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DIFFERENTIAL INEQUALITIES

Dire
t and Reverse Gagliardo�Nirenberg Inequalitiesfrom Logarithmi
 Sobolev InequalitiesbyMatteo BONFORTE and Gabriele GRILLOPresented by Stanisªaw KWAPIE�
Summary. We investigate the 
onne
tion between 
ertain logarithmi
 Sobolev inequal-ities and generalizations of Gagliardo�Nirenberg inequalities. A similar 
onne
tion holdsbetween reverse logarithmi
 Sobolev inequalities and a new 
lass of reverse Gagliardo�Nirenberg inequalities.0. Introdu
tion. The main 
on
ern of this paper is to investigate the
onne
tions between logarithmi
 Sobolev inequalities (LSI) and generaliza-tions of Gagliardo�Nirenberg inequalities (GNI). The typi
al LSI inequalitywe shall be 
on
erned with in the �rst part of the paper will be of the form(0.1) \

X

log

[

|u(x)|

‖u‖p

]

|u(x)|p

‖u‖p
p

dµ(x) ≤ c1 log

[

c2
‖∇u‖p

‖u‖p

]

∀f ∈ C∞
c (X),

µ being a positive Radon measure on a Riemannian manifold X, ∇ theRiemannian gradient, c1, c2 positive 
onstants, and ‖ · ‖p the Lp norm. Themanifold setting is 
hosen for the sake of notational simpli
ity only and
ould be generalized in many respe
ts: for example, the role of the operator
∇ 
ould be taken by a (ve
tor-valued) derivation (see e.g. [13℄ for details),but 
ertain dis
rete settings 
ould be dis
ussed as well (see [2℄).Su
h inequalities have a long history sin
e the pioneering work of Gross[17℄, who proved the equivalen
e between a weaker form of su
h inequalitiesin the 
ase p = 2 and hyper
ontra
tivity of the linear heat semigroup. Itwas proved later that (0.1) is indeed equivalent to ultra
ontra
tivity of theheat semigroup (see also [1℄). This 
an be seen for example by noti
ing that,2000 Mathemati
s Subje
t Classi�
ation: 46A35, 26D10.Key words and phrases: Gagliardo�Nirenberg inequality, logarithmi
 Sobolev inequal-ity, 4-norms inequality, reverse inequality. [323℄
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by applying the numeri
al inequality log x ≤ εx + log(1/ε), ∀x, ε > 0, tothe r.h.s. of (0.1), one proves a family of LSI of the form 
onsidered in [14℄.The proof of ultra
ontra
tivity then follows by methods whi
h are by nowstandard.More re
ently, it has been shown in [12℄, [7℄, [8℄ that the validity of su
ha LSI for p ≥ 2 implies ultra
ontra
tive-like bounds of the form

‖u(t)‖∞ ≤
C

tα
‖u(0)‖β

2for the solutions u(t) to suitable 
lasses of nonlinear evolution equationsin
luding the porous media equation and the heat equation driven by the
p-Lapla
ian (see also [9℄ and [15℄ for a generalization to a doubly nonlinearevolution equation).Sin
e on the other hand it is known that, in the linear 
ase, ultra
ontra
-tivity for the heat semigroup is equivalent to the usual Sobolev inequality
‖u‖2d/(d−2) ≤ C‖∇u‖2 (and to the Nash inequalities as well), it is not sur-prising that (0.1) is 
onne
ted to Sobolev inequalities involving the p-energyfun
tional ‖∇u‖p, or to inequalities of Nash type involving that fun
tional.This is indeed a 
onsequen
e of the results of [4℄�[6℄, in whi
h it is provedthat logarithmi
 Sobolev inequalities imply Nash-type inequalities (whi
h area spe
ial 
ase of GNI), and of [2℄ (see also [18℄), in whi
h it is shown thatany single GNI implies a whole 
lass of them; in Se
tion 2 we dis
uss thispoint with a few more details.Our aim here is to further investigate this 
onne
tion. We �rst show thatthe entropy fun
tional

J(p, u) =
\
X

log

[

|u(x)|

‖u‖p

]

|u(x)|p

‖u‖p
p

dµ(x)
an be used to bound both from below and from above the variation of the
onvex fun
tion p 7→ log ‖u‖p
p. This is the 
ontent of our �rst result, Theorem1.1. This will allow us �rst to prove the following inequality, whi
h we 
allthe 4-norms inequality. It is a generalization of the GNI and reads(0.2) ‖u‖1/d

q ‖u‖1/s−1/q
p ≤ C‖∇u‖1/s−1/q

p ‖u‖1/d
s ,where 0 < s ≤ q ≤ p and d ≥ 1, d being a parameter having the role ofdimension. GNI inequalities 
an then be proved with the help of the resultsof [2℄.We next prove reverse analogues of the above 4-norms inequalities, asa 
onsequen
e of reverse LSI whi
h we prove in Se
tion 3. In fa
t we �rstdis
uss the 
onsequen
es of a reverse LSI in the form given by [16℄, [19℄, [20℄adapted to the real 
ase. We shall mostly spe
ialize to the Eu
lidean 
ase,the underlying measure being the Gaussian measure. This is be
ause thatis the main 
ase in whi
h we are able to prove a reverse LSI for suitable
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lasses of fun
tions. We hope that su
h inequalities 
an be used in order tostudy reverse hyper
ontra
tivity for suitable 
lasses of data. We shall thenuse Theorem 1.1 to prove a new reverse analogue of (0.2), from whi
h reverseGNI (and in parti
ular reverse Sobolev inequalities) will then follow, againfor a suitable 
lass of fun
tions.This paper is organized as follows. In the �rst se
tion we prove the mainproperty of the entropy fun
tional whi
h will be used in the following, in-
luding the aforementioned Theorem 1.1. In Se
tion 2 we prove that a suit-able LSI implies (0.2), and then make some remarks on the 
onne
tionswith the GNI. Se
tion 3 is devoted to the proof of reverse LSI, Sobolev andGagliardo�Nirenberg inequalities.1. Basi
 entropy inequalities. In this se
tion we prove the basi
 in-equalities 
on
erning the fun
tional J(p, u), de�ned with respe
t to a generalpositive Radon measure µ, whi
h will be the starting point for proving bothdire
t and reverse Gagliardo�Nirenberg inequalities.Theorem 1.1. We have(1.1) ‖u‖pe

q−p
qp

J(1,up)
≤ ‖u‖q ≤ ‖u‖pe

q−p
qp

J(1,uq)for any 0 < p ≤ q and u ∈ Lp(X, µ) ∩ Lq(X, µ).Proof. It is well known that the fun
tional
N(r, u) = log ‖u‖r

r = log
\
X

|u(x)|r dµ(x)de�ned over (0,∞)×
⋂

p>0 Lp(X, µ) is 
onvex with respe
t to r > 0, and its�rst derivative
d

dr
N(r, u) = J(r, u) +

1

r
N(r, u)is nonde
reasing with respe
t to r > 0. For more details one 
an refer toSe
tion (2.4) of [8℄.By the 
onvexity of N one has, for 0 < p ≤ q,

N ′(p) ≤
N(q, u) − N(p, u)

q − p
≤ N ′(q)whi
h be
omes

(q − p)[J(p, u) + log ‖u‖p] ≤ log
‖u‖q

q

‖u‖p
p
≤ (q − p)[J(q, u) + log ‖u‖q]or equivalently

e(q−p)J(p,u)‖u‖q−p
p ≤

‖u‖q
q

‖u‖p
p
≤ e(q−p)J(q,u)‖u‖q−p

q .The latter inequalities are 
learly equivalent to the assertion.
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We now 
olle
t some useful properties of the entropy fun
tional whi
hwill be of help later on.Proposition 1.2. The fun
tional J has the following properties:

J(r, uγ) = γJ(γr, u) for all γ, r > 0;(1.2)
J(r, us+h) ≥ J(r, us) for all r, s > 0, h ≥ 0.(1.3)Proof. The �rst statement is an immediate 
onsequen
e of the de�nitionof J . For the se
ond, we �rst prove that the map β 7→ J(1, uβ) is nonde-
reasing. In fa
t, it is well known that the map

α 7→ log ‖u‖1/αis 
onvex (see e.g. [2℄). By taking derivatives, the map
α 7→ −

1

α
J

(

1

α
, u

)

is nonde
reasing. Thus, the map β 7→ βJ(β, u) is in
reasing, as also is, bythe previous result, the fun
tional β 7→ J(1, uβ). Finally,
sJ(s, ur+h) = J(1, us(r+h)) ≥ J(1, usr) = sJ(s, ur).2. 4-norms inequalitites via entropy and LSI. In this se
tion wedraw the main 
onsequen
es of the lower bound in (1.1), by making use ofthe inequalities of Proposition 1.2.We shall �rst proveProposition 2.1. For any 0 < p < ̺ the p-LSI implies the ̺-LSI.Proof. We 
ompute

̺J(̺, u) = p
̺

p
J

(

p
̺

p
, u

)

= pJ(p, u̺/p) ≤
d

p
log

[

Lp
‖∇(|u|̺/p)‖p

p

‖ |u|̺/p‖p
p

]

=
d

p
log

[

Lp

(

̺

p

)p
T
X |u|p(̺/p−1)|∇u|p dµ

‖u‖̺
̺

]

≤
d

p
log

[

Lp

(

̺

p

)p ‖ |u|̺−p‖σ′‖ |∇u|p‖σ

‖u‖̺
̺

]

=
d

p
log

[

Lp

(

̺

p

)p ‖u‖̺−p
̺ ‖∇u‖p

̺

‖u‖̺
̺

]

= d log

[

L1/p
p

̺

p

‖∇u‖̺

‖u‖̺

]

where we have also used the Hölder inequality with 
onjugate exponents
σ = ̺/p > 1 and σ′ = ̺/(̺ − p) > 1.Theorem 2.2 (4-norms inequality). Suppose that the following LSI holdstrue for some p, d > 0:(2.1) pJ(p, u) ≤ d log

[

L1/p
p

‖∇u‖p

‖u‖p

]

.
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Then
(2.2) ‖u‖1/d

q ‖u‖1/s−1/q
p

≤ L(1/p)1/s−1/q
p ‖∇u‖(1/s−1/q)

p ‖u‖1/d
s for 0 < s ≤ q ≤ p.Moreover if ̺ ≥ p then (2.1) implies

(2.3) ‖u‖1/d
q ‖u‖1/s−1/q

̺

≤

(

L1/p
p

̺

p

)1/s−1/q

‖∇u‖1/s−1/q
̺ ‖u‖1/d

s for 0 < s ≤ q ≤ p ≤ ̺.Proof. We will prove (2.2) by 
ombining the right-hand inequality of(1.1) and the p-LSI (2.1) rewritten in the form(2.4) epJ(p,u) ≤ Ld/p
p

‖∇u‖d
p

‖u‖d
p

.To this end we need the monotoni
ity property (1.3) that we re
all here:
qJ(q, u) = J(1, uq) ≤ pJ(p, u) = J(1, up) for any p ≥ q > 0.Using this together with the right-hand inequality of (1.1) one obtains

‖u‖q

‖u‖s
≤ e

q−s

sq
J(1,uq)

≤ e
q−s

sq
J(1,up)for any p ≥ q ≥ s > 0. Now we 
ombine this last inequality with (2.4) toobtain

‖u‖q

‖u‖s
≤ e

q−s

sq
J(1,up)

≤ exp

[

q − s

sq
log

(

Ld/p
p

‖∇u‖d
p

‖u‖d
p

)]

or equivalently(2.5) ‖u‖q

‖u‖s
≤ L(d/p)(1/s−1/q)

p

‖∇u‖
d(1/s−1/q)
p

‖u‖
d(1/s−1/q)
pfor any p ≥ q ≥ s > 0. This is 
learly equivalent to (2.2). The last partfollows from the �rst and from Proposition 2.1Given the above result, the GNI is a 
onsequen
e of the results of [2℄.Although the following results are known from [2℄, for 
ompleteness and forthe reader's 
onvenien
e we re
all 
on
isely how to pro
eed in this dire
tionfrom our starting point.

• p-Nash inequalities. Fix p, d > 0. The �rst 
onsequen
e of (2.2) (justby letting q = p) is the following family of p-Nash inequalities:(2.6) ‖u‖1+ps/d(p−s)
p ≤ L1/p

p ‖∇u‖p‖u‖
ps/d(p−s)
s whenever 0 < s < p.Similarly inequality (2.3) implies a family of ̺-Nash inequalities with ̺ ≥ pand with proportionality 
onstant L1/p

p ̺/p. We �rst stress that the above re-sult holds for any p > 0. Also, the term p-Nash inequality is due to similarity
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to the 
elebrated Nash inequality:

‖u‖
1+2/d
2 ≤ C‖∇u‖2‖u‖

2/d
1 .The above remark does not distinguish the 
ases of p larger and smallerthan d. The following remarks deal with some more detailed 
onsequen
esof the above results, whi
h take into a

ount su
h di�eren
es.

• Gagliardo�Nirenberg inequalities. In the previous remark we provedthat a p-LSI implies a 4-norms inequality su
h as (2.2) and then a family of
p-Nash inequalities, whi
h are a spe
ial 
ase of GNI:(2.7) ‖u‖r ≤ Cϑ/p

p ‖∇u‖ϑ
p‖u‖

1−ϑ
sfor any p, r, s, d > 0 and ϑ ∈ [0, 1] su
h that(2.8) 1

r
= ϑ

(

1

p
−

1

d

)

+ (1 − ϑ)
1

swhere Cp ∝ Lp, Lp being the 
onstant in the p-LSI.We now re
all that this fa
t a
tually guarantees the validity of all theGNI above, on
e the relative position of p and d is �xed, see also [2, Th. 10.2℄.To this end we will need some results of [2℄.The sub
riti
al 
ase: 0 < p < d. By Theorem 3.1 of [2℄ it is known that asingle GNI of the form (2.7) implies the other GNI inequalities 
orrespondingto 0 < p < d �xed, while ϑ ∈ [0, 1] and r, s > 0 are related as in (2.8). Thena p-LSI of the form (2.1) implies the whole family of GNI (2.7) mentionedabove, via a p-Nash inequality. This family also 
ontains as a spe
ial 
asethe 
lassi
al p-Sobolev inequality:
‖u‖pd/(d−p) ≤ Cp‖∇u‖p.The 
riti
al 
ase: p = d. By Theorem 3.3 of [2℄, a single GNI of the form(2.7) implies the other GNI 
orresponding to p = d > 0, 0 < s < r < ∞,

ϑ = 1 − s/r.With the help of Theorem 3.2.6 of [18℄, we 
an also show that the abovementioned family of GNI implies some versions of Moser�Trudinger inequal-ities. See [2, Theorem 3.4℄ for details.The super
riti
al 
ase: p > d. By Theorem 3.2 of [2℄, a single GNI of theform (2.7) implies the other GNI inequalities 
orresponding to p > d > 0�xed, while 0 < s < r ≤ ∞, ϑ ∈ [0, 1] are related as in (2.8). In parti
ularby letting r → ∞ we get(2.9) ‖u‖∞ ≤ Cϑ/p
p ‖∇u‖ϑ

p‖u‖
1−ϑ
sfor all 0 < s < ∞. This last family 
ontains a version of the well knownMorrey inequality.
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• Other Gagliardo�Nirenberg inequalities. In this last remark we fo
usour attention on the main 
onsequen
es of the se
ond 4-norms inequal-ity (2.3). We proved in a previous remark, using Theorem 2.2, that a suitable

p-LSI implies a 4-norms inequality su
h as (2.3) and then a ̺-Nash inequal-ity, provided ̺ ≥ p. This fa
t leads us to prove that a p-LSI implies a largerfamily of GNI:(2.10) ‖u‖r ≤ Gϑ
̺ ‖∇u‖ϑ

̺‖u‖
1−ϑ
swhenever 0 < p ≤ ̺, ϑ ∈ [0, 1], with Gq ∝ L

1/p
p q/p and

1

r
= ϑ

(

1

̺
−

1

d

)

+ (1 − ϑ)
1

s
.Thus we 
an extend the above remarks simply by repla
ing p with ̺, and

L
1/p
p with L

1/p
p ̺/p. Informally speaking, we re
alled that, for �xed p > 0, asingle p-LSI implies a family of ̺-GNI of the type (2.10), with ̺ ≥ p (thisbeing the 
ontent of [2, Se
tion 8℄), and hen
e all the ̺-versions of Sobolev,Moser�Trudinger and Morrey inequalities.3. Reverse inequalities. In this se
tion we start by proving a newfamily of reverse logarithmi
 Sobolev inequalities in a general setting. Thesereverse LSI will give as a dire
t 
onsequen
e a reverse Sobolev inequality,while put together with a reverse 4-norms inequality will give a family ofreverse Gagliardo�Nirenberg inequalities as well.As far as we know, reverse LSI �rst appeared in the works of S. B. Sontz[19℄, [20℄ in the setup of Segal�Bargmann spa
es. After these pioneeringworks, a paper [16℄ of F. Galaz-Fontes, L. Gross and S. B. Sontz gave ageneralization of reverse LSI over 
omplex manifolds and investigated the
onne
tion between reverse LSI and reverse hyper
ontra
tivity.Although reverse LSI are in a sense typi
al of the 
omplex setting, weshall show that they have some real analogue. A reverse LSI of a di�erenttype appears in [11℄. Hereafter, we always deal with spa
es of real-valuedfun
tions.We start by proving the main theorems of this se
tion, 
on
erning reverseinequalities with respe
t to a positive measure, absolutely 
ontinuous withrespe
t to a referen
e measure, indi
ated by dx:

dµ(x) = m(x) dx,

m being a fun
tion for whi
h ∆m makes sense as a lo
ally integrable fun
tion(hereafter, ∆ denotes the Lapla
e�Beltrami operator). In this se
tion weshall indi
ate expli
itly the measure in the notation of Lq norms (writing,e.g., ‖ · ‖q,µ), sin
e we shall make more than one possible 
hoi
e of measure.
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We denote by C the 
lass of fun
tions v for whi
h the following integrationby parts formula holds:(3.1) \

X

v(x)(∆m)(x) dx =
\
X

(∆v)(x)m(x) dx.

We noti
e that if f ∈ H1(X, µ) (i.e. f,∇f ∈ L2(X, µ)) and f2 ∈ C then theLeibniz rule implies that TX f∆f dµ is �nite.Theorem 3.1 (Reverse logarithmi
 Sobolev inequality). Let f be a mea-surable, real-valued fun
tion su
h that :(i) f ∈ H1(X, µ), f2 ∈ C;(ii) f satis�es the inequality(3.2) \
X

f(x)(∆f)(x) dµ(x) ≥ 0.

(iii) There exists c > 0 su
h that(3.3) B(c, m) =
\
X

e(∆m)(x)/cm(x) dµ(x) < ∞.Then the following reverse LSI holds true:(3.4) 2‖∇f‖2
2,µ ≤ c

\
X

f2 log

(

f2

‖f‖2
2,µ

)

dµ + c log(B(c, m))‖f‖2
2,µ.

Proof. We adapt to our setting a method of L. Gross and S. B. Sontz [20℄.We �rst re
all Young's inequality:
st ≤ s log(s) − s + et for s > 0 and t ∈ R.The 
hoi
e s = cf(x)2 > 0, t = (∆m)(x)/cm(x) together with integrationover (X, µ) leads to\

X

cf(x)2
(∆m)(x)

cm(x)
dµ(x) ≤

\
X

cf(x)2 log(cf(x)2) dµ(x)

−
\
X

cf(x)2 dµ(x) +
\
X

e(∆m)(x)/cm(x) dµ(x).

Noti
ing that log(cf(x)2) = log(c) + log(f(x)2), dµ(x) = m(x)dx and
B(c, m) =

T
X e(∆m)(x)/cm(x)dµ(x) < ∞ by hypothesis, we obtain

(3.5)
\
X

f(x)2(∆m)(x) dx

≤ c
\
X

f(x)2 log(f(x)2) dµ(x) + (c log(c) − c)
\
X

f(x)2 dµ(x) + B(c, m).
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Integration by parts, allowed by our assumptions, then gives\

X

f(x)2(∆m)(x) dx =
\
X

(∆f2)(x)m(x) dx

= 2
\
X

|∇f(x)|2m(x) dx + 2
\
X

f(x)(∆f)(x)m(x) dx

≥ 2
\
X

|∇f(x)|2m(x) dx.

The last inequality follows from our assumption TX f(x)(∆f)(x)m(x)dx ≥ 0.Now letting λ > 0 and repla
ing f by λf in (3.5) gives
2λ2

\
X

|∇f(x)|2 dµ(x) ≤ cλ2
\
X

f(x)2 log(λ2f(x)2) dµ(x)

+ (c log(c) − c)λ2
\
X

f(x)2 dµ(x) + B(c, m).

Divide both members by λ2 to obtain
2‖∇f‖2

2,µ ≤ c
\
X

f(x)2 log(f(x)2) dµ(x)(3.6)
+ [c log(λ2) + c log(c) − c]‖f‖2

2,µ +
B(c, m)

λ2
.Optimizing with respe
t to λ2 gives

λ2 =
B(c, m)

c‖f‖2
2,µ

.Substituting this value in (3.6) leads to
2‖∇f‖2

2,µ ≤ c
\
X

f2 log(f2) dµ +

[

c log

(

B(m, c)

c‖f‖2
2,µ

)

+ c log(c) − c

]

‖f‖2
2,µ

+ c‖f‖2
2,µ,whi
h is the 
laim.In what follows it will be useful to rewrite (3.4) in the form

2
‖∇f‖2

2,µ

‖f‖2
2,µ

≤ c
\
X

log

(

f2

‖f‖2
2,µ

)

f2

‖f‖2
2,µ

dµ + c log(B(c, m))(3.7)
= cJµ(1, f2) + K.As a dire
t 
onsequen
e of this theorem we obtain the followingTheorem 3.2 (Reverse Sobolev inequality). Let f ∈ L2(X, µ) satisfy areverse LSI of the form (3.7) for some 
onstants c, K > 0. Then for any
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ε > 0 there exists M ′

ε > 0 su
h that
M ′

ε exp

(

2ε

c(2 + ε)

‖∇f‖2
2,µ

‖f‖2
2,µ

)

≤
‖f‖2

2+ε,µ

‖f‖2
2,µ

.In parti
ular , there exists Mε > 0 su
h that the reverse Sobolev inequality(3.8) Mε‖∇f‖2,µ ≤ ‖f‖2+ε,µholds.Proof. First we rewrite (3.7) as
1

c

‖∇f‖2
2,µ

‖f‖2
2,µ

−
K

2c
≤ Jµ(2, f) =

1

ε

\
X

log

(

|f |ε

‖f‖ε
2,µ

)

|f |2

‖f‖2
2,µ

dµ

≤ log
\
X

|f |2+ε

‖f‖2+ε
2,µ

dµ =
2 + ε

2
log

‖f‖2
2+ε,µ

‖f‖2
2,µ

,

where in the �rst line we used the property Jµ(1, f2) = 2Jµ(2, f) while in these
ond line we applied the Jensen inequality with respe
t to the probabilitymeasure (|f |2/‖f‖2
2,µ) dµ. Now we use the inequality log(x) ≤ x to obtain

log

(

2ε

c(2 + ε)

‖∇f‖2
2,µ

‖f‖2
2,µ

)

−
εK

c(2 + ε)
≤

2ε

c(2 + ε)

‖∇f‖2
2,µ

‖f‖2
2,µ

−
εK

c(2 + ε)

≤ log
‖f‖2

2+ε,µ

‖f‖2
2,µ

.Exponentiating the three terms gives
(3.9) exp

(

−
εK

c(2 + ε)

)

2ε

c(2 + ε)

‖∇f‖2
2,µ

‖f‖2
2,µ

≤ exp

(

2ε

c(2 + ε)

‖∇f‖2
2,µ

‖f‖2
2,µ

−
εK

c(2 + ε)

)

≤
‖f‖2

2+ε,µ

‖f‖2
2,µ

.As far as we know, reverse Sobolev inequalities appeared �rst in the workof S. B. Sontz [19℄, [20℄ in the 
ontext of Segal�Bargmann spa
es. Their
onne
tion with reverse hyper
ontra
tivity has been dis
ussed in [16℄.Theorem 3.3 (Reverse 4-norms inequality). Let f ∈ L2(X, µ)∩Lq(X, µ),with q>2, satisfy a reverse LSI of the form (3.7) for some 
onstants c, K >0.Then(3.10) ‖∇f‖2
2,µ

‖f‖2
2,µ

≤ eK/2

[

‖f‖q,µ

‖f‖p,µ

]
cqp

2(q−p)

for any 2 ≤ p ≤ q and any c > 2.
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Proof. We 
ombine the �rst part of the entropy inequality (1.1), with

2 ≤ p ≤ q:
‖f‖p,µe

q−p

qp
Jµ(1,fp)

≤ ‖f‖q,µ,rewritten in the form
cJµ(1, fp) ≤ c

qp

q − p
log

(

‖f‖q,µ

‖f‖p,µ

)

,with the reverse LSI (3.4) rewritten in the form
2
‖∇f‖2

2,µ

‖f‖2
2,µ

− K ≤ cJµ(1, f2).We noti
e that we 
an glue these inequalities using the monotoni
ity of theYoung fun
tional Jµ(1, u2) ≤ Jµ(1, up) for any p ≥ 2. Hen
e we obtain
2
‖∇f‖2

2,µ

‖f‖2
2,µ

− K ≤ cJµ(1, u2) ≤ cJµ(1, up) ≤ c
qp

q − p
log

(

‖f‖q,µ

‖f‖p,µ

)

.Exponentiating and using the inequality x ≤ ex �nally gives
‖∇f‖2

2,µ

‖f‖2
2,µ

e−K/2 ≤ exp

(

‖∇f‖2
2,µ

‖f‖2
2,µ

−
K

2

)

≤

[

‖f‖q,µ

‖f‖p,µ

]
cqp

2(q−p)

.Corollary 3.4 (Reverse Gagliardo�Nirenberg inequalities). Let f ∈
L2(X, µ) ∩ Lq(X, µ), with q > 2, satisfy a reverse LSI of the form (3.7) forsome 
onstants c, K > 0. Then the family of reverse GNI(3.11) ‖∇f‖ϑ

2,µ‖f‖
1−ϑ
2,µ ≤ eKϑ/4‖f‖q,µholds for any q > 2, where ϑ = 2(q − 2)/cq and K > 0 is the 
onstant in

(3.7).Proof. Just let p = 2 in (3.10).Remark 3.5. Noti
e that 
ondition (3.2) is obviously true for harmoni
fun
tions in the spa
e (X, µ), i.e. those fun
tions f whi
h satisfy ∆f = 0on the support of µ. Condition (3.2) is also ful�lled when the integral ap-pearing there is �nite and when moreover either f is a non-negative subhar-moni
 fun
tion (i.e. f ≥ 0 and ∆f ≥ 0 a.e.) or f is a nonpositive super-harmoni
 fun
tion (i.e. f ≤ 0 and ∆f ≤ 0 a.e.). It is also satis�ed, in theEu
lidean 
ase, by positive 
onvex fun
tions or by negative 
on
ave fun
tionsin L2(X, µ), if the 
orresponding integral appearing in (3.2) exists.3.1. The Gaussian setup. In this se
tion �rst we draw the main 
onse-quen
es of the above results in the Gaussian setup, i.e. when (X, µ) = (Rd, γ)where γ is the Gaussian measure
dγ(x) = (2π)−d/2e−|x|2/2 dx.We then prove some families of reverse Sobolev, 4-norms and Gagliardo�Nirenberg inequalities. The validity of the last inequalities depends on the
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reverse LSI (3.4) and hen
e on the 
ondition (3.2) whi
h reads, in the present
ontext,(3.12) \

Rd

|f(x)|2(|x|2 − d) dγ(x) ≥ 2
\

Rd

|∇f(x)|2 dγ(x).In the present setting this inequality plays the role of the identities ofV. Bargmann (see [3, p. 210℄) and of E. A. Carlen (see [10℄), whi
h holdin the Segal�Bargmann spa
e. Inequality (3.12) holds for a 
lass of fun
tionsthat in
ludes harmoni
 fun
tions; this 
lass will play, in our 
ontext, the roleplayed by the Segal�Bargmann fun
tions in the 
omplex 
ase.Although the theorem below is stated for 
ompa
tly supported fun
tions,standard approximation pro
edures allow extending the assertion to larger
lasses of fun
tions.Theorem 3.6 (Reverse inequalities, Gaussian 
ase). Let f be a smooth,
ompa
tly supported fun
tion su
h that(3.13) \
Rd

f(x)(∆f)(x) dγ(x) = (2π)−d/2
\

Rd

f(x)(∆f)(x)e−|x|2/2 dx ≥ 0.

Then for any c > 2 there exists a positive 
onstant B(c) su
h that the fol-lowing reverse LSI holds true:(3.14) 2‖∇f‖2
2,γ ≤ c

\
Rd

f2 log

(

f2

‖f‖2
2,γ

)

dγ + B(c, d)‖f‖2
2,γwhere(3.15) B(c, d) = d

(

−1 +
1

2
log

(

2c

c − 2

))

.Moreover the following inequalities hold :(a) Reverse Sobolev inequality: for any ε > 0 and c > 2 there exists a
onstant Gε,c > 0 su
h that(3.16) Gε,c‖∇f‖2,γ ≤ ‖f‖2+ε,γwhere Gε,c = 2ε
c(2+ε)e

−
εB(c,d)
c(2+ε) and B(c, d) is given by (3.15).(b) Reverse GNI inequalities: for any c > 2 there exists a positive 
onstant

N(c, d, p, q) su
h that(3.17) ‖∇f‖ϑ
r,γ‖f‖

1−ϑ
p,γ ≤ N‖f‖q,γfor any 0 < r ≤ 2 and 2 ≤ p < q, where ϑ = 4(q − p)/cqp, N = eB(c,d)(q−p)/cqpand B(c) is given by (3.15).Proof. First we prove (3.14). This is a 
onsequen
e of Theorem 3.1 to-gether with some 
al
ulations. In fa
t, assumption (i) of that theorem is
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satis�ed for the present 
lass of fun
tions. Moreover the Gaussian density
γ(x) = (2π)−d/2e−|x|2/2 on R

d satis�es the identity
(∆γ)(x) = (2π)−d/2(|x|2 − d)e−|x|2/2for any x ∈ R

d. Then we 
ompute the 
onstant B(c, γ):
B(c, γ) =

\
Rd

e(∆γ)(x)/cγ(x) dγ(x) =
\

Rd

e(|x|2−d)/cdγ(x)

= e−d/c

(

2c

c − 2

)d/2

= B(c, d).This proves (3.14).The reverse Sobolev inequality (3.16) is just a dire
t 
onsequen
e of(3.14), exa
tly as in the general 
ase.The reverse GNI (3.17) is a 
onsequen
e of the 4-norms inequality (3.10),whi
h holds in the present 
ase as well, together with the Hölder inequality;in fa
t ‖f‖r,γ ≤ ‖f‖s,γ whenever 0 < r < s, sin
e the Gaussian measure on
R

d is a probability measure. Moreover this implies
‖∇f‖r,γ

‖f‖s,γ
≤

‖∇f‖2,γ

‖f‖2,γ
whenever 0 < r ≤ 2, s ≥ 2,whi
h 
ombined with the reverse 4-norms inequality (3.10) gives us

‖∇f‖2
r,γ

‖f‖2
s,γ

≤ eB(c,d)/2

[

‖f‖q,γ

‖f‖p,γ

]
cqp

2(q−p) whenever





0 < r ≤ 2,

s ≥ 2,

2 ≤ p < q.Finally, let s = p and obtain
‖∇f‖

4(q−p)
cqp

r,γ ‖f‖
1−

4(q−p)
cqp

p,γ ≤ e
B(c,d)(q−p)

cqp ‖f‖qwith 0 < r ≤ 2, 2 ≤ p < q. Letting ϑ = 4(q − p)/cqp and N = eB(c,d)(q−p)/cqpgives (3.17). This 
on
ludes the proof.We remark that the above 
lass of reverse Gagliardo�Nirenberg inequal-ities 
ontains, as a spe
ial 
ase, a reverse Moser inequality, by letting r =
p = 2 and q > 2:

‖∇f‖ϑ
2,γ‖f‖

1−ϑ
2,γ ≤ N‖f‖q,γ , ϑ =

2(q − 2)

cq
, c > 2.The reverse Moser inequality is obtained letting q = 2(1 + 1/d) > 2.
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