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MEASURE AND INTEGRATION

Some Remarks on Indi
atri
es of Measurable Fun
tionsbyMar
in KYSIAKPresented by Czesªaw RYLL-NARDZEWSKI
Summary. We show that for a wide 
lass of σ-algebras A, indi
atri
es of A-measurablefun
tions admit the same 
hara
terization as indi
atri
es of Lebesgue-measurable fun
-tions. In parti
ular, this applies to fun
tions measurable in the sense of Mar
zewski.Let f : X → Y be a fun
tion. The fun
tion s(f) : Y → Card de�nedby the formula s(f)(y) = |f−1[{y}] is 
alled the (Bana
h) indi
atrix of f .For f, g : X → Y , we say that f is equivalent to g if there exists a bije
tion
ϕ : X → X su
h that f = g ◦ ϕ. Obviously, this is equivalent to saying that
s(f) = s(g).Morayne and Ryll-Nardzewski show in [5℄ that a fun
tion f : [0, 1] →
[0, 1] is equivalent to a Lebesgue-measurable one if, and only if, either s(f)>0on a perfe
t set P ⊆ [0, 1] or there exists y ∈ [0, 1] su
h that s(f)(y) = c.In fa
t, they prove a more general statement. Namely, the same is true forthe 
lass of fun
tions whi
h are measurable with respe
t to the σ-algebra Agenerated by the Borel sets and a σ-ideal I with Borel base 
ontaining anun
ountable set. They also ask about a 
hara
terization of indi
atri
es ofother important 
lasses of fun
tions.A 
hara
terization of indi
atri
es of 
ontinuous fun
tions was given byKwiatkowska in [4℄. Also, Komisarski, Mi
halewski and Milewski in [3℄ 
har-a
terized (under the axiom ofΣ1

1-determina
y) indi
atri
es of Borel fun
tions.The purpose of this note is to generalize the 
hara
terization of Morayneand Ryll-Nardzewski to other 
lasses of measurable fun
tions. We say thata set X ⊆ [0, 1] is Mar
zewski-measurable if for every perfe
t set P ⊆ [0, 1]2000 Mathemati
s Subje
t Classi�
ation: 28A05, 26A99, 03E15.Key words and phrases: indi
atrix, Mar
zewski-measurable fun
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ademy of S
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there exists a perfe
t set Q ⊆ P su
h that Q ⊆ X or Q ∩ X = ∅. TheMar
zewski-measurable sets form a σ-algebra; a fun
tion f : [0, 1] → [0, 1]is Mar
zewski-measurable if the pre-image of every open set is Mar
zewski-measurable. By Mar
zewski's theorem (see [7℄) this is equivalent to sayingthat for every perfe
t set P there exists a perfe
t set Q ⊆ P su
h that f↾Qis 
ontinuous.We begin by showing that indi
atri
es of Mar
zewski-measurable fun
-tions admit the same 
hara
terization as those of Lebesgue-measurable ones.It is known that the algebra of Mar
zewski-measurable sets is not of theform 
onsidered in [5℄. Then we try to isolate the properties of Mar
zewski-measurable sets and fun
tions used in the proof to obtain a more generalresult.For a family A of sets, let H(A) = {A ∈ A : ∀B ⊆ A B ∈ A}. Observethat if A is a σ-algebra, then H(A) is a σ-ideal.The following lemma is a slight modi�
ation of an argument from [5℄.The main di�eren
e is that we do not use the assumption of Borel base ofthe ideal.Lemma 1. Let A be a σ-algebra 
ontaining Bor su
h that H(A) 
ontainsa set of size c. Let f : [0, 1] → [0, 1] be a fun
tion su
h that f [[0, 1]] 
ontainsa perfe
t set. Then f is equivalent to an A-measurable fun
tion.Proof. Let P be a perfe
t set 
ontained in the image of f ; we may alwaysassume that |f [[0, 1]]\P | = c. Let Ψ : [0, 1] → P be a Borel isomorphism andlet M ∈ H(A) be a set of 
ardinality c su
h that |[0, 1] \ M | = c. Observethat Ψ is A-measurable.Let s(f) : [0, 1] → Card be the indi
atrix of f and let {My : y ∈ [0, 1]}be a partition of M su
h that |My| = s(f)(y) − 1 for y ∈ Ψ [[0, 1] \ M ] (thisis meaningful, be
ause s(f)(y) > 0 for y ∈ P and we allow My to be empty)and |My| = s(f)(y) otherwise. Su
h a partition 
an be found be
ause for
ontinuum many y ∈ [0, 1] we stipulate that |My| > 0, so ∑

y∈[0,1] |My| = c.De�ne g : [0, 1] → [0, 1] in the following way:
g(x) =

{

Ψ(x) for x 6∈ M ,
y for x ∈ My.Clearly, g is equivalent to f be
ause they have the same indi
atrix, and g is

A-measurable, as
{x ∈ [0, 1] : g(x) 6= Ψ(x)} ⊆ M ∈ H(A).Using exa
tly the same argument as in [5℄, one 
an prove the following.Lemma 2. Let A be a σ-algebra 
ontaining Bor su
h that H(A) 
ontainsa set of size c. Let f : [0, 1] → [0, 1] be a fun
tion 
onstant on a set of
ardinality c. Then f is equivalent to an A-measurable fun
tion.
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Theorem 3. A fun
tion f : [0, 1] → [0, 1] is equivalent to a Mar
zewski-measurable one if , and only if , either f [[0, 1]] 
ontains a perfe
t set , orthere exists y ∈ [0, 1] su
h that |f−1[{y}]| = c. In parti
ular , ea
h Lebesguemeasurable fun
tion is equivalent to a Mar
zewski-measurable one, and vi
eversa.Proof. It is folklore that the algebra of Mar
zewski-measurable sets sat-is�es the assumptions of Lemmas 1 and 2, whi
h shows su�
ien
y of this
ondition.To prove the ne
essity, we 
an assume that f is itself Mar
zewski-meas-urable. Then there exists a perfe
t set P su
h that f↾P is 
ontinuous. If

f [P ] is un
ountable, then it 
ontains a perfe
t set. Otherwise, there exists
y ∈ f [P ] su
h that the set f−1[{y}] is of size 
ontinuum.One 
an easily see that the argument above is more general than forMar
zewski-measurable fun
tions. The assumptions needed for su�
ien
y ofthe 
hara
terization (i.e. the assumptions of Lemmas 1 and 2) are very gen-eral (as long as the extensions of Bor are 
on
erned). To prove the ne
essity,we only used the fa
t that a Mar
zewski-measurable fun
tion is 
ontinuouson a perfe
t set.Let us say that a 
lass of fun
tions F from a Polish spa
e to [0, 1] has theWeak Continuous Restri
tion Property (WCRP for short) if every f ∈ F is
ontinuous on a perfe
t set. This is a weaker property than the ContinuousRestri
tion Property 
onsidered in [6℄, where the perfe
t set is required notto belong to a given σ-ideal. It is also a weaker version of a suitable instan
eof the Sierpi«ski 
ondition 
onsidered in [1℄.Let us point out that some natural reformulations of the WCRP are infa
t equivalent.Proposition 4 (folklore). The following 
onditions are equivalent for
f : X → [0, 1], where X is a Polish spa
e:(1) f↾P is 
ontinuous for some perfe
t set P ,(2) f↾B is 
ontinuous for some un
ountable Borel set B,(3) f↾P is Borel for some perfe
t set P ,(4) f↾B is Borel for some un
ountable Borel set B.As an immediate generalization of Theorem 3 we obtain the following.Theorem 5. Let A be a σ-algebra of subsets of a Polish spa
e X 
on-taining Bor(X) su
h that H(A) 
ontains a set of size c. Assume that the
lass of A-measurable fun
tions has WCRP. Then a fun
tion f : X → Xis equivalent to an A-measurable one if , and only if , either f [X] 
ontains aperfe
t set , or there exists y ∈ X su
h that |f−1[{y}]| = c.Proof. Analogous to the proof of Theorem 3.
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An important 
lass of algebras satisfying the assumptions of Theorem 5are the algebras of sets de
ided by popular for
ing notions. We 
an interpretthe Mar
zewski-measurable sets as sets de
ided by the Sa
ks for
ing S (i.e.sets X su
h that the set of 
onditions in S whi
h either miss X or are in
ludedin X is dense). It is folklore that if we repla
e the Sa
ks for
ing by thefor
ing notion of Laver, Mathias, Miller or Silver, the fun
tions measurablewith respe
t to the 
orresponding σ-algebra have WCRP. Also, ea
h of therespe
tive ideals (1) 
ontains a set of size c (this follows from the resultsof [2℄). In parti
ular, in the 
ase of Mathias for
ing, we obtain the following.Corollary 6. Let A be the σ-algebra of 
ompletely Ramsey subsetsof 2ω. Then a fun
tion f : 2ω → 2ω is equivalent to an A-measurable one if ,and only if , either f [2ω] 
ontains a perfe
t set , or there exists y ∈ 2ω su
hthat |f−1[{y}]| = c.
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(1) In the 
ase of these for
ing notions, the ideal of hereditarily measurable sets 
oin-
ides with the ideal of sets missed by a dense set of 
onditions.


