The proof of (6) is the same as that of (5) with A0 repla
ing Ax and vi
eversa.2. Appli
ations of the Rådström�Hörmander Theorem. Re
allthe following version of the Rådström�Hörmander Theorem:
Theorem. Let Y be a normed spa
e and A = Fc(Y ) or A = Kc(Y ).Then the spa
e (A, dist) with the operations (A,B) 7→ A +̇ B and (λ,A) 7→

λA, A,B ∈ A, λ ∈ [0,∞), 
an be isometri
ally and algebrai
ally embeddedas a 
onvex 
one K in a Bana
h spa
e E.In 1952 the above theorem was proved by Rådström [14℄ for some A ⊂
Fc(Y ) with the operation + (e.g. for Kc(Y ) and for {A ∈ Kc(Y ) : A is �nite-dimensional}). However, due to the 
an
ellation law for the operation +̇ (seee.g. [17; Prop. 2.1℄), his proof also works in the 
ase of (Fc(Y ), +̇). The prooffor (Fc(Y ), +̇) using support fun
tions was given by Hörmander [11℄ in 1954.In what follows, for the sake of simpli
ity, we identify A with the 
onvex
one K ⊂ E. Observe that if F ⊂ Y is 
omplete and A = Fc(Y ), then Fc(F )
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is also a 
omplete subset of E, sin
e the embedding is an isometry. Similarly,if F ⊂ Y is 
ompa
t and A = Fc(Y ) or A = Kc(Y ), then Kc(F ) is a
ompa
t subset of E. In parti
ular, if in the Rådström�Hörmander Theorem
Y is assumed to be a Bana
h spa
e, then the 
one K is a 
losed subsetof E, sin
e the spa
es (Fc(Y ), dist) and (Kc(Y ), dist) are 
omplete. If Y isseparable and A = Kc(Y ), then one 
an assume that E is also separable.From the Rådström�Hörmander Theorem one 
an obtain some intere-sting results for multifun
tions, as 
orollaries to known theorems. By theDugundji Extension Theorem (e.g. [6; Th. 10.4℄) we immediately obtain thefollowing result:
Corollary 1 (Extension Theorem). Let Y be a normed spa
e and A =

Fc(Y ) (A = Kc(Y ) or A = {A ∈ Kc(Y ) : A is �nite-dimensional}). Thenany H-
ontinuous multifun
tion ϕ : F → A de�ned on a 
losed subset F ofa metrizable spa
e X has an H-
ontinuous extension ϕ : X → A su
h that
ϕ(X) ⊂ clconvϕ(F ) (resp., ϕ(X) ⊂ convϕ(F )).Proof. We treat ϕ as a 
ontinuous fun
tion ϕ : F → K ⊂ E. Hen
e, thereexists a 
ontinuous extension ϕ : X → E su
h that ϕ(x) ∈ convE{ϕ(x) :
x ∈ F} ⊂ K for x ∈ X, i.e., if ϕ is regarded as a multifun
tion, then it isH-
ontinuous, ϕ(x) ∈ A and ϕ(x) ⊂ clconvϕ(F ) (resp., ϕ(x) ⊂ convϕ(F ),sin
e for 
ompa
t sets the operations + and +̇ 
oin
ide).
Remark. In the same way one 
an also obtain the following results:Let A be Fc(Y ) or Kc(Y ). A T1-spa
e X is 
olle
tionwise normal i� forevery Bana
h spa
e Y and every 
losed F ⊂ X any H-
ontinuous ϕ : F →

A 
an be extended to an H-
ontinuous ϕ : X → A su
h that ϕ(X) ⊂
clconvϕ(F ). If we restri
t ourselves to separable Bana
h spa
es and A =
Kc(Y ), then we obtain a 
orresponding 
hara
terization of normal spa
es. Itfollows, respe
tively, from theorems due to Dowker and Hanner (
f. also [13;Th. 3.2 and Th. 3.1℄), and from the observation that the set {A ∈ A : A ⊂
clconvϕ(F )} is a retra
t of E, being a 
losed and 
onvex subset of E.It is known that some extension theorems 
an be dedu
ed from sele
tiontheorems (
f. [13; Cor. 1.5℄). For example, the Mi
hael Sele
tion Theorem[13; Th. 3.2′′℄ yields the following result:
Corollary 2 (Extension Theorem). Let Y be a Bana
h spa
e and A =

Fc(Y ) or A = Kc(Y ). Then any H-
ontinuous multifun
tion ϕ : F → Ade�ned on a 
losed subset F of a para
ompa
t spa
e X has an H-
ontinuousextension ϕ : X → A su
h that ϕ(X) ⊂ clconvϕ(F ). Moreover, if ψ : X →
2Y
c is H.l.s.
. and ϕ(x) ⊂ ψ(x) for x ∈ F , then there exists an H-
ontinuousextension ϕ : X → A su
h that ϕ(x) ⊂ ψ(x) for ea
h x ∈ X.Proof. If ψ is not given, then we put ψ(x) = clconvϕ(F ) for x ∈ X.By (1) of the Lemma, the multifun
tion Φ : X → 2Ac , Φ(x) = {A ∈ A :
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A ⊂ ψ(x)}, 
an be regarded as an H.l.s.
. multifun
tion from X to a Bana
hspa
e E with 
losed and 
onvex values. Hen
e Ψ de�ned by Ψ(x) = {ϕ(x)}for x ∈ F and Ψ(x) = Φ(x) for x ∈ X \ F is l.s.
., F being 
losed and ϕH-
ontinuous. Every 
ontinuous sele
tion of Ψ , the existen
e of whi
h followsby the Mi
hael Theorem, is the desired extension.
Remarks. 1. Instead of the 
ompleteness of Y , in the above 
orollaryone 
an assume that ψ has 
omplete values.2. If ψ : X → Kc(Y ) and Y is normed, it is enough to assume that X is
olle
tionwise normal; if additionally Y is separable, then X 
an be normal.This follows in the same way from sele
tion theorems for 
ompa
t-
onvex-valued multifun
tions (
f. [13; Th. 3.2′ and Th. 3.1′℄). The existen
e of su
hextensions for every ϕ and ψ 
hara
terizes, respe
tively, the 
olle
tionwisenormality and the normality of X (X is assumed to be a T1-spa
e).3. A result 
orresponding to Corollary 2 in the 
ase of a metri
 spa
e Xand H-
ontinuous ψ : X → Kc(Y ) was given in [16℄. Its proof is based onsupport fun
tions.
Corollary 3 (Sandwi
h Theorem). Let X be para
ompa
t , Y a Bana
hspa
e and A = Fc(Y ) or A = Kc(Y ). Then for any H.u.s.
. multifun
tion

ϕ :X→A and any H.l.s.
. ψ :X→ 2Y
c su
h that ϕ(x)⊂ψ(x) for all x∈X,there exists an H-
ontinuous multifun
tion χ : X → A su
h that ϕ(x) ⊂

χ(x) ⊂ ψ(x) for ea
h x ∈ X. In parti
ular , any H.u.s.
. multifun
tion ϕ :
X → A is bounded by an H-
ontinuous χ : X → A.Proof. Let Φ(x) = {A ∈ A : ϕ(x) ⊂ A ⊂ ψ(x)}. By (5) of the Lemma, Φis a H.l.s.
. multifun
tion with 
losed and 
onvex values from X to a Bana
hspa
e E. Hen
e it has a 
ontinuous sele
tion χ.
Remark. The above result in the 
ase of a metri
 spa
e X and ϕ, ψ :

X → Kc(R
n) was proved in [1; Th. 4℄. A related result for a metri
 spa
e Xand ϕ, ψ : X → Fc(Y ) su
h that B(ϕ(x), r(x)) ⊂ ψ(x) for some r(x) > 0,

x ∈ X, was proved in [4; Th. 5.1℄. Similar results (
alled interposition the-orems) were announ
ed in [8℄ and [9℄, but without proofs. A version of theSandwi
h Theorem with ϕ and ψ 
onvex-
ompa
t-valued is given in the book[15; Th. 5.75℄, and the authors suggest another method of proof.The following two 
orollaries are generalizations of known 
hara
teriza-tions of some topologi
al spa
es by semi
ontinuous real fun
tions (see e.g.[7; 1.7.15(b) and (
)℄).
Corollary 4. A T1-spa
e X is normal if and only if for every separablenormed spa
e Y and ϕ, ψ : X → Kc(Y ), where ϕ is H.u.s.
., ψ is H.l.s.
.and ϕ(x) ⊂ ψ(x) for ea
h x ∈ X, there exists an H-
ontinuous multifun
tion

χ : X → Kc(Y ) su
h that ϕ(x) ⊂ χ(x) ⊂ ψ(x) for ea
h x ∈ X.
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Proof. Now Φ de�ned as in the previous 
orollary has 
ompa
t 
onvexvalues in a separable Bana
h spa
e E. Hen
e the existen
e of χ follows by[13; Th. 3.1′℄. For the 
onverse we 
onsider, for a pair of sets F,U , where Fis 
losed, U open and F ⊂ U , multifun
tions ϕ, ψ : X → Kc(R) de�ned by

ϕ(x) =

{

{0} if x 6∈ F ,
[0, 1] if x ∈ F , ψ(x) =

{

{0} if x 6∈ U ,
[0, 1] if x ∈ U .Then χ(x) = [f(x), g(x)], where f and g are 
ontinuous and g(x) = 0 if

x 6∈ U and g(x) = 1 if x ∈ F .
Corollary 5. A T1-spa
e X is perfe
tly normal if and only if for everyseparable Bana
h spa
e Y and every H.u.s.
. multifun
tion ϕ : X → Kc(Y )there exists a sequen
e of H-
ontinuous multifun
tions ϕn : X → Kc(Y ) su
hthat dist(ϕn(x), ϕ(x)) → 0 and ϕ(x) ⊂ ϕn+1(x) ⊂ ϕn(x) for every x ∈ X.Proof. By (4) of the Lemma the multifun
tion Φ de�ned by Φ(x) =

{A ∈ Kc(Y ) : ϕ(x) ⊂ A} 
an be regarded as a H.l.s.
. and 
losed-
onvex-valued multifun
tion to a separable Bana
h spa
e E. By [13; L. 5.2℄, Φ hasa Mi
hael representation, i.e., there exists a 
ountable family {ψn : n ∈ N}of 
ontinuous sele
tions of Φ (i.e., ψn : X → Kc(Y ) is H-
ontinuous) su
hthat {ψn(x) : n ∈ N} is dense in Φ(x) for every x ∈ X. In parti
ular,
dist(ψkn

(x), ϕ(x)) → 0 for some subsequen
e and ϕ(x) =
⋂

{ψn(x) : n ∈ N}.We put ϕ1 = ψ1 and
ϕn(x) = ϕn−1(x) ∩B(ψn(x), 1/n), n ≥ 2.Clearly, ϕ(x) ⊂ ϕn+1(x) ⊂ ϕn(x) and dist(ϕn(x), ϕ(x)) ≤ dist(ψn(x), ϕ(x))

+ 1/n. Hen
e, dist(ϕn(x), ϕ(x)) → 0 as a de
reasing sequen
e having asubsequen
e whi
h 
onverges to 0. By the Proposition, ϕn : X → Kc(Y ) isH-
ontinuous.For the 
onverse, let F ⊂ X be 
losed and let ϕ : X → Kc(R) be de�nedby
ϕ(x) =

{

{0} if x 6∈ F ,
[0, 1] if x ∈ F .Consider the 
orresponding sequen
e (ϕn). Sin
e ϕn(x) = [fn(x), gn(x)] and

ϕn is H-
ontinuous, it follows that gn is 
ontinuous and (gn) is a de
reasingsequen
e 
onverging pointwise to the 
hara
teristi
 fun
tion of F .
Remarks. 1. Re
all that it is quite easy to obtain a result 
orrespon-ding to the above 
orollary for H.l.s.
. multifun
tions. Namely, for a givenH.l.s.
. ϕ : X → Kc(Y ) and a separable normed Y we take a Mi
hael re-presentation {fn : n ∈ N} and put ϕn(x) = conv{f1(x), . . . , fn(x)}. Clearly,the 
ompa
tness of ϕ(x) is essential, sin
e the ϕn(x) are 
ompa
t. A rela-ted 
hara
terization of perfe
tly normal domains by approximation of lowersemi
ontinuous multifun
tions was given in [3℄.
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2. It is easy to see that for any X and ϕ : X → 2Y

c with a Mi
haelrepresentation, the sequen
e (ϕn) de�ned as in the above remark 
onvergespointwise to ϕ in the Vietoris topology.3. Aseev [1; Th. 2℄ proved a 
orresponding result on approximation of aH.u.s.
. ϕ : X → Kc(R
n), whereX is metri
, with the additional requirement

ϕ(x) ⊂ intϕn(x). To obtain su
h in
lusions it is enough to take ϕ′
n(x) =

B(ϕn(x), 1/n), Y = R
n in our proof of Corollary 5.There are also some results on approximation of H.u.s.
. multifun
tionsde�ned on a metri
 spa
e with values in Fc(Y ). Usually every approximatingmultifun
tion is de�ned by a partition of unity from 
onstant multifun
tions.Observe that, using the Rådström�Hörmander embedding, any multifun
tionde�ned in su
h a way is H-
ontinuous. More pre
isely, let A be Fc(Y ) or

Kc(Y ), Ai ∈ A and pi ≥ 0 for i = 1, . . . , n, and
A = clY

n
∑

i=1

piAi = p1A1 +̇ · · · +̇ pnAn ∈ A.

If we identify A with a subset of E, the set A is of the form A =
∑

n

i=1
piAi,where ∑ denotes algebrai
 sum in E. Therefore, if we de�ne a new multifun
-tion ϕ by ϕ(x) = clY

∑

λ∈Λ
pλ(x)ϕλ(x), where {pλ : λ ∈ Λ} is a lo
ally �nitepartition of unity and ϕλ : X → A, then ϕ(x) =

∑

λ∈Λ
pλ(x)ϕλ(x) and weobtain exa
tly the same theorems on the H-
ontinuity of ϕ as for 
ontinuousfun
tions. In parti
ular, if {pλ : λ ∈ Λ} is a lo
ally Lips
hitzean partition ofunity (i.e., it is lo
ally �nite and pλ is lo
ally Lips
hitzean for every λ ∈ Λ)and Aλ ∈ A then ϕ = clY

∑

λ∈Λ
pλ(·)Aλ is lo
ally H-Lips
hitzean.For 
ompleteness we give two results whi
h are obtained in this way.

Corollary 6 (
f. [4; Th. 4.5℄). For every H.u.s.
. multifun
tion ϕ :
X → Fc(Y ), where X is metri
 and Y normed , there exists a sequen
eof lo
ally H-Lips
hitzean multifun
tions ϕn : X → Fc(Y ) su
h that
dist(ϕn(x), ϕ(x)) → 0 and ϕ(x) ⊂ ϕn+1(x) ⊂ ϕn(x) for every x ∈ X.Proof. For every x ∈ X and n ∈ N we take δ(x, n) su
h that δ(x, n) <
1/n and ϕ(y) ⊂ B(ϕ(x), 1/n) if ̺(x, y) < δ(x, n). Let {pn

λ
: λ ∈ Λn} be alo
ally Lips
hitzean partition of unity subordinate to {B(x, δ(x, n)) : x ∈ X}and let xn

λ
be su
h that (pn

λ
)−1(0, 1] ⊂ B(xn

λ
, δ(xn

λ
, n)). We put

ψn(x) = cl
∑

λ∈Λn

pn

λ(x)ϕ(xn

λ).If pn

λ
(x) > 0 then ϕ(x) ⊂ B(ϕ(xn

λ
), 1/n), hen
e ϕ(x) ⊂ B(ψn(x), 1/n) for

x ∈ X and n ∈ N. On the other hand, for �xed x and ε > 0 we take δ > 0su
h that ϕ(y) ⊂ B(ϕ(x), ε) if ̺(x, y) < δ. If n > 1/δ and pn

λ
(x) > 0,then ̺(x, xn

λ
) < δ(xn

λ
, n) < 1/n < δ and ϕ(xn

λ
) ⊂ B(ϕ(x), ε). So ψn(x) ⊂
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B(ϕ(x), ε) whenever n > 1/δ. This shows that dist(ψn(x), ϕ(x)) → 0 forevery x ∈ X. Note that ea
h multifun
tion x 7→ B(ψn(x), 1/n) is lo
allyH-Lips
hitzean. We put

ϕn(x) =
n
⋂

i=1

B(ψi(x), 2/i).By the Proposition, ϕn is lo
ally H-Lips
hitzean. Obviously, ϕ(x) ⊂ ϕn+1(x)
⊂ ϕn(x) ⊂ B(ψn(x), 2/n) and dist(ϕ(x), ϕn(x)) ≤ dist(ϕ(x), ψn(x)) + 2/n.So dist(ϕn(x), ϕ(x)) tends to 0 as n→ ∞.
Remarks. 1. If in the above 
orollary ϕ : X → Kc(Y ) and ϕ(x) ⊂

ψ(x) for some H-
ontinuous ψ : X → Kc(Y ) (by Corollary 3 su
h a ψexists if Y is Bana
h), then putting ϕn(x) = ψ(x) ∩
⋂

n

i=1
B(ψi(x), 2/i), weobtain a de
reasing sequen
e of H-
ontinuous 
ompa
t-valued multifun
tionspointwise 
onverging to ϕ.2. Repeating the �rst part of the previous proof for a H.l.s.
. multifun
-tion ψ : X → A, where A is Fc(Y ) or Kc(Y ), it is easy to obtain a sequen
e ofH-
ontinuous (or lo
ally H-Lips
hitzean) multifun
tions ϕn : X → A whi
h
onverges pointwise to ψ and ϕn(x) ⊂ B(ψ(x), 1/n) for all x ∈ X.3. Note that the existen
e of an approximation by a sequen
e of H-semi
ontinuous multifun
tions 
hara
terizes H-semi
ontinuity. More pre
ise-ly, if a sequen
e of H.u.s.
. (H.l.s.
.) multifun
tions ϕn : X → 2Y 
onvergespointwise to ϕ : X → 2Y and for every ε > 0 there exists n0 su
h that

ϕ(x) ⊂ B(ϕn(x), ε) (resp., ϕn(x) ⊂ B(ϕ(x), ε)) for n ≥ n0 and x ∈ X, then
ϕ is H.u.s.
. (resp., H.l.s.
.). In fa
t, for given x0 and ε > 0 we �x n so largethat ϕn(x0) ⊂ B(ϕ(x0), ε/3) and ϕ(x) ⊂ B(ϕn(x), ε/3) for every x. We takea neighbourhood U of x0 su
h that ϕn(x) ⊂ B(ϕn(x0), ε/3) for x ∈ U . It iseasy to see that ϕ(x) ⊂ B(ϕ(x0), ε).
Corollary 7. LetX bemetri
,Y normed andA = Fc(Y ) orA = Kc(Y ).Then for every H.l.s.
. multifun
tion ψ : X → A with 
omplete values thereexists a sequen
e of H-
ontinuous multifun
tions ψn : X → A 
onvergingpointwise to ψ and su
h that ψn(x) ⊂ ψn+1(x) ⊂ ψ(x) for ea
h x ∈ X.Proof. First observe that if ϕ : X → A is H-
ontinuous and ϕ(x) ⊂

B(ψ(x), r) for some r > 0 and every x ∈ X, then for every ε > 0 thereexists an H-
ontinuous multifun
tion χ : X → A su
h that χ(x) ⊂ ψ(x) and
dist(χ(x), ϕ(x)) ≤ r + ε. In fa
t, by (1) of the Lemma, the multifun
tion
Ψ given by Ψ(x) = {A ∈ A : A ⊂ ψ(x)} is H.l.s.
. It is easy to see that
Ψ(x)∩B(ϕ(x), r+ε) is never empty; for example, ψ(x)∩B(ϕ(x), r+ε/2) 6= ∅belongs to it. De�ne Φ(x) = clE(Ψ(x)∩B(ϕ(x), r+ ε)). By [13; Prop. 2.5℄, Φis lower semi
ontinuous. Sin
e ψ(x) is 
omplete (or 
ompa
t), Ψ(x) is 
losedin E and Φ(x) ⊂ clE Ψ(x) ⊂ A. Hen
e, Φ has a 
ontinuous sele
tion χ, i.e.,
χ : X → A is H-
ontinuous, χ(x) ⊂ ψ(x) and dist(ϕ(x), χ(x)) ≤ r + ε.
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Let ϕn : X → A be as in Remark 2. Let χn : X → A be H-
ontinuoussu
h that χn(x) ⊂ ψ(x) and dist(ϕn(x), χn(x)) ≤ 2/n, for every x ∈ X. Sin
e

dist(χn(x), ψ(x)) ≤ dist(ϕn(x), ψ(x))+2/n, the sequen
e (χn(x)) 
onvergesto ψ(x). We put ψn(x) = clconv(χ1(x)∪· · ·∪χn(x)). It is easy to 
he
k that
(ψn) has the desired properties.
Remark. For ψ : X → Fc(Y ) with intψ(x) 6= ∅ the above result wasproved in [4; Th. 3.6℄.3. Some examples. The Rådström�Hörmander Theorem, whi
h is themain tool in the previous se
tion, is formulated for 
lasses of bounded sets.The �rst example below shows that, generally, our 
orollaries are not truefor multifun
tions with unbounded values.In the following examples I denotes the interval [0,1℄.
Example 1. It is easy to see that no multifun
tion χ : I → 2R

c su
hthat χ(0) = [0,∞) and χ(1) = [a, b], a ≤ b, is H-
ontinuous. In fa
t, let
f(x) ∈ R ∪ {∞} denote the right end point of χ(x), so f : I → R ∪ {∞}.If χ is H.l.s.
. at 0, then f(x) = ∞ whenever 0 ≤ x < δ for some δ > 0.Let x0 = sup{x ∈ I : f(y) = ∞ for every y ∈ [0, x]}. If f(x0) = ∞, then
x0 < 1 and χ is not H.l.s.
. at x0. If f(x0) ∈ R, then χ is not H.u.s.
. at x0.Note that this example is based on the fa
t that the generalized metri
 spa
e
(2R

c , dist) is not 
onne
ted.This example shows that the spa
e (2R
c , dist) does not have the extensionproperty for 
ontinuous fun
tions, i.e., the restri
tion to bounded sets in Co-rollaries 1 and 2 is essential (for example, F = {0, 1} ⊂ I, ϕ(0) = [0,∞),

ϕ(1) = {0}). Similarly, the Sandwi
h Theorem and the Approximation The-orem, i.e., Corollaries 3, 6 and 7, do not hold for unbounded sets. In fa
t,let ϕ and ψ be de�ned on I by ϕ(0) = [0,∞), ϕ(x) = {0} if x ∈ (0, 1],
ψ(x) = [0,∞) if x ∈ [0, 1) and ψ(1) = {0}. Then ϕ is H.u.s.
., ψ is H.l.s.
.and ϕ(x) ⊂ ψ(x) for every x ∈ I, but there is no H-
ontinuous χ between
ϕ and ψ, and ϕ and ψ have no approximation by sequen
es of H-
ontinuousmultifun
tions.The next examples show that if we 
onsider the problems of the previousse
tion in the 
ase of u.s.
. or l.s.
. multifun
tions, i.e., when Fc(Y ) is en-dowed with the Vietoris topology, then the situation is quite di�erent (
f.also Remark 2 to Cor. 5).
Example 2. Let X be a normed spa
e. The multifun
tion ϕ : X →

Fc(X) de�ned by ϕ(x) = B(x, 1) is H-Lips
hitzean, be
ause we have
dist(B(x, r), B(y, r)) = ‖x − y‖, r ≥ 0. Obviously, ϕ is also l.s.
. Observethat ϕ is u.s.
. i�X is �nite-dimensional. Indeed, if X is in�nite-dimensional,then by the Riesz Theorem there exist points bn ∈ B(0, 1) su
h that ‖bn‖ = 1
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and ‖bn − bm‖ ≥ 1/2 for n 6= m. Let an = (1 + 1/n)bn and xn = (1/n)bn.Then

1

2
≤ ‖bn − bm‖ =

∥

∥

∥

∥

an − am −
1

n
bn +

1

m
bm

∥

∥

∥

∥

≤ ‖an − am‖ +
1

n
+

1

m
.Hen
e, 1/4 ≤ ‖an − am‖ for m > n ≥ 8 and F = {an : n ∈ N} is 
losed, and

B(0, 1) ⊂ X \ F = U . Clearly, limxn = 0, an ∈ ϕ(xn) and ϕ(V ) ⊂ U for noneighbourhood V of 0, i.e., ϕ is not u.s.
.
Example 3. No multifun
tion χ : I → Fc(l

1) su
h that χ(0) = B(0, 1),
χ(1) = B(0, 2) and B(0, 1) ⊂ χ(x) for every x ∈ I, is V-
ontinuous. Infa
t, if χ is l.s.
., then the set {x ∈ I : χ(x) ⊂ B(0, 1)} is 
losed. Hen
e,
x0 = sup{x ∈ I : χ(x) ⊂ B(0, 1)} ∈ [0, 1) and χ(x0) = B(0, 1). We takea de
reasing sequen
e (xn) 
onverging to x0 and yn ∈ χ(xn) su
h that 1 <
‖yn‖ ≤ 2. Put αn = 1 if yn(n) ≥ 0 and αn = −1 if yn(n) < 0. Let

an =
1

n
yn +

(

1 −
1

n

)

αnen,where en ∈ l1 is de�ned by en(k) = δk
n. Clearly, an ∈ χ(xn). It is easyto 
he
k that ‖an‖ = (1/n)‖yn‖ + 1 − 1/n > 1; thus an 6∈ χ(x0). It is
lear that the sequen
e ((1 − 1/n)αnen) has no a

umulation point. Sin
e

(1 − 1/n)αnen = an − (1/n)yn and (yn) is bounded, the sequen
e (an) hasno a

umulation point either. Hen
e, U = l1 \ {an : n ∈ N} is open and
χ(x0) ⊂ U . There is no neighbourhood V of x0 su
h that χ(x) ⊂ U for
x ∈ V , sin
e (xn) 
onverges to x0. So χ is not u.s.
. at x0.Let F denote the topologi
al spa
e Fc(l

1) with the Vietoris topology.Example 2 shows that the algebrai
 sum (F,G) 7→ F +̇G is not a 
ontinuousfun
tion from F×F to F , sin
e (B(0, 1), {x}) 7→ B(0, 1)+x = B(x, 1) is not
ontinuous. Similarly, Example 3 shows that multipli
ation by nonnegativereals (x, F ) 7→ xF is not a 
ontinuous fun
tion from [0,∞) × F to F , sin
e
(x,B(0, 1)) 7→ xB(0, 1) = B(0, x) is not 
ontinuous. Hen
e, in the 
ase ofthe Vietoris topology, a result 
orresponding to the Rådström�HörmanderTheorem does not hold.Observe that the Sandwi
h Theorem does not hold for semi
ontinuousmultifun
tions. Indeed, let ψ : I → Fc(l

1) be de�ned by ψ(x) = B(0, 1 + x).Sin
e dist(ψ(x), ψ(y)) = |x−y|, ψ is H-Lips
hitzean. So ψ is also l.s.
. and, byExample 3, it is not u.s.
. Let ϕ : I → Fc(l
1) be de�ned as ϕ(x) = B(0, 1)if x ∈ [0, 1) and ϕ(1) = B(0, 2). Of 
ourse, ϕ is u.s.
. and ϕ(x) ⊂ ψ(x)for every x ∈ I. But, by Example 3, there is no V-
ontinuous χ su
h that

ϕ(x) ⊂ χ(x) ⊂ ψ(x) for x ∈ I.A
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