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COMPLEX ANALYSIS

A Determinantal Proof of the Product Formula
for the Multivariate Transfinite Diameter
by
Jean-Paul CALVI and PHUNG VAN MANH

Presented by Jézef SICIAK

Summary. We give an elementary proof of the product formula for the multivariate
transfinite diameter using multivariate Leja sequences and an identity on vandermondians.

1. Introduction and statement of the result. Let N; denote the set
of n-indices of length at most d endowed with the graded lexicographic order
(<). The cardinality of N7, denoted by N7, is equal to (”;d). A vandermon-
dian (of order d) is the determinant of an N} x N} matrix of the form (zg)
where z, € C", []? is the usual monomial and the rows and columns are
ordered according to <. Such a determinant is denoted by vDM(z) where

z:= (2o : @« € NJ). It is a polynomial of degree

n._ n+d
M \n+1

in the (N})" coordinates of the z,’s. The dth diameter Dq(K) of a compact
subset K of C" is defined by

(1) Dy(K) = sup{|vbm(z)|"/% : z € KNi},

and a collection z for which the supremum is achieved in (1) is called a Fekete
system (of order d) for K. Now, the transfinite diameter D(K) is the limit
of Dy(K) as d goes to co. That such a limit exists is by no means obvious
(when n > 1). It is a beautiful result of V. Zaharjuta [9] who not only proved
the convergence of (D4(K)) but also related its limit to complex polynomial
approximation.
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Here, for the sake of brevity, we shall content ourselves with recalling one
useful relation. Given o« € N” we define

T(a, K) :=inf{||7||x : 7 € UP,}

where UP,, is the set of polynomials with <-leading monomial 2%, i.e., 7(z) =
2%+ 520 cpz? and ||| k is the sup-norm on K. A polynomial for which the
infimum is achieved is called an a-Chebyshev polynomial. Zaharjuta showed
that

. 1/(dh?)
(2) D(K) = lim (|HdT<a,K>) ,
where
n n+d—1 " n
b= (") =

Just like its (better known) univariate analogue, the multivariate transfinite
diameter is intimately connected with (pluri)potential theory. Most of what
is known so far about these relations can be found in [4, 5, 2] and in the
references of those papers. Our note rather deals with the elementary prop-
erties of the transfinite diameter and gives a (mainly) algebraic proof of the
following formula.

THEOREM 1. Fori = 1,2, let K; be a compact subset of C'', n = ni+ng
and K .= K1 x Ko Cc C". Then

(3) D(K) = (D(K1))™/" - (D(K2))"/".

This result was first proved in [4, pp. 286-292| by computing transfinite
diameters with the help of orthogonal polynomials with respect to a positive
measure satisfying the Bernstein—Markov inequality. That proof requires two
non-immediate facts. First, that the map K — D(K) is continuous under
non-increasing sequences (of compact sets) and, second, that, for every K,
there exists a measure satisfying the Bernstein—-Markov inequality with sup-
port as close as we like to K.

However, seeing the relatively simple formula (3), we may suspect there
does exist a proof that works with the determinants involved in the definition
(1) of the dth diameters. Actually such a proof was found a long time ago
by Schiffer and Siciak [8] but it worked only in the case n; = 1. The proof
presented here is much in the same spirit as theirs. The idea is to take
a Fekete system for K7, another for K9 and to “combine” them to form
something like a Fekete system for K7 x K5. We shall amend this very rough
idea and elaborate on it in the next section, and our proof of (a slightly more
informative version of) Theorem 1 will easily follow in the last section.
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2. Tools. (a) We shall not be able to work with Fekete systems but
rather with similar extremal collections of points, called (block) Leja se-
quences. If E/ is a compact subset of C™, points of such a sequence are in-
dexed by m-indices and are inductively constructed as follows. We choose any
ap € F and if L4 := (aq : |o| < d) then we define L4171 = (aq : |a| < d+1)
by requiring
(4)  vDM(Lgp1) = sup{|vDM(z)| : z € ENdt1, 2z, = a, for |a| < d}.

Note that it is not excluded that vDM(Ly) = 0 for every d. A very similar
sequence, call it a (point) Leja sequence, was introduced independently by
Jedrzejowski [7] and Bloom et al. [3]. In both cases, the authors constructed it
by adding one point at each step (so that they needed INJ* steps to construct
N points) whereas we add a whole block of hl}' points at step d (so that
we need d + 1 steps to construct N* points). We could work as well with
their (point) Leja sequences, but since the notion of block is essential in
our discussion, as will soon be apparent, we prefer to stick to the more
natural setting. The point is that, as long as we are concerned with transfinite
diameters, (block) Leja sequences behave like sequences of Fekete systems.

THEOREM 2. We have
D(E) = lim lvDM(Lg)| V"

Proof. We only sketch it for it is a mere adaptation of the proof given
in [7] or in [3, pp. 461-462] for a (point) Leja sequence. First, since, by
definition, the Fekete system is the best possible choice, we have

D(E) > limsup [vDM(Lg)|" /%",
d—o0
Hence we just need to prove that the lim inf satisfies the reverse inequality.
We may also assume that E is unisolvent for P(C™) (that is, no non-zero
polynomial vanishes identically on E) for otherwise the conclusion is easy
(see the argument in [7, p. 69]). We shall prove by induction that

(5) vom(La)| > [ T(e, B)  (d>0),

|a|<d
and a (careful) use of (2) will then yield the required lim inf inequality (see
[7, 3] for details regarding this last step).

The inequality (5) is obvious for d = 0. We assume it holds true for d and
proceed to prove it for d 4+ 1. Let z = (z,) as in (4). For every [ of length
d—+ 1, we put

Mg :=det(z, : u 2 3, v X B).
Since, the <-first N* entries of z are fixed (equal to the aq’s), Mz is a
(continuous) function of the variables z, for d < |u|, u < (. Let v be the
=<-smallest m-index of length d + 1. Expanding M, with respect to the last
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column, we see that M, = vDM(Ly)7,(z,) where 7, € UP, and the coeffi-
cients of 7., depend only on the a,’s. Such a formula is valid however only
because VDM(L;) # 0 and this follows from the induction hypothesis. In-
deed, since E is unisolvent, T'(«, E') > 0 for every «, which, by (5), ensures
VvDM(Ly) # 0. Now, using again the unisolvence of F, we may choose (and
fix) zy € E so that |7,(2,)| = ||7|[g > 0 (which implies M, # 0). Let now
0 be the <-successor of 7. Expanding My with respect to its last column
we find My = M,79(29) where 79 € UPg and the coefficients of 7y depend
only on the a,’s and on the already fixed z,. Again, this is possible because
M, # 0. Using the unisolvence of F, we may next find (and fix) zy € F
such that |79(z9)| = ||79llz > O (which implies My # 0). At this point, we
have

[My| = [vDM(La)| 1751 £l 70l 2 = [VOM(La)[T (7, E)T(0, E).

Continuing in this way, after A, | inductive steps, for every « of length d+1,
we construct a polynomial 7, € UP, and z, € F with ||7,]|g = |7a(2a)] > 0
such that, for the corresponding system z, we have

vDM(z) = vDM(Ly) ] 7a(za),
jol=d+1

hence [vDM(z)| = [VDM(La)|[]j4j=qs+1 T'(a, E). By construction of Lgy1,
we therefore have [VDM(Lat1)| = [VDM(La)|[]|4j=q41 T(@, E). Now, using
again the induction hypothesis we arrive at VDM(Lg41) 2 []j4<g11 T E),
which is (5) for d+ 1. =

The interested reader should consult the paper [1] for an application
of (point) Leja sequences to the reconstruction of the pluricomplex Green
function.

(b) Following our idea, we want to combine Leja sequences for K and
K> to get something like a Leja sequence for K1 x K5. We first say what we
mean by combining sequences. We shall use a (natural) process introduced
in [6] which generalizes an old idea of Biermann. Given, for i = 1,2, a
collection X; = (zjq : | < d) of N} points in C™, the intertwining of X
and X5 is the collection of Ngﬁ'"z points in C" "2 defined by X; & X :=
(1,0, 2,8) : |a] +|B] < d). The following theorem is proved in [6, Sec. 5]
by using multivariate Lagrange interpolation theory. It is this result which
enables us to show that the intertwining of Leja sequences for the factor
sets K; behaves like a Leja sequence for the product set K = K; x Kbs.
It was found and used by Schiffer and Siciak in the case n; = 1 for which
the intertwining of the X; reduces to the aforementioned construction of
Biermann.
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THEOREM 3. Let X;, ©1=1,2, and X1 & X2 as above. Then

d d
(6) vDM(X7 & X3) = H vDM(X7)) H vbMm(X7))" ik,
: ]:

where Xz-j is the jth block of X;, that is, XZ.] = (20 |a| <J).

It is very important for us that for every j, 1 < j < d, the jth block of
the dth term L; 4 of the Leja sequence for Kj is just the jth term of this same
sequence, i.e., ng = L; ;. It has been constructed precisely in order that this
property be satisfied. The same would no longer be true with Fekete systems
and this is the very reason why we need to use Leja sequences here. This
being said, we immediately deduce the following corollary to Theorem 3.

COROLLARY 4. Fori=1,2, let (L;4) be a Leja sequence for K;. Then

d 2 d 1
hh2. ROt
(7)) VDM(L14 ® Log) = [ [(vOM(Ly)) a5 [ [(vDM(Ls5))" .
j=1 J=1

(c) We finally need some information to be able to calculate with the

fairly complicated exponents involved in the various formulae.

LEMMA 5. Let d, n;, i = 1,2, be positive integers and n = ni +na. Then
d
> kRPRE = (n1/n)dhy.
k=1
Proof. This is Lemma 3 in [4]. It is proved using a standard generating
power series technique. =
LEMMA 6. Let d, n;, i = 1,2, be positive integers and n = ny +na. Then
d
DG = (/)0
k=1
Proof. Lemma 5 (applied with ny + 1) yields

1
Zkhnl+1hd o=t = dny!

and the claim follows by observmg that, for every m > 0,
np+1 +1

TL1+1
mh,,]
n

o

3. Abridged proof of Theorem 1. As a by-product of our proof, we
shall see that the intertwining of Leja sequences for K; and Ko permits one
to recover the transfinite diameter of K = Kj x Ko. Note that it is very
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unlikely that this intertwining sequence itself is a Leja sequence for K. We
continue to denote by £; 4 a (block) Leja sequence for K.

STEP 1. We prove (D(K))" > (D(K1))™ - (D(K3))™. Since Dy(K) >
[VDM(L1.4 ® La,4)|/%, the inequality follows from the next lemma.

LEMMA 7. We have

lim [VDM(Ly 4 @ Loq)|Y% = (D(K1))™/™ - (D(Ky))"/™.

d—oo

Proof. The details are a bit tedious but standard. We shall assume D(Kj)
> 0. The proof is even simpler if one of the D(Kj;) is 0. Fix ¢ > 0. In view
of Theorem 2 for d large enough, say d > dy, we have

(8) e *D(K;) < [vDM(L; )| < e D(K;).
Choose positive 7 < R (depending on ¢) such that
(9) rD(K;) < [VDM(L;0)| %" < RD(K;)  for d < do.

(Here we need VDM(L; q) # 0. This follows from (5) which holds true since
D(K;) > 0 implies that K; is unisolvent for P;(C").) Working with i = 1
and writing

(f[(VDM(Elj ha? )W

7j=1

En

d n n

n £ h 2 /

1 d— d
I | (‘VDM [:1 1“]’ ) J / ,

we readily infer, on distinguishing the cases d > dg and d < dy and using
(8), (9) and Lemma 6, that

d ny \1/07

(10) rsde—snl/n—sd(D(Kl))nl/n < (H(VDM(El,j))thj) d
j=1

< deeenl/n—sd(D(Kl))nl/n

where sq := (1/£}) Z?Sl 3 hy? ; tends to 0 as d — oo. We finish the proof
by using the same estimate for Ko together with Corollary 4 and letting d
tend to oo and then € to 0. =

STEP 2. We now prove (D(K))" < (D(K;))™ - (D(K2))™. Here, the
Leja sequences are of no use but, thanks to (2), elementary considerations on
the Chebyshev polynomials will lead to the inequality. Since the graded lexi-
cographic order is compatible with addition, the product of an o'-Chebyshev
polynomial for K; and an a?-Chebyshev polynomial for K5 belongs to
UP(q1 42 so that T((a',a?)),K) < T(a!, K1) - T(a?, K3). Hence, writing

1

every a € N7 as o = (a!, a?) with a! (resp. a?) formed by the first ny (resp.
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last n2) coordinates of o, we have

1) ][] T K)

|a|=d

Let C; > D(Kj;) for i = 1,2. In view of (2),
H T(a', K;) < C’fhdl for d large enough, say d > dy,
|t |=d
and, for some R > 0 (depending on the C;’s),
[1 7, k) < (RC)™a" for d < d
|lat|=d

(both estimates for i = 1, 2). Inserting these estimates in (11) (distinguishing
the cases d > dg and d < dy) and using Lemma 5, we find

(12) ( H T(a,K)) v < Rsl,d+32,d,c’11/ ,022/ :
|a|=d
where
do—1
Sid = dh” Z hmhn nl as d — oo.

Now, letting d — oo and using once more (2), we arrive at D(K) < C?l/n :
Cng/n

5. The required inequality follows since C; can be taken arbitrarily close
to D(K;). This completes the proof of Theorem 1.
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