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Summary. Let X be an arbitrary set. Let Φ be a family of real-valued functions defined
on X. Let γ : X×X → R. Set [Φ+γ] = {φ(·)+γ(·, x) | φ ∈ Φ, x ∈ X}. We give conditions
guaranteeing the equivalence of Φγ(·,·)-subdifferentiability and [Φ+ γ]-subdifferentiability.

Let X be an arbitrary set. Let Φ be a family of real-valued functions
defined onX. Let f be a real-valued function defined onX. We recall (see for
example Pallaschke–Rolewicz (1997), Rubinov (2000), Singer (1997)) that a
function φ0 ∈ Φ is a Φ-subgradient of the function f at a point x0 if

(1) f(x)− f(x0) ≥ φ0(x)− φ0(x0)

for all x ∈ X.

The set of all Φ-subgradients of f at x0 is called the Φ-subdifferential of
f at x0 and denoted by ∂Φf |x0 . Of course ∂Φf |· is a multifunction mapping
X into subsets of Φ, ∂Φf |· : X → 2

Φ. If ∂Φf |x 6= ∅ for all x ∈ X we say that
f is Φ-subdifferentiable.

Let γ : X ×X → R and f : X → R. We say that a function φ0 ∈ Φ is a
Φγ(·,·)-subgradient of f at a point x0 if

(2) f(x)− f(x0) ≥ φ0(x)− φ0(x0) + γ(x, x0)

for all x ∈ X. The set of all Φγ(·,·)-subgradients of f at x0 is called the

Φγ(·,·)-subdifferential of f at x0 and denoted by ∂
γ(·,·)
Φ f |x0 . If ∂

γ(·,·)
Φ f |x 6= ∅

for all x ∈ X we say that f is Φγ(·,·)-subdifferentiable.
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Example 1. Let (X, ‖ · ‖) be a normed space and let Φ = X∗ be its
conjugate. Let γ(·, ·) ≡ 0. Then a Φγ(·,·)-subgradient is a subgradient in the
classical sense (see for example Rockafellar (1970)).

Example 2. Let (X, ‖·‖) be a normed space and Φ = X∗. Let γ(x, y) =
−ε‖x − y‖, where ε > 0. Then a Φγ(·,·)-subgradient is an ε-subgradient
(Ekeland–Lebourg (1975)).

Example 3. Let (X, ‖·‖) be a normed space and Φ = X∗. Suppose that

lim inf
x→x0

γ(x, x0)

‖x− x0‖
≥ 0.

Then a Φγ(·,·)-subgradient is an approximate subgradient of f at x0 (see
Ioffe (1984), (1986), (1989), (1990), (2000), Mordukhovich (1976), (1980),
(1988)).

Example 4. Let X be an arbitrary set. Let Φ be a family of real-valued
functions defined on X. Let γ(·, ·) ≡ 0. Then a Φγ(·,·)-subgradient is a Φ-
subgradient in the sense of Φ-convex analysis (see for example Pallaschke–
Rolewicz (1997), Rubinov (2000), Singer (1997)).

Example 5. Let (X, dX) be a metric space. Let Φ be a family of real-
valued continuous functions defined on X. Let γ(x, y) = α(dX(x, y)), where
α(·) is a real-valued function. Then a Φγ(·,·)-subgradient is a strong Φ-
subgradient with modulus α(·) if α(·) ≥ 0 (Rolewicz (1998), (2003)), and it
is a weak Φ-subgradient with modulus α(·) if α(·) ≤ 0 (Rolewicz (2000a,b)).

A multifunction Γ : X → 2Φ is called n-cyclic Φγ(·,·)-monotone if, for
arbitrary x0, x1, . . . , xn = x0 ∈ X and φxi ∈ Γ (xi), i = 1, . . . , n, we have

n
∑

i=1

[φxi−1(xi−1)− φxi−1(xi)− γ(xi, xi−1)] ≥ 0.

A multifunction Γ : X → 2Φ is called cyclic Φγ(·,·)-monotone if it is
n-cyclic Φγ(·,·)-monotone for n = 2, 3, . . . .
For cyclic Φγ(·,·)-monotone multifunctions the following extension of the

Rockafellar Theorem can be shown:

Theorem 6 (Rolewicz (2006)). Let X be an arbitrary set. Let Φ be a
family of real-valued functions defined on X. Let γ : X × X → R. Let Γ

be a cyclic Φγ(·,·)-monotone multifunction. Suppose that Γ (x) 6= ∅ for all
x ∈ X. Then there is a Φγ(·,·)-subdifferentiable function f such that Γ (x) is
contained in the Φγ(·,·)-subdifferential of f ,

Γ (x) ⊂ ∂
γ(·,·)
Φ f |x.

Define

(3) [Φ+ γ] = {φ(·) + γ(·, x) | φ ∈ Φ, x ∈ X}.
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It is natural to ask if it is possible to deduce Theorem 6 from Proposi-
tion 1.1.11 of Pallaschke–Rolewicz (1997) on existence, for each cyclic mono-
tone multifunction Γ , of a function such that Γ (x) is contained in its [Φ+γ]-
subdifferential.

For this purpose in this note we investigate the relation between Φγ(·,·)-
subdifferentiable and [Φ+ γ]-subdifferentiable functions.

The following is easy to see:

Proposition 7. Let X be an arbitrary set. Let Φ be a family of real-
valued functions defined on X. Let γ : X ×X → R be such that γ(x, x) = 0
for all x ∈ X. Let f : X → R. Then a Φγ(·,·)-subgradient φ0 of f at a point

x0 is simultaneously a [Φ+ γ]-subgradient of f at x0.

Proof. By definition

(2) f(x)− f(x0) ≥ φ0(x)− φ0(x0) + γ(x, x0)

for all x ∈ X. Since γ(x, x) = 0, in particular γ(x0, x0) = 0, (2) can be
rewritten as

f(x)− f(x0) ≥ φ0(x)− φ0(x0) + γ(x, x0)− γ(x0, x0)(2′)

= [φ0(x) + γ(x, x0)]− [φ0(x0) + γ(x0, x0)],

i.e. [φ0(x) + γ(x, x0)] ∈ [Φ+ γ] is a subgradient of f at x0.

The converse is not true as follows from

Example 8. Let X = [−1, 1], let Φ consist of constant functions only
and let γ(y, x) = (y − x)2. Let f(x) = max[(x− 1)2, (x+ 1)2]. At any point
x0 the function f has the [Φ+ γ]-subgradient

φx0(x) =

{

(x− 1)2 for x0 < 0,

(x+ 1)2 for x0 ≥ 0.

On the other hand, a Φγ(·,·)-subgradient of f exists at no x0 6= 0.

As a consequence of Example 8 we see that there are [Φ+γ]-subdifferen-
tiable functions which are not Φγ(·,·)-subdifferentiable.

The aim of this note is to obtain conditions which guarantee that every
[Φ+ γ]-subdifferentiable function is Φγ(·,·)-subdifferentiable.

We say that a function γ(·, ·) is Φ-subdifferentiable with respect to the
first variable if for every x1 the function γ(·, x1) is Φ-subdifferentiable, i.e.
for every y ∈ X there exists a Φ-subgradient φy of γ(y, x1) at y. In other
words, for any z ∈ X,

(4) γ(z, x1)− γ(y, x1) ≥ φy(z)− φy(y) + γ(z, y).
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Proposition 9. Let X be an arbitrary set. Let Φ be a linear family
of real-valued functions defined on X. Let γ : X × X → R be such that

γ(x, x) = 0 for all x ∈ X. Suppose that γ is Φ-subdifferentiable with respect
to the first variable. If φ is a [Φ+γ]-subgradient of a function f at x0, then
there is a ψ ∈ Φ such that ψ(·) is a Φγ(·,·)-subgradient of f at x0.

Proof. By definition if φ ∈ [Φ+γ], there are ψ ∈ Φ and x1 ∈ X such that
φ(·) = ψ(·) + γ(·, x1). Since φ(·) is a subgradient of f at x0, for all x ∈ X
we have

(5) f(x)− f(x0) ≥ φ(x) + γ(x, x1)− φ(x0)− γ(x0, x1).

Since γ is Φ-subdifferentiable with respect to the first variable, putting z = x,
y = x0 we deduce from (4) that there is a Φ-subgradient φx0 at x0 such that
for any x ∈ X,

(4′) γ(x, x1)− γ(x0, x1) ≥ φx0(x)− φx0(x0) + γ(x, x0).

Therefore

(6) f(x)− f(x0) ≥ φ(x) + φx0(x)− φ(x0)− φx0(x0) + γ(x, x0).

Thus ψ(·) = φ(·) + φx0(·) is a Φ
γ(·,·)-subgradient of f at x0.

As an obvious consequence we obtain

Corollary 10. Let X be an arbitrary set. Let Φ be a linear family
of real-valued functions defined on X. Let γ : X × X → R be such that

γ(x, x) = 0 for all x ∈ X. Suppose that γ is Φ-subdifferentiable with respect
to the first variable. Then every [Φ+γ]-subdifferentiable function f is Φγ(·,·)-
subdifferentiable.

It is interesting to find the form of functions γ(·, ·) Φ-subdifferentiable
with respect to the first variable.
Let X be a linear space over the reals. Let γ(x, y) = α(x − y), where

α : X → R. Putting y = 0 we trivially get

Proposition 11. Let X be a linear space over the reals. Let Φ be a
linear family of real-valued functions defined on X. Let α : X → R

+. If γ is

Φ-subdifferentiable with respect to the first variable, then the function α(·)
is Φ-subdifferentiable.

The converse is true under some additional condition. We say that a
family Φ of real-valued functions defined on a linear space X over the reals
is shift invariant if for all φ ∈ Φ and z ∈ X there are φz ∈ Φ and cz ∈ R

such that

(7) φ(x+ z) = φz(x) + cz.

Example 12. Let X be a linear space. Let Φ be a family of linear func-
tionals. Then Φ is shift invariant.
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Example 13. Let X be a linear space. Let Φ be the family of all poly-
nomial functionals of order n. Then Φ is shift invariant.

Example 14. Let X be a normed space. Let Φ be the family of all
continuous polynomial functionals of order n. Then Φ is shift invariant.

Example 15. Let X = R
m. Let Φ be the family of all trigonometric

polynomials of order n. Then Φ is shift invariant.

Proposition 16. Let X be a linear space over the reals. Let Φ be a
shift invariant family. Let γ(x, z) = α(x − z), where α : X → R

+. If α

is Φ-subdifferentiable, then γ is Φ-subdifferentiable with respect to the first
variable.

Proof. Since α is Φ-subdifferentiable, there is φx−z(·) ∈ Φ such that

(8) γ(y, z)− γ(x, z) = α(y − z)− α(x− z) ≥ φx−z(y − z)− φx−z(x−z).

Since the family Φ is shift invariant, there are φz ∈ Φ and cz ∈ R such that

(7′) φx−z(u+ z) = φz(u) + cz.

Therefore (8) can be rewritten as

(8) γ(y, z)− γ(x, z) = α(y − z)− α(x− z) ≥ φz(y)− φz(x),

i.e. γ is Φ-subdifferentiable with respect to the first variable.

Let Φ be a linear shift invariant family of linear functionals defined
on X. Let γ(x, y) = α(x − y), where α : X → R. Suppose that γ is Φ-
subdifferentiable with respect to the first variable. In this case the formula
(4′) can be rewritten in the form

(9) α(x− x1)− α(x0 − x1) ≥ φx0(x)− φx0(x0) + α(x− x0).

Since φx0 is linear this can be rewritten as

(10) α(x− x1)− α(x0 − x1)− α(x− x0) ≥ φx0(x− x0).

We put t = x0 − x1, s = x − x0. It is easy to see that t + s = x − x1 and
x0 = t+ x1. Let

Ψ(t, s) = φt+x1(s).

Then (10) can be rewritten in the form

(11) α(t+ s)− α(t)− α(s) ≥ Ψ(t, s),

where Ψ(t, ·) is linear (then homogeneous) with respect to the second vari-
able. Therefore by the result of Baron and Kominek (2003) (Corollary 2; see
also Choczewski (2001) and Choczewski et al. (2000)) we obtain

Proposition 17. Let X be a linear space over the reals. Let Φ be a
linear family of linear functionals defined on X. Let γ(x, y) = α(x − y),
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where α : X → R
+. Then any γ that is Φ-subdifferentiable with respect to

the first variable is of the form

(12) γ(x, y) = B(x− y, x− y),

where B(·, ·) is bilinear and symmetric.
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21–24.

B. Choczewski, R. Girgensohn and Z. Kominek (2002), Solution of Rolewicz’s problem, in:
Problems and Solutions, SIAM Electronic Journal available online from http://www.
siam.org/journals/categories/01-005.php

I. Ekeland and G. Lebourg (1975), Sous-gradients approchés et applications, C. R. Acad.
Sci. Paris 281, 219–222.

A. D. Ioffe (1984), Approximate subdifferentials and applications I , Trans. Amer. Math.
Soc. 281, 389–416.

A. D. Ioffe (1986), Approximate subdifferentials and applications II , Mathematika 33,
111–128.

A. D. Ioffe (1989), Approximate subdifferentials and applications III , ibid. 36, 1–38.
A. D. Ioffe (1990), Proximal analysis and approximate subdifferentials, J. London Math.
Soc. 41, 175–192.

A. D. Ioffe (2000), Metric regularity and subdifferential calculus, Uspekhi Mat. Nauk 55,
no. 3, 104–162 (in Russian).

B. S. Mordukhovich (1976), Maximum principle in the optimal control problems with
non-smooth constraints, Prikl. Mat. Mekh. 40, 1014–1023 (in Russian).

B. S. Mordukhovich (1980), Metric approximations and necessary optimality conditions
for general classes of nonsmooth extremal problems, Dokl. Akad. Nauk SSSR 254,
1072–1076 (in Russian); English transl.: Soviet Math. Dokl. 22, 526–530.

B. S. Mordukhovich (1988), Approximation Methods in Problems of Optimization and
Control , Nauka, Moscow (in Russian).

D. Pallaschke and S. Rolewicz (1997), Foundations of Mathematical Optimization, Math.
Appl. 388, Kluwer, Dordrecht.

R. T. Rockafellar (1970), Convex Analysis, Princeton Univ. Press.
S. Rolewicz (1998), On uniformly Φ-convex functions and strongly monotone multifunc-
tions, Funct. Approx. 26, 231–238.

S. Rolewicz (2000a), On cyclic α(·)-monotone multifunctions, Studia Math. 141, 263–272.
S. Rolewicz (2000b), On α(·)-paraconvex and strongly α(·)-paraconvex functions, Control
Cybernet. 29, 367–377.

S. Rolewicz (2003), Φ-convex functions defined on metric spaces, J. Math. Sci. 115,
2631–2652.

S. Rolewicz (2006), On the Rockafellar theorem for Φγ(·,·)-monotone multifunctions, Stu-
dia Math. 172, 197–203.

A. Rubinov (2000), Abstract Convexity and Global Optimization, Nonconvex Optim.
Appl. 44, Kluwer, Dordrecht.



Subdifferentiable Functions 279

I. Singer (1997), Abstract Convex Analysis, Canad. Math. Soc. Ser. Monogr. Adv. Texts,
Wiley.

S. Rolewicz
Institute of Mathematics
Polish Academy of Sciences
Śniadeckich 8, P.O. Box 21
00-956 Warszawa, Poland
E-mail: rolewicz@impan.gov.pl

Received September 23, 2005 (7477)


