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COMPLEX ANALYSIS

A Determinantal Proof of the Produ
t Formulafor the Multivariate Trans�nite DiameterbyJean-Paul CALVI and PHUNG VAN MANHPresented by Józef SICIAK
Summary. We give an elementary proof of the produ
t formula for the multivariatetrans�nite diameter using multivariate Leja sequen
es and an identity on vandermondians.1. Introdu
tion and statement of the result. Let N

n
d denote the setof n-indi
es of length at most d endowed with the graded lexi
ographi
 order(≺). The 
ardinality of N

n
d , denoted by Nn

d , is equal to (n+d
d

). A vandermon-dian (of order d) is the determinant of an Nn
d ×Nn

d matrix of the form (zβ
α)where zα ∈ C

n, [·]β is the usual monomial and the rows and 
olumns areordered a

ording to ≺. Su
h a determinant is denoted by vdm(z) where
z := (zα : α ∈ N

n
d ). It is a polynomial of degree

ℓn
d := n

(

n + d

n + 1

)

in the (Nn
d )n 
oordinates of the zα's. The dth diameter Dd(K) of a 
ompa
tsubset K of C

n is de�ned by(1) Dd(K) = sup{|vdm(z)|1/ℓn
d : z ∈ KNn

d },and a 
olle
tion z for whi
h the supremum is a
hieved in (1) is 
alled a Feketesystem (of order d) for K. Now, the trans�nite diameter D(K) is the limitof Dd(K) as d goes to ∞. That su
h a limit exists is by no means obvious(when n > 1). It is a beautiful result of V. Zaharjuta [9℄ who not only provedthe 
onvergen
e of (Dd(K)) but also related its limit to 
omplex polynomialapproximation.2000 Mathemati
s Subje
t Classi�
ation: Primary 32U20.Key words and phrases: multivariate trans�nite diameter, Vandermonde determinants,Leja sequen
es. [291℄
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Here, for the sake of brevity, we shall 
ontent ourselves with re
alling oneuseful relation. Given α ∈ N

n we de�ne
T (α, K) := inf{‖τ‖K : τ ∈ UPα}where UPα is the set of polynomials with ≺-leading monomial zα, i.e., τ(z) =

zα+
∑

β≺α cβzβ and ‖·‖K is the sup-norm on K. A polynomial for whi
h thein�mum is a
hieved is 
alled an α-Chebyshev polynomial. Zaharjuta showedthat(2) D(K) = lim
d→∞

(

∏

|α|=d

T (α, K)
)1/(dhn

d
)
,

where
hn

d :=

(

n + d − 1

d

)

= |Nn
d \ N

n
d−1|.Just like its (better known) univariate analogue, the multivariate trans�nitediameter is intimately 
onne
ted with (pluri)potential theory. Most of whatis known so far about these relations 
an be found in [4, 5, 2℄ and in thereferen
es of those papers. Our note rather deals with the elementary prop-erties of the trans�nite diameter and gives a (mainly) algebrai
 proof of thefollowing formula.Theorem 1. For i = 1, 2, let Ki be a 
ompa
t subset of C

ni , n = n1 +n2and K := K1 × K2 ⊂ C
n. Then(3) D(K) = (D(K1))

n1/n · (D(K2))
n2/n.This result was �rst proved in [4, pp. 286�292℄ by 
omputing trans�nitediameters with the help of orthogonal polynomials with respe
t to a positivemeasure satisfying the Bernstein�Markov inequality. That proof requires twonon-immediate fa
ts. First, that the map K 7→ D(K) is 
ontinuous undernon-in
reasing sequen
es (of 
ompa
t sets) and, se
ond, that, for every K,there exists a measure satisfying the Bernstein�Markov inequality with sup-port as 
lose as we like to K.However, seeing the relatively simple formula (3), we may suspe
t theredoes exist a proof that works with the determinants involved in the de�nition(1) of the dth diameters. A
tually su
h a proof was found a long time agoby S
hi�er and Si
iak [8℄ but it worked only in the 
ase ni = 1. The proofpresented here is mu
h in the same spirit as theirs. The idea is to takea Fekete system for K1, another for K2 and to �
ombine� them to formsomething like a Fekete system for K1×K2. We shall amend this very roughidea and elaborate on it in the next se
tion, and our proof of (a slightly moreinformative version of) Theorem 1 will easily follow in the last se
tion.
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2. Tools. (a) We shall not be able to work with Fekete systems butrather with similar extremal 
olle
tions of points, 
alled (blo
k) Leja se-quen
es. If E is a 
ompa
t subset of C

m, points of su
h a sequen
e are in-dexed by m-indi
es and are indu
tively 
onstru
ted as follows. We 
hoose any
a0 ∈ E and if Ld := (aα : |α| ≤ d) then we de�ne Ld+1 = (aα : |α| ≤ d + 1)by requiring(4) vdm(Ld+1) = sup{|vdm(z)| : z ∈ ENm

d+1 , zα = aα for |α| ≤ d}.Note that it is not ex
luded that vdm(Ld) = 0 for every d. A very similarsequen
e, 
all it a (point) Leja sequen
e, was introdu
ed independently byJ�drzejowski [7℄ and Bloom et al. [3℄. In both 
ases, the authors 
onstru
ted itby adding one point at ea
h step (so that they needed Nm
d steps to 
onstru
t

Nm
d points) whereas we add a whole blo
k of hm

d points at step d (so thatwe need d + 1 steps to 
onstru
t Nm
d points). We 
ould work as well withtheir (point) Leja sequen
es, but sin
e the notion of blo
k is essential inour dis
ussion, as will soon be apparent, we prefer to sti
k to the morenatural setting. The point is that, as long as we are 
on
erned with trans�nitediameters, (blo
k) Leja sequen
es behave like sequen
es of Fekete systems.Theorem 2. We have

D(E) = lim
d→∞

|vdm(Ld)|
1/ℓm

d .Proof. We only sket
h it for it is a mere adaptation of the proof givenin [7℄ or in [3, pp. 461�462℄ for a (point) Leja sequen
e. First, sin
e, byde�nition, the Fekete system is the best possible 
hoi
e, we have
D(E) ≥ lim sup

d→∞
|vdm(Ld)|

1/ℓm
d .Hen
e we just need to prove that the lim inf satis�es the reverse inequality.We may also assume that E is unisolvent for P(Cm) (that is, no non-zeropolynomial vanishes identi
ally on E) for otherwise the 
on
lusion is easy(see the argument in [7, p. 69℄). We shall prove by indu
tion that(5) |vdm(Ld)| ≥

∏

|α|≤d

T (α, E) (d ≥ 0),

and a (
areful) use of (2) will then yield the required lim inf inequality (see[7, 3℄ for details regarding this last step).The inequality (5) is obvious for d = 0. We assume it holds true for d andpro
eed to prove it for d + 1. Let z = (zα) as in (4). For every β of length
d + 1, we put

Mβ := det(zv
u : u � β, v � β).Sin
e, the ≺-�rst Nm

d entries of z are �xed (equal to the aα's), Mβ is a(
ontinuous) fun
tion of the variables zu for d < |u|, u � β. Let γ be the
≺-smallest m-index of length d + 1. Expanding Mγ with respe
t to the last
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olumn, we see that Mγ = vdm(Ld)τγ(zγ) where τγ ∈ UPγ and the 
oe�-
ients of τγ depend only on the aα's. Su
h a formula is valid however onlybe
ause vdm(Ld) 6= 0 and this follows from the indu
tion hypothesis. In-deed, sin
e E is unisolvent, T (α, E) > 0 for every α, whi
h, by (5), ensuresvdm(Ld) 6= 0. Now, using again the unisolven
e of E, we may 
hoose (and�x) zγ ∈ E so that |τγ(zγ)| = ‖τγ‖E > 0 (whi
h implies Mγ 6= 0). Let now
θ be the ≺-su

essor of γ. Expanding Mθ with respe
t to its last 
olumnwe �nd Mθ = Mγτθ(zθ) where τθ ∈ UPθ and the 
oe�
ients of τθ dependonly on the aα's and on the already �xed zγ . Again, this is possible be
ause
Mγ 6= 0. Using the unisolven
e of E, we may next �nd (and �x) zθ ∈ Esu
h that |τθ(zθ)| = ‖τθ‖E > 0 (whi
h implies Mθ 6= 0). At this point, wehave

|Mθ| = |vdm(Ld)| ‖τγ‖E‖τθ‖E ≥ |vdm(Ld)|T (γ, E)T (θ, E).Continuing in this way, after hm
d+1 indu
tive steps, for every α of length d+1,we 
onstru
t a polynomial τα ∈ UPα and zα ∈ E with ‖τα‖E = |τα(zα)| > 0su
h that, for the 
orresponding system z, we havevdm(z) = vdm(Ld)

∏

|α|=d+1

τα(zα),

hen
e |vdm(z)| ≥ |vdm(Ld)|
∏

|α|=d+1 T (α, E). By 
onstru
tion of Ld+1,we therefore have |vdm(Ld+1)| ≥ |vdm(Ld)|
∏

|α|=d+1 T (α, E). Now, usingagain the indu
tion hypothesis we arrive at vdm(Ld+1) ≥
∏

|α|≤d+1 T (α, E),whi
h is (5) for d + 1.The interested reader should 
onsult the paper [1℄ for an appli
ationof (point) Leja sequen
es to the re
onstru
tion of the pluri
omplex Greenfun
tion.(b) Following our idea, we want to 
ombine Leja sequen
es for K1 and
K2 to get something like a Leja sequen
e for K1 ×K2. We �rst say what wemean by 
ombining sequen
es. We shall use a (natural) pro
ess introdu
edin [6℄ whi
h generalizes an old idea of Biermann. Given, for i = 1, 2, a
olle
tion Xi = (xi,α : |α| ≤ d) of Nni

d points in C
ni , the intertwining of X1and X2 is the 
olle
tion of Nn1+n2

d points in C
n1+n2 de�ned by X1 ⊕ X2 :=

((x1,α, x2,β) : |α| + |β| ≤ d). The following theorem is proved in [6, Se
. 5℄by using multivariate Lagrange interpolation theory. It is this result whi
henables us to show that the intertwining of Leja sequen
es for the fa
torsets Ki behaves like a Leja sequen
e for the produ
t set K = K1 × K2.It was found and used by S
hi�er and Si
iak in the 
ase ni = 1 for whi
hthe intertwining of the Xi redu
es to the aforementioned 
onstru
tion ofBiermann.
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Theorem 3. Let Xi, i = 1, 2, and X1 ⊕ X2 as above. Then(6) vdm(X1 ⊕ X2) =

d
∏

j=1

(vdm(Xj
1))

h
n2
d−j

d
∏

j=1

(vdm(Xj
2))

h
n1
d−j ,

where Xj
i is the jth blo
k of Xi, that is, Xj

i := (xi,α : |α| ≤ j).It is very important for us that for every j, 1 ≤ j ≤ d, the jth blo
k ofthe dth term Li,d of the Leja sequen
e for Ki is just the jth term of this samesequen
e, i.e., Lj
i,d = Li,j . It has been 
onstru
ted pre
isely in order that thisproperty be satis�ed. The same would no longer be true with Fekete systemsand this is the very reason why we need to use Leja sequen
es here. Thisbeing said, we immediately dedu
e the following 
orollary to Theorem 3.Corollary 4. For i = 1, 2, let (Li,d) be a Leja sequen
e for Ki. Then(7) vdm(L1,d ⊕ L2,d) =

d
∏

j=1

(vdm(L1,j))
h

n2
d−j

d
∏

j=1

(vdm(L2,j))
h

n1
d−j .

(
) We �nally need some information to be able to 
al
ulate with thefairly 
ompli
ated exponents involved in the various formulae.Lemma 5. Let d, ni, i = 1, 2, be positive integers and n = n1 +n2. Then
d

∑

k=1

khn1

k hn2

d−k = (n1/n)dhn
d .Proof. This is Lemma 3 in [4℄. It is proved using a standard generatingpower series te
hnique.Lemma 6. Let d, ni, i = 1, 2, be positive integers and n = n1 +n2. Then

d
∑

k=1

ℓn1

k hn2

d−k = (n1/n)ℓn
d .Proof. Lemma 5 (applied with n1 + 1) yields

d
∑

k=1

khn1+1
k hn2

d−k =
n1 + 1

n + 1
dhn+1

dand the 
laim follows by observing that, for every m > 0,
mhn1+1

m =
n1 + 1

n1
ℓn1

m .

3. Abridged proof of Theorem 1. As a by-produ
t of our proof, weshall see that the intertwining of Leja sequen
es for K1 and K2 permits oneto re
over the trans�nite diameter of K = K1 × K2. Note that it is very
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unlikely that this intertwining sequen
e itself is a Leja sequen
e for K. We
ontinue to denote by Li,d a (blo
k) Leja sequen
e for Ki.
Step 1. We prove (D(K))n ≥ (D(K1))

n1 · (D(K2))
n2. Sin
e Dd(K) ≥

|vdm(L1,d ⊕ L2,d)|
1/ℓn

d , the inequality follows from the next lemma.Lemma 7. We have
lim

d→∞
|vdm(L1,d ⊕ L2,d)|

1/ℓn
d = (D(K1))

n1/n · (D(K2))
n2/n.Proof. The details are a bit tedious but standard. We shall assume D(Ki)

> 0. The proof is even simpler if one of the D(Ki) is 0. Fix ε > 0. In viewof Theorem 2 for d large enough, say d ≥ d0, we have(8) e−εD(Ki) ≤ |vdm(Li,d)|
1/ℓ

ni
d ≤ eεD(Ki).Choose positive r < R (depending on ε) su
h that(9) rD(Ki) ≤ |vdm(Li,d)|

1/ℓ
ni
d ≤ RD(Ki) for d < d0.(Here we need vdm(Li,d) 6= 0. This follows from (5) whi
h holds true sin
e

D(Ki) > 0 implies that Ki is unisolvent for Pd(C
n).) Working with i = 1and writing

(

d
∏

j=1

(vdm(L1,j))
h

n2
d−j

)1/ℓn
d

=
d

∏

j=1

(

|vdm(L1,j)|
1/ℓ

n1
j

)ℓ
n1
j h

n2
d−j

/ℓn
d
,

we readily infer, on distinguishing the 
ases d ≥ d0 and d < d0 and using(8), (9) and Lemma 6, that
rsde−εn1/n−sd(D(K1))

n1/n ≤
(

d
∏

j=1

(vdm(L1,j))
h

n2
d−j

)1/ℓn
d(10)

≤ Rsdeεn1/n−sd(D(K1))
n1/nwhere sd := (1/ℓn

d)
∑d0−1

j=1 ℓn1

j hn2

d−j tends to 0 as d → ∞. We �nish the proofby using the same estimate for K2 together with Corollary 4 and letting dtend to ∞ and then ε to 0.
Step 2. We now prove (D(K))n ≤ (D(K1))

n1 · (D(K2))
n2. Here, theLeja sequen
es are of no use but, thanks to (2), elementary 
onsiderations onthe Chebyshev polynomials will lead to the inequality. Sin
e the graded lexi-
ographi
 order is 
ompatible with addition, the produ
t of an α1-Chebyshevpolynomial for K1 and an α2-Chebyshev polynomial for K2 belongs to

UP(α1,α2) so that T ((α1, α2)), K) ≤ T (α1, K1) · T (α2, K2). Hen
e, writingevery α ∈ N
n
d as α = (α1, α2) with α1 (resp. α2) formed by the �rst n1 (resp.
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last n2) 
oordinates of α, we have
(11)

∏

|α|=d

T (α, K)

≤
(

d
∏

j=0

∏

|α1|=j

(T (α1, K1))
h

n2
d−j

)

·
(

d
∏

j=0

∏

|α2|=j

(T (α2, K2))
h

n1
d−j

)

.

Let Ci > D(Ki) for i = 1, 2. In view of (2),
∏

|αi|=d

T (αi, Ki) ≤ C
dh

ni
d

i for d large enough, say d ≥ d0,and, for some R > 0 (depending on the Ci's),
∏

|αi|=d

T (αi, Ki) ≤ (RCi)
dh

ni
d for d < d0(both estimates for i = 1, 2). Inserting these estimates in (11) (distinguishingthe 
ases d ≥ d0 and d ≤ d0) and using Lemma 5, we �nd(12) (

∏

|α|=d

T (α, K)
)1/(dhn

d
)
≤ Rs1,d+s2,d · C

n1/n
1 · C

n2/n
2 ,

where
si,d =

1

dhn
d

d0−1
∑

j=0

jhni

j hn−ni

d−j → 0 as d → ∞.
Now, letting d → ∞ and using on
e more (2), we arrive at D(K) ≤ C

n1/n
1 ·

C
n2/n
2 . The required inequality follows sin
e Ci 
an be taken arbitrarily 
loseto D(Ki). This 
ompletes the proof of Theorem 1.A
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