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Summary. Using the Radstrom-Hoérmander theorem on embedding of the hyperspace
of closed convex sets in a Banach space, we prove multivalued versions of some results
known for real functions.

1. Notation and basic facts. Throughout the paper X will denote a
topological space and Y a metric space with a metric o or a normed linear
space with o(x,y) = |[z — y||. The open (resp., closed) e-ball in Y around
a nonempty set A C Y is denoted by B(A,e) = {y € Y : o(y,A) < &}
= U{B(a,e) : a € A} (resp., B(A,e) = {y € Y : o(y,A) < €}), where
o(y, A) = inf{o(y,a) : a € A}. Clearly cl B(A,e) C B(A,¢), where cl F or
cly F' denotes the closure of F'in Y.

We denote by 2¥ the family of all nonempty closed subsets of Y. We
shall consider the following subfamilies of 2¥:

F(Y)={Ac2": Ais bounded},
K(Y)={Ae F(): Ais compact},
and in the case of a normed space Y:
2V = {A € 2% : Ais convex},
F(Y)={A e F(Y): Ais convex},
Ke(Y)={A e K(Y): Ais convex}.
It is known that any subset A C 2¥ can be regarded as a (generalized)
metric space with the Hausdorff distance dist(4,C) = inf{e > 0 : A C
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B(C,e) and C C B(A,¢)}. Balls in the Hausdorff metric will be denoted by
B(A,¢).

If the space Y is complete, then (F(Y),dist) is also complete (a result
due to H. Hahn, 1932) and K(Y) is a closed subset of F(Y'). If Y is compact,
then so is C(Y). It is easy to see that 2) is a closed subset of 2¥ whenever
Y is normed. Thus, if F' is a complete (resp., compact) subset of a normed
space Y, then F,(F) is also a complete (resp., compact) subset of F.(Y).
If Y is a Banach space, then the spaces (F.(Y),dist) and (K.(Y),dist) are
complete. If Y is separable (resp., separable and normed), then K(Y") (resp.,
K.(Y)) is also separable (cf. e.g. [7; 4.5.22] and [2; Ch. II]).

Let Y be normed and let A be 2¥, F.(Y) or K.(Y). For A, B € A and
A € [0,00) we define: A+ B={a+b:a€ A be B}, A+ B =cl(A+ B),
and MA = {\a : a € A}. Clearly, A + B and \A belong to .A. Moreover,
A+ B = A+ B whenever A,B € K.(Y). As usual, a set C C A is called
convex if a A+ 3B € C for every A,B €C, a+3 =1, a, 3 > 0. For example,
{A € A: AC F} is closed (resp., compact) and convex in A if F' C Y is
closed (resp., compact) and convex.

By a multifunction we mean any set-valued function. Let X be a to-
pological space, Y a (generalized) metric space, and ¢ : X — 2¥ a mul-
tifunction. By ¢(X) we denote [ J{p(z) : * € X}. We say that ¢ is lower
(resp., upper) semicontinuous if for each open (resp., closed) A C Y the
preimage ¢~ (A) = {z € X : p(z) N A # 0} is open (resp., closed) in X.
We shall use the abbreviations l.s.c. and u.s.c. A multifunction ¢ is said
to be Hausdorff lower semicontinuous (resp., Hausdorff upper semiconti-
nuous), for short H.lLs.c. (resp., H.u.s.c), if for each zp € X and ¢ > 0
there exists a neighbourhood U of xg such that ¢(xg) C B(p(x),e) (resp.,
o(x) C B(p(xo),e)) whenever x € U. Recall that any H.l.s.c. multifunction
is l.s.c. and any u.s.c. multifunction is H.u.s.c. In the case of compact-valued
multifunctions the corresponding notions coincide. If ¢ is H.l.s.c. and H.u.s.c.
(resp., Ls.c. and u.s.c.), then it is called H-continuous (resp., V-continuous).
Observe that a multifunction ¢ : X — A with A C 2Y is H-continuous
(resp., V-continuous) if and only if ¢ considered as a function from X to the
space A with the Hausdorff distance (the Vietoris topology) is continuous.

It is known that generally H-continuity is not preserved under finite in-
tersections. Usually, to obtain such a result, we assume that the interior of
the intersection is nonempty at every point. The following proposition, per-
haps known, is similar (cf. [5; Lemma 2.2 and Prop. 2.3|, [10; Lemma 2.1]
and [12]).

PROPOSITION. Let oy : X — Fo(Y) and p; : X — 2¥, i =1,...,n,
be H-continuous (resp., locally H-Lipschitzean) multifunctions, where Y is

normed (and X metric, resp.). If r; > 0,4 =1,...,n, and (g e;(x) # 0
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for every x € X, then ¢ : X — F(Y) defined by
b(x) = @o(x) N () Blei(x), 7i)
=1

is H-continuous (resp., locally H-Lipschitzean).

Proof. First we claim the following: If FF C Y and Gy, C Y, A € A,
are convex, F' is bounded with diam(F) < M, and B(yo,r) C G for some
yo € F, r > 0 and every A\ € A, then for each § > 0 the following inclusion

holds:
2M
N () B(Gx9) C B(Fﬂ N GA,5<1+ —))
AEA AeA "
Indeed, for y € B(F,6) N[\ eq B(Gr,0) we take y' € F and y\ € Gy
such that ||y —¢/|| < § and ||y — x|l <. Then

2=t 55 (y’—y,\) € B(yo,r) C G).
We put
26 n T , 26 n r
z = = V4 .
DY Y I TR DT RS

Hence z € FN(yc4 G, F and G, being convex and yo,y’ € F, zx,yx € G).
Moreover,
2M
< 6(1 + —)
r

Let 9 € X. Since py(xo) is bounded and ¢, is H.u.s.c. at xg, there
exist M > 0 and a neighbourhood V' of xg such that diam(ypg(z)) < M for
xeV.Ilfgg,...,p, are H-continuous at zg, then for given € > 0 we take a
neighbourhood U C V of z such that dist(y;(z), p;(z0)) < ¢ for x € U and
i=0,...,n, where § = ¢/(1+2M/r), r = min{ry,...,r,} and 0 < ¢’ < 4.
So for every x € U, by the first part of the proof, we obtain

ly =21l < Iy — w+m—4maﬂ' (vo— )

+20

This proves our claim.

(o) C Blpy(x ymﬂB i), 0')

C B(y(x )75(1+2M/7“))= B(y(z),e),

and analogously, ¥(z) C B(w(x),e). This proves the H-continuity of ¢
at xg.

If we consider H-locally Lipschitzean multifunctions, we take U C V
such that ¢;|U is H-Lipschitzean with constant k;, ¢ = 0,...,n. Then for
k > k' > max{ko,...,k,} and any x,y € U, x # y, we have
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¥(y) C Blgo(x), K o(w,y)) N [ B(B(#i(x),7:), K o(x, y))
i=1

C B(y(x), k(1 +2M/r)o(z,y)).
This shows that ¢|U is H-Lipschitzean.

Note that in the following lemma all multifunctions @ are of the type
®: X — 24, ie., the values &(z) are closed subsets of the space A endowed
with the Hausdorff distance.

LEMMA. Assume that X is a topological space, Y a metric (resp., nor-
med) space, A one of the spaces 2¥, F(Y) or K(Y) (resp., 2¥, Fe(Y)
or Ke(Y)) and 9 € X. Then for any multifunctions ¢ : X — A and
¥ X —2Y (resp., ¥ : X — 2Y), the following hold:

(a) If D(x) = {A € A: A Cop(x)} forxz € X, then & : X — 24 (resp.,
$:X —24) and

(1) ¢ is H.l.s.c. at xo if and only if & is H.l.s.c. at xg,
(2) ¢ is Hou.s.c. at xg if and only if @ is H.u.s.c. at xg.
(b) If d(x) = {A € A: p(zx) C A} for x € X, then & : X — 24 (resp.,
: X — 22 and

®

(3) ¢ is H.l.s.c. at xq if and only if ¢ is H.u.s.c. at o,

(4) ¢ is Hou.s.c. at xo if and only if ¢ is H.l.s.c. at xy.

(c) If o(x) C Y(x) and P(x) = {A € A: p(x) C A C (x)} for all

r€X, then &: X — 24 (resp., : X — 22) and

(5) ¢ is Hu.s.c. at xy and ¢ is H.l.s.c. at xg if and only if D is H.lLs.c.
at Zo,

(6) ¢ is H.l.s.c. at xo and ¢ is Hu.s.c. at xo if and only if & is
H.u.s.c. at xg.

Proof. Obviously, (b) is a consequence of (c¢) with ¢(z) =Y for z € X.
Since p(z) # 0, (a) is not a special case of (c), but the proof of (c) given
below works also under the assumption ¢(x) = ) for each z € X.

Observe that ¢(x) € @(x) under (b) or (c), and {y} € @(z) for y € (x)
under (a), hence @(z) # (). Since ¢(x) and ¥ (z) are closed (resp., closed and
convex) subsets of Y, &(z) is a nonempty closed (resp., closed and convex)
subset of A, i.e., &(x) € 24 (resp., D(z) € 22).

In order to prove (5), assume first that ¢ is H.u.s.c. at x and v is H.ls.c.
at xg. We have to find for each € > 0 a neighbourhood U of x( such that
D(x9) C B(P(x),¢) for every x € U, i.e., such that if Ay € A, x € U and
(p(.%‘()) C Ay C 1/1(300), then

dist(Ay, Ag) < e for some A, € A with p(z) C A, C ¥(z).
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Let U be a neighbourhood of xg such that ¢(z) C B(p(zg),e/2) and ¢(x¢) C
B(¢(z),e/2) for x € U. Fix x € U and Ag € @(z9).

fA=2Vor A =FY)A=2Yor A = F(Y)) we take 4, =
Y(x)NB(Ap, g/2). Clearly, A, is closed (resp., closed and convex) and ¢(z) C
Az CY(z), because p(x) C B(p(xg),e/2) C B(Ap,e/2). For each yp € Ay C
Y(zo) C B(¢(z),e/2) there exists y € 1(x) such that o(y,yo) < /2, i.e.,
y € A, and consequently Ay C B(Az,e/2). (This shows that A, #() also for
@=10, i.e., in the proof of (1)). Hence, dist(A4,, Ag) <e/2<e and A, € P(z).

In the case of A = K(Y) (resp., A = K¢(Y)), we proceed in the follo-
wing way. Since Ay C ¢ (zg) C B(¢(x),e/2) is compact, there exist k € N,
a; € Ap and b; € ¢Y(x), i = 1,...,k, such that o(yo,{a1,...,ar}) < &/2
for every yo € Ap and po(bi,a;) < £/2. We put Ay, = p(z) U {b1,...,b;}
(resp., A, = conv(p(x) U {by,...,bx})). Then A, € A (p(z) being con-
vex and compact), p(z) C Ay C ¥(z) (¢(r) being convex) and Ay C
B({b1,...,bk},e) C B(Az,e). On the other hand, {by,...,bx} C B(Ap,e/2)
and ¢(x) C B(p(zo),e/2) C B(Ap,e/2), so Ay C B(Ao,e/2) (Ao being
convex). This shows that dist(Ag, 4;) < €.

To prove the converse implication in (5) we take a neighbourhood U of
xq such that @(x¢) C B(P(x),¢) for x € U. If z € U, then Ay = {yo} Up(zo)
(resp., A9 = clconv(p(zg) U {yo})) belongs to P(xg) for any yo € (xo).
Hence, dist(Ap, Az) < € for some A, € &(z) and yp € A9 C B(Az,e) C
B(¢(x),e). Consequently, ¥ (zg) C B(¢(z),e) for z € U, i.e., ¥ is Hls.c.
at zg. Since p(z9) € P(x0), for every x € U there exists A, € @(z) such that
dist(Az, p(z0)) < €. Hence, p(z) C Ay C B(p(zo),¢) for z € U, ie., ¢ is
H.u.s.c. at xo.

The proof of (6) is the same as that of (5) with Ag replacing A, and vice
versa.

2. Applications of the Radstrom—Hormander Theorem. Recall
the following version of the Radstrém—-Hérmander Theorem:

THEOREM. Let Y be a normed space and A = F(Y) or A = K(Y).
Then the space (A, dist) with the operations (A, B) — A+ B and (\, A) —
M, A,B € A, X € [0,00), can be isometrically and algebraically embedded
as a convex cone K in a Banach space E.

In 1952 the above theorem was proved by Radstrom [14] for some A C
Fc(Y) with the operation + (e.g. for K¢(Y) and for {A € (V) : A is finite-
dimensional}). However, due to the cancellation law for the operation + (see
e.g. [17; Prop. 2.1]), his proof also works in the case of (F.(Y'),+). The proof
for (F.(Y),+) using support functions was given by Hérmander [11] in 1954.

In what follows, for the sake of simplicity, we identify A with the convex
cone K C E. Observe that if ¥ C Y is complete and A = F.(Y'), then F.(F)
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is also a complete subset of E, since the embedding is an isometry. Similarly,
if F C Y is compact and A = F(Y) or A = K.(Y), then Ko (F) is a
compact subset of E. In particular, if in the Radstrém—Hoérmander Theorem
Y is assumed to be a Banach space, then the cone K is a closed subset
of E, since the spaces (F.(Y),dist) and (Kc(Y),dist) are complete. If Y is
separable and A = K.(Y'), then one can assume that F is also separable.

From the Radstrom—Hérmander Theorem one can obtain some intere-
sting results for multifunctions, as corollaries to known theorems. By the
Dugundji Extension Theorem (e.g. [6; Th. 10.4]) we immediately obtain the
following result:

COROLLARY 1 (Extension Theorem). LetY be a normed space and A =
Fe(Y) (A=K (Y) or A={A € K.(Y) : A is finite-dimensional}). Then
any H-continuous multifunction ¢ : F — A defined on a closed subset F of
a metrizable space X has an H-continuous extension @ : X — A such that
P(X) C cleonv p(F) (resp., p(X) C conv p(F)).

Proof. We treat ¢ as a continuous function ¢ : F' — K C E. Hence, there
exists a continuous extension » : X — E such that p(z) € convg{p(x) :
x € F} C K for x € X, i.e., if P is regarded as a multifunction, then it is
H-continuous, p(z) € A and ®(z) C clconv p(F') (resp., p(z) C conv ¢(F),

since for compact sets the operations + and + coincide).

REMARK. In the same way one can also obtain the following results:
Let A be Fc(Y) or Kc(Y). A Ti-space X is collectionwise normal iff for
every Banach space Y and every closed F' C X any H-continuous ¢ : F' —
A can be extended to an H-continuous ¥ : X — A such that $(X) C
clconv p(F'). If we restrict ourselves to separable Banach spaces and A =
K.(Y), then we obtain a corresponding characterization of normal spaces. It
follows, respectively, from theorems due to Dowker and Hanner (cf. also [13;
Th. 3.2 and Th. 3.1]), and from the observation that the set {A € A: A C
clconv p(F')} is a retract of E, being a closed and convex subset of E.

It is known that some extension theorems can be deduced from selection
theorems (cf. [13; Cor. 1.5]). For example, the Michael Selection Theorem
[13; Th. 3.2”] yields the following result:

COROLLARY 2 (Extension Theorem). LetY be a Banach space and A =
Fe(Y) or A = Ko(Y). Then any H-continuous multifunction ¢ : F — A
defined on a closed subset F' of a paracompact space X has an H-continuous
extension @ : X — A such that $(X) C clconv o(F). Moreover, if ¢ : X —
2Y is H.l.s.c. and p(z) C 1 (x) for x € F, then there exists an H-continuous
extension @ : X — A such that p(x) C ¢ (x) for each x € X.

Proof. 1f 1) is not given, then we put ¥ (z) = clconv p(F) for x € X.
By (1) of the Lemma, the multifunction & : X — 24, &(z) = {A € A :
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A C ¢(x)}, can be regarded as an H.l.s.c. multifunction from X to a Banach
space F with closed and convex values. Hence ¥ defined by ¥(z) = {p(z)}
for x € F and ¥(z) = ®(x) for x € X \ F is Ls.c., F being closed and ¢
H-continuous. Every continuous selection of ¥, the existence of which follows
by the Michael Theorem, is the desired extension.

REMARKS. 1. Instead of the completeness of Y, in the above corollary
one can assume that 1 has complete values.

2.If ¢ : X — Ko(Y) and Y is normed, it is enough to assume that X is
collectionwise normal; if additionally Y is separable, then X can be normal.
This follows in the same way from selection theorems for compact-convex-
valued multifunctions (cf. [13; Th. 3.2’ and Th. 3.1’]). The existence of such
extensions for every ¢ and v characterizes, respectively, the collectionwise
normality and the normality of X (X is assumed to be a Ti-space).

3. A result corresponding to Corollary 2 in the case of a metric space X
and H-continuous ¢ : X — K.(Y) was given in [16]. Its proof is based on
support functions.

COROLLARY 3 (Sandwich Theorem). Let X be paracompact, Y a Banach
space and A = F(Y) or A = K(Y). Then for any H.u.s.c. multifunction
0: X —A and any H.ls.c. : X —2Y such that p(x) C(x) for all v€ X,
there exists an H-continuous multifunction x : X — A such that ¢(x) C
x(z) C ¥(x) for each x € X. In particular, any H.u.s.c. multifunction ¢ :
X — A is bounded by an H-continuous x : X — A.

Proof. Let #(x) ={A € A:¢(x) C AC(x)}. By (5) of the Lemma, ¢
is a H.l.s.c. multifunction with closed and convex values from X to a Banach
space E. Hence it has a continuous selection Y.

REMARK. The above result in the case of a metric space X and ¢, :
X — K.(R™) was proved in [1; Th. 4]. A related result for a metric space X
and o, : X — F.(Y) such that B(¢(x),r(x)) C ¢(z) for some r(x) > 0,
x € X, was proved in [4; Th. 5.1]. Similar results (called interposition the-
orems) were announced in [8] and [9], but without proofs. A version of the
Sandwich Theorem with ¢ and v convex-compact-valued is given in the book
[15; Th. 5.75], and the authors suggest another method of proof.

The following two corollaries are generalizations of known characteriza-
tions of some topological spaces by semicontinuous real functions (see e.g.
[7; 1.7.15(b) and (c)]).

COROLLARY 4. A Ti-space X is normal if and only if for every separable
normed space Y and o, : X — K (Y), where ¢ is Hu.s.c., ¥ is H.lLs.c.
and p(z) C Y(x) for each x € X, there exists an H-continuous multifunction
X : X — K(Y) such that p(z) C x(x) C ¢(x) for each x € X.
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Proof. Now @ defined as in the previous corollary has compact convex
values in a separable Banach space E. Hence the existence of y follows by
[13; Th. 3.1]. For the converse we consider, for a pair of sets F,U, where F
is closed, U open and F' C U, multifunctions ¢, : X — K¢(R) defined by

({0} ifagPF, ({0} ifagU,
‘p(x)_{[o,u ifzeF, 1/’(93)_{[0,1] ifzeU.

Then x(z) = [f(z),g(z)], where f and g are continuous and g(x) = 0 if
x¢Uand g(x)=1ifx e F.

COROLLARY 5. A Ty-space X is perfectly normal if and only if for every
separable Banach space Y and every H.u.s.c. multifunction ¢ : X — K.(Y)
there exists a sequence of H-continuous multifunctions p,, : X — K.(Y') such
that dist(¢,, (), ¢(z)) — 0 and p(x) C @, 1(x) C @, (x) for every x € X.

Proof. By (4) of the Lemma the multifunction @ defined by ®(x) =
{A € Kc(Y) : p(x) C A} can be regarded as a H.ls.c. and closed-convex-
valued multifunction to a separable Banach space E. By [13; L. 5.2|, @ has
a Michael representation, i.e., there exists a countable family {¢,, : n € N}
of continuous selections of ¢ (i.e., ¥, : X — K.(Y) is H-continuous) such
that {¢n(x) : n € N} is dense in &(z) for every x € X. In particular,
dist(¢g, (x), p(z)) — 0 for some subsequence and ¢(z) = ({¥n(x) : n € N}.
We put ¢, =11 and

on(7) = ¢p1(x) NV B(¢n(2),1/n), n>2.

Clearly, p(x) C ¢y41(2) C ¢y(2) and dist(p, (z), p(2)) < dist(Pn(2), p(2))
+ 1/n. Hence, dist(yp, (x),¢o(x)) — 0 as a decreasing sequence having a

subsequence which converges to 0. By the Proposition, ¢, : X — K.(Y) is
H-continuous.
For the converse, let F' C X be closed and let ¢ : X — K¢(R) be defined

by ({0} ifagF,
(x)_{[o,u itz e F

Consider the corresponding sequence (p,,). Since ¢,,(x) = [fn(2), gn(z)] and
¢, is H-continuous, it follows that g, is continuous and (g, ) is a decreasing
sequence converging pointwise to the characteristic function of F'.

REMARKS. 1. Recall that it is quite easy to obtain a result correspon-
ding to the above corollary for H.l.s.c. multifunctions. Namely, for a given
Hlsc. ¢ : X — K(Y) and a separable normed Y we take a Michael re-
presentation {f, : n € N} and put ¢, () = conv{fi(x),..., fu(z)}. Clearly,
the compactness of ¢(x) is essential, since the ¢, (z) are compact. A rela-
ted characterization of perfectly normal domains by approximation of lower
semicontinuous multifunctions was given in [3].
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2. It is easy to see that for any X and ¢ : X — 22/ with a Michael
representation, the sequence (,,) defined as in the above remark converges
pointwise to ¢ in the Vietoris topology.

3. Aseev [1; Th. 2] proved a corresponding result on approximation of a
Hoaus.c. ¢ : X — K (R™), where X is metric, with the additional requirement
@(x) C intp,(z). To obtain such inclusions it is enough to take ¢} (x) =
B(p,(x),1/n), Y = R™ in our proof of Corollary 5.

There are also some results on approximation of H.u.s.c. multifunctions
defined on a metric space with values in F(Y"). Usually every approximating
multifunction is defined by a partition of unity from constant multifunctions.
Observe that, using the Raddstrém—Hormander embedding, any multifunction
defined in such a way is H-continuous. More precisely, let A be F.(Y) or
K.(Y), A€ Aand p; >0 fori=1,...,n, and

A:ClyzpiAi :p1A1 ++pnAn e A.
=1

If we identify A with a subset of F, the set A is of the form A = iyzlpiAi,
where i denotes algebraic sum in E. Therefore, if we define a new multifunc-
tion ¢ by p(x) = cly D \c a1 Pr(x)@r (), where {py : A € A} is a locally finite
partition of unity and ¢, : X — A, then ¢(z) = i/\eAp,\(x)cp/\(ﬁ) and we
obtain exactly the same theorems on the H-continuity of ¢ as for continuous
functions. In particular, if {p) : A € A} is a locally Lipschitzean partition of
unity (i.e., it is locally finite and p) is locally Lipschitzean for every A € A)
and Ay € A then ¢ =cly )., pa(-) Ay is locally H-Lipschitzean.
For completeness we give two results which are obtained in this way.

COROLLARY 6 (cf. [4; Th. 4.5]). For every H.u.s.c. multifunction ¢ :
X — F(Y), where X is metric and Y normed, there exists a sequence
of locally H-Lipschitzean multifunctions ¢, : X — F(Y) such that

dist(p,(x), ¢(x)) = 0 and p(x) C @, 1(x) C p,(x) for every x € X.

Proof. For every x € X and n € N we take 6(x,n) such that §(z,n) <
1/n and ¢(y) C B(p(x),1/n) if o(z,y) < 6(z,n). Let {p} : X € A,} be a
locally Lipschitzean partition of unity subordinate to { B(z,(z,n)) : x € X}
and let z% be such that (p}%)~1(0,1] C B(z%, (2%, n)). We put

ba@) =d 3 pR(@)p(al).
AEA,
If pY(xz) > 0 then ¢(z) C B(p(x%),1/n), hence p(x) C B(¢n(x),1/n) for
2 € X and n € N. On the other hand, for fixed z and £ > 0 we take 6 > 0
such that ¢(y) C B(p(x),¢) if o(x,y) < . If n > 1/0 and pi(xz) > 0,
then o(z,2%) < 6(2¥,n) < 1/n < ¢ and p(z}) C B(p(x),€). So ¢n(x) C
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B(p(),e) whenever n > 1/§. This shows that dist(¢,, (), ¢(x)) — 0 for
every * € X. Note that each multifunction z — B(iy,(z),1/n) is locally
H-Lipschitzean. We put

n
(@) = () B(wi(x),2/i).
i=1
By the Proposition, ¢, is locally H-Lipschitzean. Obviously, ¢(z) C ¢, ()

C ¢, (2) C B(¥n(w),2/n) and dist(p(2), ¢, (2)) < dist(o(z), vn(2)) +2/n.
So dist(p,,(z), p(x)) tends to 0 as n — oo.

REMARKS. 1. If in the above corollary ¢ : X — K(Y) and p(z) C
¥ (x) for some H-continuous ¢ : X — K.(Y) (by Corollary 3 such a
exists if Y is Banach), then putting ¢, () = ¢(z) NN, B(vi(z),2/i), we
obtain a decreasing sequence of H-continuous compact-valued multifunctions
pointwise converging to (.

2. Repeating the first part of the previous proof for a H.l.s.c. multifunc-
tion ¢ : X — A, where Ais F.(Y) or K.(Y), it is easy to obtain a sequence of
H-continuous (or locally H-Lipschitzean) multifunctions ¢,, : X — A which
converges pointwise to ¢ and ¢,,(z) C B(¥(x),1/n) for all x € X.

3. Note that the existence of an approximation by a sequence of H-
semicontinuous multifunctions characterizes H-semicontinuity. More precise-
ly, if a sequence of H.u.s.c. (H.Ls.c.) multifunctions ¢, : X — 2¥ converges
pointwise to ¢ : X — 2Y and for every € > 0 there exists ng such that
o(x) C B(p,(x),e) (resp., ¢, (x) C B(p(x),e)) for n > ng and x € X, then
¢ is H.u.s.c. (resp., H.l.s.c.). In fact, for given x and € > 0 we fix n so large
that ¢,,(xo) C B(y(z0),e/3) and ¢(x) C B(p,(x),e/3) for every x. We take
a neighbourhood U of x such that ¢, (x) C B(g,(x0),e/3) for x € U. It is
easy to see that ¢(z) C B(p(xo),€).

COROLLARY 7. Let X be metric, Y normedand A = F.(Y) or A = K.(Y).
Then for every H.l.s.c. multifunction ¢ : X — A with complete values there
exists a sequence of H-continuous multifunctions v, : X — A converging
pointwise to ¢ and such that ¥ (x) C Ypt1(x) C () for each z € X.

Proof. First observe that if ¢ : X — A is H-continuous and ¢(z) C
B(x(z),r) for some r > 0 and every # € X, then for every ¢ > 0 there
exists an H-continuous multifunction x : X — A such that y(z) C ¢(z) and
dist(x(x),¢(x)) < r + €. In fact, by (1) of the Lemma, the multifunction
W given by ¥(z) = {A € A: A C ¢(x)} is Hls.c. It is easy to see that
W (z)NB(p(x),r+¢) is never empty; for example, 1 (z)NB(¢(z), r+e/2) #
belongs to it. Define @(z) = clg(¥(z) NB(¢(z),r+¢)). By [13; Prop. 2.5], &
is lower semicontinuous. Since ¢ (z) is complete (or compact), ¥(z) is closed
in £ and &(z) C clg¥(x) C A. Hence, ¢ has a continuous selection Y, i.e.,
X : X — A is H-continuous, x(z) C ¢(x) and dist(p(z), x(x)) <r +e.
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Let ¢, : X — A be as in Remark 2. Let x,, : X — A be H-continuous
such that x,,(z) C ¥ (z) and dist(¢,,(z), xn(x)) < 2/n, for every x € X. Since
dist(xn(z), ¥ (z)) < dist(p,(z), ¥ (x)) +2/n, the sequence (xn(x)) converges
to ¥ (x). We put ¢, (z) = cleconv(xi(x)U---Uxn(x)). It is easy to check that
(1) has the desired properties.

REMARK. For ¢ : X — F(Y) with int¢(z) # 0 the above result was
proved in [4; Th. 3.6].

3. Some examples. The Radstrom-Hoérmander Theorem, which is the
main tool in the previous section, is formulated for classes of bounded sets.
The first example below shows that, generally, our corollaries are not true
for multifunctions with unbounded values.

In the following examples I denotes the interval [0,1].

EXAMPLE 1. Tt is easy to see that no multifunction x : I — 2% such
that x(0) = [0,00) and x(1) = [a,b], a < b, is H-continuous. In fact, let
f(x) € RU {oo} denote the right end point of x(x), so f: I — RU {oo}.
If x is H.lis.c. at 0, then f(z) = oo whenever 0 < z < § for some § > 0.
Let zg = sup{z € I : f(y) = oo for everyy € [0,z]}. If f(xg) = oo, then
xo < 1 and y is not H.l.s.c. at xg. If f(z¢) € R, then y is not H.u.s.c. at .
Note that this example is based on the fact that the generalized metric space
(2R dist) is not connected.

This example shows that the space (2%, dist) does not have the extension
property for continuous functions, i.e., the restriction to bounded sets in Co-
rollaries 1 and 2 is essential (for example, F' = {0,1} C I, ¢(0) = [0, 00),
(1) = {0}). Similarly, the Sandwich Theorem and the Approximation The-
orem, i.e., Corollaries 3, 6 and 7, do not hold for unbounded sets. In fact,
let ¢ and ® be defined on I by ¢(0) = [0,00), ¢(z) = {0} if z € (0,1],
P(z) = [0,00) if z € [0,1) and ¢(1) = {0}. Then ¢ is Hau.s.c., ¢ is H.Ls.c.
and p(z) C ¢(x) for every x € I, but there is no H-continuous x between
w and 1, and ¢ and 1 have no approximation by sequences of H-continuous
multifunctions.

The next examples show that if we consider the problems of the previous
section in the case of u.s.c. or l.s.c. multifunctions, i.e., when F.(Y) is en-
dowed with the Vietoris topology, then the situation is quite different (cf.
also Remark 2 to Cor. 5).

ExaMPLE 2. Let X be a normed space. The multifunction ¢ : X —
Fe(X) defined by ¢(x) = B(z,1) is H-Lipschitzean, because we have
dist(B(z,7), B(y,r)) = ||z — y|. r > 0. Obviously, ¢ is also Ls.c. Observe
that ¢ is u.s.c. iff X is finite-dimensional. Indeed, if X is infinite-dimensional,

then by the Riesz Theorem there exist points b, € B(0,1) such that ||b,| =1
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and ||by, — by,|| > 1/2 for n # m. Let a,, = (1 + 1/n)b, and z,, = (1/n)by,.
Then

1

1 1
5 < ||bn - bm” =

1 1
ap — G — — by + — b, SHan_amH"i'_"‘_-
n m n m

Hence, 1/4 < |lan — am|| for m >n > 8 and F' = {a, : n € N} is closed, and

B(0,1) c X\ F =U. Clearly, limz, =0, a,, € ¢(z,) and (V) C U for no
neighbourhood V' of 0, i.e., ¢ is not u.s.c.

EXAMPLE 3. No multifunction x : I — F.(I!) such that x(0) = B(0, 1),
x(1) = B(0,2) and B(0,1) C x(z) for every z € I, is V-continuous. In
fact, if x is l.s.c., then the set {x € I : x(x) C B(0,1)} is closed. Hence,
zo = sup{z € I : x(x) C B(0,1)} € [0,1) and x(z0) = B(0,1). We take
a decreasing sequence (x,) converging to xg and y, € x(z,) such that 1 <
lynl| < 2. Put a,, =1 if yp(n) > 0 and oy, = —1 if yp(n) < 0. Let

1 1
an = —Yn + 1—-— Qn€n,
n n

where e, € I! is defined by e,(k) = 0F. Clearly, a, € x(x,). It is easy
to check that [jay] = (1/n)||ynll + 1 — 1/n > 1; thus a, & x(x0). It is
clear that the sequence ((1 — 1/n)ane,) has no accumulation point. Since
(1 —1/n)anen, = an — (1/n)yn and (y,) is bounded, the sequence (ay) has
no accumulation point either. Hence, U = !\ {a, : n € N} is open and
X(xg) C U. There is no neighbourhood V' of zg such that x(x) C U for
x €V, since (x,) converges to xg. So x is not u.s.c. at xo.

Let F denote the topological space F.(I') with the Vietoris topology.
Example 2 shows that the algebraic sum (F,G) — F +G is not a continuous
function from F x F to F, since (B(0,1),{x}) — B(0,1)+x = B(z,1) is not
continuous. Similarly, Example 3 shows that multiplication by nonnegative
reals (z, F') — xF is not a continuous function from [0, 00) X F to F, since
(z,B(0,1)) — 2B(0,1) = B(0,) is not continuous. Hence, in the case of
the Vietoris topology, a result corresponding to the Radstrom-Ho6rmander
Theorem does not hold.

Observe that the Sandwich Theorem does not hold for semicontinuous
multifunctions. Indeed, let ¢ : I — F.(I!) be defined by 9 (z) = B(0,1 + x).
Since dist(¢(x), ¥ (y)) = |z—yl, ¢ is H-Lipschitzean. So 1) is also L.s.c. and, by
Example 3, it is not w.s.c. Let ¢ : I — F.(I') be defined as ¢(x) = B(0,1)
if z € [0,1) and (1) = B(0,2). Of course, ¢ is u.s.c. and p(x) C P(z)
for every x € I. But, by Example 3, there is no V-continuous x such that
o(x) C x(x) C YP(x) for x € 1.
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