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PARTIAL DIFFERENTIAL EQUATIONS

On the Convective Cahn-Hilliard Equation
by
Changchun LIU
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Summary. The author studies the convective Cahn—Hilliard equation. Some results on
the existence of classical solutions and asymptotic behavior of solutions are established.
The instability of the traveling waves is also discussed.

1. Introduction. In this paper, we investigate the convective Cahn—
Hilliard equation

ou ou  9*Au) N 0B(u)

1.1 PN e . zel=(0,1),

(L.1) ot 7 Oxt 2 Ox v (0,1)

where A(u) = yu® + 1u? —u, B(u) = —3u? + 1u?, and v > 0,71, 72 are
constants.

On the basis of physical considerations, as usual the equation (1.1) is
supplemented with the natural boundary value conditions

0u 0?u
=—(0,t) = = (1,t) =0, t>0,

52 0 1) = 55(11)
reasonable for the thin film equation or the Cahn-Hilliard equation (see [1,
2, 4]), and the initial value condition

(1.3) u(z,0) = up(z).

The equation (1.1) arises naturally as a continuous model for the forma-
tion of facets and corners in crystal growth (see [6], [12]). Here u(z, t) denotes
the slope of the interface. The convective term (u® —u)0u/Ox (see [6]) stems
from the effect of kinetics (the finite rate of atoms or molecules attachment

(1.2) u(0,t) = u(1,t)
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to the crystal surface) that provides an independent flux of the order param-
eter, similar to the effect of an external field in spinodal decomposition of a
driven system.

During the past years, many authors have paid much attention to the
Cahn—Hilliard equation
ou
ot
(see [3, 5, 14]). However, only a few papers are devoted to the generalized
Cahn-Hilliard equation. It was K. H. Kwek |7] who first studied the equation
(1.1) for the case with convection, namely, B(u) = u. Based on the discon-

tinuous Galerkin finite element method, he proved the existence of classical
solutions.

(1.4) + kA% = AA(u), k>0

This paper is organized as follows: We first discuss the existence and
asymptotic behavior of classical solutions. Then we discuss the instability of
traveling waves.

2. Existence. In this section, we prove the global existence of solutions.
From the classical approach, it is not difficult to conclude that the problem
(1.1)—(1.3) admits a unique classical solution local in time. So, it is sufficient
to make an a priori estimate.

THEOREM 2.1. If 49 > 0, then for any initial data ug € H®(I) with
up(0) = up(1) = D?up(0) = D?up(1) = 0 and T > 0, the problem (1.1)-(1.3)
has a unique global classical solution.

Proof. Multiplying both sides of (1.1) by u and then integrating the
resulting relation with respect to = over (0,1), integrating by parts, and
using the boundary conditions, we have

1 dl 1
L 2 2,12
(2.1) 2dt§)u d:c+’y§)(D u)* dz

1 1
= _ S A'(u)(Du)? dz +S <i ut — %u2> Dudzx.

0 0

Since 7 > 0, a simple calculation shows that A'(u) > —Cp, Cyp > 0 and
Sl (Fu' — Ju )Du dx = 0, so it follows from (2.1) that

0
1d 1 1
5d—§u dm—i—’yS(DQU)de < COS(Du)zda:
0 0 0
1 1 1 1

<y S (Dzu)2 dx) V2 (S u? dm) 12 < % S (Dzu)2 de + C} SuQ dx.
0 0 0 0
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The Gronwall inequality implies that
1

(2.2) Su2dx§C, 0<t<T,
0
t
(2.3) VID%u(s)|Pds < C, 0<t<T.
0

Next, multiplying both sides of (1.1) by D?u and then integrating the re-
sulting relation with respect to = over (0, 1), we obtain

1 1
(2.4) %% | (Du)? da + 7| (D*uw)? da:
’ Ly 1
=— S D?A(u)D*u dx — S (4 ut — 3 u2> D3udzx.
0 0
Note that
D?A(u) = A'(u)D*u + A" (u)(Du)?
= (312u® + 2m1u — 1) D*u + (672u + 271)(Du)*.

Hence

14! 1 1

5 | (Dw)? dz + ~ | (DPu)? da + 2 | u?(Du)? dz

0 0 0

1 1

S (279u? 4 2y1u — 1)(D*u)? dx — S672U(DU)QD2U dx
0 0

‘ 1, 1

S 271 (Du)*D*u dx — S <Z ut — 3 u2> D3udx

0 0

1 1 1
< C'S (D?u)? dz + ? S u?(D*u)? dx + C’S (Du)* dx

0 0

2

L L 1
+§§) (D3u) d$+0§)<1u4—§u2> dzx.
On the other hand, by (2.2), we have
1 1 1 12 L 12
S (Du)?dx = — S uD*udzx < (S u? dm) (S (D*u)? da;)
0 0 0 0

< C(S (D?u)? dx) 1/2,

0
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and
1 1 1 1
S )Vdx = S DuD3udz < (S (Du)de> e (X (D3u)? d:c) 1/2.
0 0 0
Summing up, we see that
! ) ! s NVALC ey N/
S (Du)*dx < C(S (Du) d:r) (S (D u) da:) .
0 0 0
Thus
! ! 1/3
(2.5) | (Du)?dz < c(g( u)? dm) ,
0 0
n 2,12 0 3,12 2/3
(2.6) [ (D?u)? de < c(g (D3u) dm) .
0 0
In addition, by the Nirenberg inequality,
L . N V2% N
S(Du) dx < C(S (D°u) dx) (S (Du) dx) .
0 0 0

Using (2.5), we obtain

0 4 0 3 v2 5 \*/6
(2.7) S(Du) dzx < C’(S (D u) da:) .
0 0
By (2.6), (2.7) and using the Holder inequality, we have
1 1
O (D?u)? de < %g( w?dz + C,
0 0
1 1 1
C\ (Du)tds < gS( u)? dx + C.

On the other hand, by the Nirenberg inequality,

! 1/12 /1 5/12 ! 1/12
sup |u| < C(\ (D3u)? dz u? dx < C(\(D3u)?dz .
(i) ar) <ot
Hence
(1 a1 o ? ’Yl 3,12
c\ <—u — s u > do < 2\ (DPu)*do + C.
0

Summing up, we see that
1 1
2 (D) do+ 2§ (D) dx < C.

1
1d
57 ) (Dw)? do + -
0 0

2dt0
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The Gronwall inequality implies that

1
(2.8) {(DuPdz<C, 0<t<T.
0

By Sobolev’s imbedding theorem it follows from (2.2) and (2.8) that

(2.9) sup Ju| < C.

Multiplying both sides of (1.1) by D*u and then integrating the resulting
relation with respect to = over (0,1), we have

1

1d
g( u)? o+ | (D'w)® do =
2dt )

1
D?A(u)D*udx — S (u® — v)DuD*u dz.
0

O e =

By the Nirenberg inequality,
IDullos < (D al®® ]| + [|ul]),
hence,
1dl 1
T S (D?u)? dz + ’yS (D*u)? dz
0 0

<]

O e =

Al(u )D2uD4ud:c‘ —l—‘ A” )(Du) D4udaz‘ +‘ u® — u)DuD*u dx

< C|| D%l D'l + 0||Du||oo||Du|\||D4u|\ + c|\Du||||D4u||
< 2 ID"u|* + C|[ D%,

and by the Gronwall inequality,

1

(2.10) | (D) dz<cC, 0<t<T,
0

t

(2.11) g |D*u|?ds < C, 0<t<T.

By (2.8) and (2.9), we have dB(u)/0x € L*(Qr). On the other hand, by (2.2)
and (2.8)-(2.10), we have 9?A(u)/0x? € L?*(Qr). Then using the equation
(1.1) itself, we obtain du/0t € L*(Qr).

Define the linear space

2 2
X = {u e HYY(Qr); u(0,t) = u(1,t) = g +—5(0,t) = ng(l t) =0,

u(z,0) = uo(:z:)}
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where

'

Ou .'Ei €L2(QT)7OS’LS4}7

HY(Qr) = {u — € L*(Qr),

ot

and the associated operator T : X — X, u — w, where w is determined by
the following linear problem:

ow o'w  0%A(u) n 0B(u)

E—i_’y&r‘l_ 0x2 ozr ’ zel=(01),
0w d*w
w0,t) =w(l, 1) = 25 (0,0) = =5 (1) =0, >0,

w(z,0) = up(x).

From the discussions above and by the contraction mapping principle, T’
has a unique fixed point u, which is the desired solution of the problem

(1.1)-(1.3).
Further regularity of the solution is obtained by the use of a bootstrap
argument. Since u € H*'(Qr), we have
Du € L®(Qr), D*uc L*(0,T;L>™(I)).
It follows, by a direct calculation, that f(z,t) = D?A(u(z,t)) + DB(u(x,t)),
then
Df e L*(Qr), D*f e L*Qr).
By [8], we know that if f € L2(0,7T; L?(I)), and vg € H?(I),vg|s; = 0 then
the initial boundary value problem
ov
D'y =
o TPv=1,
v=D%=0,
v(z,0) = vg
has a unique solution v € H*!(Qr). Now it is easy to see that taking
f(.fE,t) :D4A(U(.’E,t))+DBB(U(CE,t))7 Vo :D2'LL0
yields v = D?u € H4Y(Qr). This implies that f = (9/0t)(D*A(u)+ DB(u))
€ L*(Qr), assuming that u(0,0) = u4(1,0) = 0. Hence
ou

V== ot H41(QT)

and by interpolation theory, this implies that
ou
ot

This completes the proof of the existence of a classical solution.

D4U S C(QT)
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THEOREM 2.2. Under the conditions of Theorem 2.1, if

L[t
>S4 4q),
! 2(372+)

then the classical solution u of (1.1)-(1.3) satisfies
Jul? < e 0,0y > 0.

Proof. Multiplying both sides of (1.1) by w and then integrating the
resulting relation with respect to z over (0,1), integrating by parts, and
using the boundary conditions, we have

14! 1
(2.12) = —SuQ d$+7§(D2u)2d:c
2 dto 0

1
= — | A'(u)(Du)? dz +
0

O e =

1, 1,
“ut — —u? | Dudz.

Since v9 > 0, a simple calculation shows that A’(u) > —Co = —+?/3y2 — 1,
Co > 0 and S(l) (1u* — 2u*)Dudx = 0, and it follows from (2.1) that

1dl 1 2 1
2 2,\2 1 2
- — d D de < |—+1 Du)* dx.
théu x—i—’y(SJ( w)®dr < <372+ >§)( w)® dx
By the Poincaré inequality,
1 1 1 1
1 1 2 1
2 2,12 _ 2,12
S(Du) dm§§S(D w) d$—l—§(SDudx) —§S(D u)“ dz.
0 0 0 0
Hence
1 1 1
Ldyg g 2,12 1 ’Y% 2,2
- — D < 2| = +1 D .
2dt§)u d:n+'y§)( u)*dr < 2<372+ (S)( u)® dx

1 1 1
SuQ dzx < S (Du)? dx < S (D?u)? dz,
0 0 0
we have
1 d 1 1
2 2
0 0
Therefore

ul|? < e C1t=C2 €1, 0y > 0.

This completes the proof.
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3. Instability of traveling waves. In this section, we study the insta-
bility of the traveling wave solutions of the equation (1.1). For simplicity we
set y=1,v =1, ie.

ou  otu 9% 4 9 3 ou
3.1 — 4 —=— —u) — —u) —.
(3.1) ot T ot o\ T T g
Our main result is as follows:

THEOREM 3.1. All the traveling wave solutions p(x — ct) of the equation
(3.1) satisfying ¢ € L®(R), o™ € L>®(R) N L*(R) (n = 1,2,3,4) are non-
linearly unstable in the space H*(R). Here o™ denotes the nth derivative of o.

By [6], the equation (3.1) has a solution satisfying
lim ¢(z) = A1 + By, lim ¢(z) = Ay — By,
Z——00

Z——+00

where A1, By are constants. In fact, we set

(3.2) ¢ = Ay + B; tanh[AB;(z — ct)].
Substituting (3.2) in (3.1), one finds that
1 1
3.3 Mo A-—=—=
(3.3) 52 57 = 0
and the following relations hold for A; and Bj:
2 20+ 1 29v2A2(6) — 1
Al _ ")/1)\ 32 . )\ + '}/1)\ (6)\ )

6 +1 T 20 +1/3) T (6A+1)2(A+1/3)

It is sufficient to take B > 0. Since f(A\) = A3 — I\ — & satisfies f(0) < 0
and f(1) > 0, by the intermediate value theorem there exists a A € (0, 1)
such that (3.3) holds.

We note that ¢ = A; + Bj tanh[AB;(z — ct)] satisfies the conditions of
Theorem 3.1.

To prove Theorem 3.1, we first consider an evolution equation
(3.4) % — Lu+ F(u),
where L is a linear operator that generates a strongly continuous semigroup
el on a Banach space X, and F is a strongly continuous operator such that
F(0) = 0. In [10] the authors considered the whole problem only on X, that is
to say, the nonlinear operator maps X into X. However, many equations have
nonlinear terms that include derivatives and therefore /' maps into a larger
Banach space Z. Hence, Strauss and Wang proved the following lemma.

LEMMA 3.1 ([11]). Assume the following:

(i) X C Z are Banach spaces and ||u||z < Cil|jul|x for u € X.
(ii) L generates a strongly continuous semigroup e'* on Z, mapping Z
into X fort >0, and S(I) leth|| z—x dt = Cy < oc.
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(iii) The spectrum of L on X meets the right half-plane {Re X > 0}.
(iv) F : X — Z is continuous and there are oo > 0, C3 > 0, a > 1 such
that || F(u)l[z < Csllullk for [[ullx < co-

Then the zero solution of (3.4) is nonlinearly unstable in the space X.
In this section, we are going to use Lemma 3.1 to prove Theorem 3.1.

DEFINITION 3.1. A traveling wave solution ¢(z—ct) of the equation (3.1)
is said to be monlinearly unstable in the space X if there exist g9, Cy > 0,
a sequence {u,} of solutions of (3.1), and a sequence t, > 0 such that
[un(0) = p(@)]x — 0 but [Jun(tn) — (- = ctn)lx = co.

If (x — ct) € H*(R) is a traveling wave solution of (3.1), then letting
w(z,t) = u(z,t) — p(x — ct), we have
(3.5)  wi+ Oyw — (3p% + 2710 — 1)Ojw — (1209 + 4m1¢’ — ©° + )
where

F(w) = —¢'w® + (3¢” — 3pp )Yw? — w?d,w — 30*wd,w — 3pw?dw

+ wo,w + 12¢"wow + 2711082111 + 6g0w8£w + 27 (8xw)2
+ 60(9,w)? + 6w (dpw)? + 3w w,

with initial value
(3.6) w(z,0) = wo(z) = up(z) — ().
So the stability of traveling wave solutions of (3.1) is translated into the
stability of the zero solution of (3.5). In order to prove Theorem 3.1, taking
Z = L*(R), X = H?(R), we need to prove that the four conditions of Lemma
3.1 are satisfied by the associated equation (3.5). Condition (i) is satisfied,
by our choice of Z and X.

Denote the linear partial differential operator in (3.5) by
L= — (00 + 07+ B0:) + [(3¢° + 2m9) 0} + (1209 + 471 = ¢° + ¢ + £) 0,

+ (690%0” + 6@/2 _}_27180// _ 3@280/ + s0/)]
= Lo+ [(3¢* + 2119)0; + (120" + 41 — ¢° + ¢ + 3)0a
+ (6@(,0”—1—6(,0/2—!-271(,0” _3()0290,+90,)]
with
Lo = — (03 + 02 + B0y).
Then (3.5) may be rewritten in the form (3.4),
wy = Lw + F(w).
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Note that F' maps H?(R) into L?(R). Using the Sobolev embedding theorem,
we have

(3.7) IF @)z < Cllwlgy  for [lwllz= <1,

for some C' > 0. So, condition (iv) is satisfied.
To prove (ii), we need the following two lemmas.

LEMMA 3.2. Let Lo = — (0% + 02 + 30;) for any real constant (3. Then
(3.8)  |letE | grm_pgm < €'/ formeRT, 0<t< o0,
(3.9) 0| o2 < a(t) =5t Y% for 0<t<1.

Proof. We write u(z,t) = e'*oug(x). By Fourier transformation,

U(E, t) = e HEEHBF, (6.

We have
lulfm = | (L4 E)Mace 2 de = | (1+&)me € g de
< supe 2 [ (14 €)™y (€)|2 de = /g3y
€€R e
Hence

HetLOHHm_,Hm S et/4.

On the other hand, letting s = £2, we have

[e.9]

lull7> < sup £(s) | [G0(&)]*dg
sERT

—0o0
with f(s) = (1+s)2e 2(*=9) ¢ > 0. An elementary computation shows that

31 4\ 4
<|=4— .
Supf(s)_<2+\/§t )e

s>0
Thus

1/2
t < § Lt—l/Q / t/4
lu(@, O)llgz < {5 + 7 e luol| 2

and

3 1 1/2
€0 2 g2 < <§ + ﬁt_l/2> et <ptVt for0<t <1,

since e'/* < e!/* < 2. Thus Lemma 3.2 has been proved.

LEMMA 3.3. Let L be as above with o, ¢, " € L>®(R). Then
(3.10) e f2pe < Cit™ 4 for 0<t <1,
(3.11) et |l gpz < Co < oo for 0 <t <1,
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Proof. Consider the initial value problem
us = Lu = Lou + (302 + 2710)0%u + (1200 + 471 — ©* + ¢ + )0, u
+ (6pg" + 60 + 2719" =3¢ + ),
u(x,0) = ug(x).
Then u(z,t) = el ug(z), t > 0, x € R. Thus
t

u(z,t) = eFougy + S =032 4 24,0)0%u
0

+ (1209 + 471 — ©° + © + B)0pu

+ (6pp” + 69" + 271¢" — 3p°¢" + ' )u] dr.
Set A = llglli, B = [¢/llz=, € = [/l and M = 4% +34% + (2|
+1)A+3A2B + 12AB + 6 AC + 6B% + B + 2|71|C + 4|1 | + |8].

(3.12)  lu(®)]lgz < e 22 luoll 2

+ e 2 2 Bllel e + 2ol o) 103u] g2 dr

+ e 2 e (20l o 19N 20 + 4l

O e o+ O e

+llellze + llellze + 18D 10zull 2 dr

+ Y15 a2 (Bl el e + 2im DIl o [ul g2 dr

+ Y15 a2 (Bl e + BllllEoe 9l + N1l 2oe) ]2 d

Ot O e

t
< a(®)lluollz2 + M Y a(t = 7)lu(r)l| 42 dr,
0
where a(t) is defined in Lemma 3.2 and we use u(t) to denote u(-,t).
By iteration,
t
(313)  Jlu(®)uz < a(®)lluollzz + M {a(t — )

0
r

x |a(m)l[uoll 2 + M\ a(r = s)llu(s) | g2 ds| dr
0
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— a(®)lluoll 2 + M {a(t - 7)a()||uoll 2 dr

0
+ M2\ Va(t — 1)a(r — 5)||u(s)|| 2 ds dr.
00

The second term on the right of (3.13) is
t
(3.14)  Ya(t — 7)a(r)|uol| 2 dr

0
t

= M||uo|| 2 | 5(t — )~ /4574 dr
0

t A\ 1A o\ 1A
= 25M ||uo | 12 §t1/2<1 —~ —> (—) dr

t t
0
= 25 M Cst/?||ug| 2 for 0 <t <1,

where C5 = 8(1)(1 — 7“)_1/47"_1/4 dr. By exchanging the order of integration in
the third term on the right side of (3.13), we get

[Ja(t = m)a(r = ) |u(s) |52 ds dr = §[Ja(t = P)a(r = 5) dr | u(s)] = ds.
00 0 s

Now

(3.15) Sa(t —T7)a(T — s)dr = 25S (t — )" VA(r — s)Vigr

= 25C5(t — 5)Y/2 <2503 for0<s<t<l1.
Therefore (3.12)-(3.15) imply

(3.16)  lu(®)l[z2 < la(t) + 25C3M]||uo|| 2
t

+25Cs M2 u(s)|| g2 ds  for 0 <t < 1.
0

Let v(t) = {{ [|u(s)|| g2 ds. Then

du(t)
dt

< [a(t) + 25CsM]||ug]| 2 + 25C3M>v(t) for 0 <t < 1.

Multiplying both sides of the above inequality by e~ 2503 M?t

the resulting relation with respect to t over (0,t), we obtain

and integrating
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t
u(t) < PO =DM g (5) 1 2505 M) ds [luo| 2.
0

Observing that v(t) = Sf) |lu(s)|| g2 ds, and substituting the above inequality
into (3.16), we get

(3.17) u(®)|| gz < Cit™Y*|lug| 2 for0<t <1,

where C7 > 0. Thus (3.10) has been proven. To prove (3.11), replacing the
first term on the right side of (3.12) by ||e*X|| 2, g2 ||uo|| 2 and using (3.8),
we have
t
(3.18)  [u(®)llgz < eHluollgz + M a(t—7)|u(r)|yzdr for0<t<1.
0
Similarly iterating and computing as above, we obtain

(3.19) lu(®)|| g2 < [2 4 25C5M] exp[2503M2]Hu0HHz = Cyl|ugl| g2-

Hence (3.11) is proven and the proof of Lemma 3.3 is finished. By Lemma
3.3, condition (ii) is proved.
We now proceed to verify condition (iii) of Lemma 3.1. Observe that if
u(x,t) satisfies
ou(z,t) otu  0%u ou 0%u

e S~ R 2 el
5r = o a2 Pap T H2nelas

o
+ (1200 +dm —* + o + %—Z
+ (60" + 69" + 271" — 3% + ' )u,

then u(x,s + t) also satisfies the above equation. By uniqueness of solu-
tion, we prove easily that e’ satisfies three conditions of the definition,
hence L generates a strongly continuous semigroup on the Banach space
H?(R) (see [13]). By Fourier transformation, the essential spectrum of Lg on
H?(R) is

o(Lo) D {—¢*+ &% —if¢; € e R}
The curve A = —&* 4+ €2 — 3¢ meets the vertical lines Re A = a for —oco <
a < 1/4 because —oo < —¢1 4 €2 < 1/4.
We now prove that the same curve lies in the essential spectrum of L.

LEMMA 3.4. The essential spectrum of L on H*(R) contains that of Lo.

Proof. Let € € R and let A\ = P(§) = —&* 4+ €2 — iB€. To prove that
A € (L), we use Theorem 4.4 in [9] stating that if there exists a sequence
{nn} € H*(R) with

nllgz =1, (L = M)l 2 = 0,
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and {n,} does not have a strongly convergent subsequence in H?(R), then
A€ao(L).
Now let 779 # 0 be a C*° function with compact support in (0, 00). Define

() = cneié‘”ng(x/n)/\/ﬁ, n=12...,

where ¢, is chosen so that ||7,| g2 = 1. Then

I7nllz2 = callmollzz and 1= ||nulg2 < ke

for some positive constant k. Hence ¢, > 1/k > 0. Since ||9,||z~ — 0 but

7] 7.2 is bounded away from zero, {7, } can have no convergent subsequence
in L2(R).
It remains to show that |[(L — \)n,|| g2 — 0. We write
L—=X=Lo= A+ (30" +2m¢) 07 + (1209 + 4m = ¢* + ¢ + )0,
+ (609" + 607 + 2719" — 3¢%¢ + ¢)
A simple calculation shows that

(Lo — A (z) = e’sr Z P(S)(f)c 770 (Cﬁ/n)/(sln1/2+s),

1<s<4
(Lo — N)mn(z) = i€(Lo — A)nn(x)

+ i Z P(S)({)cnn(()SH)(:U/n)/(s!n3/2+8),
1<s<4

and
0*(Lo — A)in ()
= _52(L0 — N)nn(x) + 2i§ei§w Z P(S)( Cnﬁ(§8+1)($/n)/(s!n3/2+s)

1<s<4

+ e® Z PG c,mosﬁ)(x/n)/(s!n5/2+s).
1<s<4

Thus

(Lo = Ay (2 )IIH2
<(+1ER) Y IPO©lenllng (@/n)l| g2/ (stnt/2+)

1<s<4

+ 2] S [PO©)lenllns ) (@/n) | g2/ (sin®/2+)

1<s<4
+ 3 1PO©leallns ™ (@/n) g2/ (s®2+) — 0,
1<s<4

as n — o0o. Moreover, for any positive integer m, |07, ||z~ — 0 as n — oo,
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so we have

139 + 2m19) 021072 < 1021017 (3]167 172 + 12m]ll¢]l72) — O,
10:[(30% + 2710)02mn] 172 < 10200121130 (|72 + [|0210 |7 |60 (|72 — 0,

and

1021(3¢° + 27v19) 02 [132 < (10300 | Z 11209 + 41| 72
020|700 [1609" + 66 + (27 — 1)¢" |72 + [|0gn |7 < 3¢ + 2719] 72 — O.

Similarly to the above estimates, we have the other estimates, thus
130% + 2719) o + (120¢" + 471 — ¢ + @ + B)uin
+ (69" + 69 +2719" = 3¢°¢" + ')l 2 — 0.
So from the estimates above,
(L= N)mnllgz — 0 asn — oc.

The proof of Lemma 3.4 is complete.
Therefore all the four conditions of Lemma 3.1 are satisfied by the lin-
earized equation (3.5) and Theorem 3.1 has been proved.
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