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Summary. We investigate the connection between certain logarithmic Sobolev inequal-
ities and generalizations of Gagliardo—Nirenberg inequalities. A similar connection holds
between reverse logarithmic Sobolev inequalities and a new class of reverse Gagliardo—
Nirenberg inequalities.

0. Introduction. The main concern of this paper is to investigate the
connections between logarithmic Sobolev inequalities (LSI) and generaliza-
tions of Gagliardo—Nirenberg inequalities (GNI). The typical LSI inequality
we shall be concerned with in the first part of the paper will be of the form

(0.1) S log[‘u(m)q [u(e)]” du(z) < c1log {02 HVUHP} VfeCX(X),

v Ll [ llullp [[ullp
1 being a positive Radon measure on a Riemannian manifold X, V the
Riemannian gradient, c¢;, ¢ positive constants, and || - ||, the L? norm. The

manifold setting is chosen for the sake of notational simplicity only and
could be generalized in many respects: for example, the role of the operator
V could be taken by a (vector-valued) derivation (see e.g. [13] for details),
but certain discrete settings could be discussed as well (see [2]).

Such inequalities have a long history since the pioneering work of Gross
[17], who proved the equivalence between a weaker form of such inequalities
in the case p = 2 and hypercontractivity of the linear heat semigroup. It
was proved later that (0.1) is indeed equivalent to ultracontractivity of the
heat semigroup (see also [1]). This can be seen for example by noticing that,
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by applying the numerical inequality logz < ex + log(1/e), Vaz,e > 0, to
the r.h.s. of (0.1), one proves a family of LSI of the form considered in [14].
The proof of ultracontractivity then follows by methods which are by now
standard.

More recently, it has been shown in [12], [7], [8] that the validity of such
a LSI for p > 2 implies ultracontractive-like bounds of the form

Ju(t) oo < = u(0)]5

for the solutions u(t) to suitable classes of nonlinear evolution equations
including the porous media equation and the heat equation driven by the
p-Laplacian (see also [9] and [15] for a generalization to a doubly nonlinear
evolution equation).

Since on the other hand it is known that, in the linear case, ultracontrac-
tivity for the heat semigroup is equivalent to the usual Sobolev inequality
llull2d/(a—2) < Cl[Vull2 (and to the Nash inequalities as well), it is not sur-
prising that (0.1) is connected to Sobolev inequalities involving the p-energy
functional ||Vul||,, or to inequalities of Nash type involving that functional.

This is indeed a consequence of the results of [4]-[6], in which it is proved
that logarithmic Sobolev inequalities imply Nash-type inequalities (which are
a special case of GNI), and of [2]| (see also [18]), in which it is shown that
any single GNI implies a whole class of them; in Section 2 we discuss this
point with a few more details.

Our aim here is to further investigate this connection. We first show that
the entropy functional

J(p,u) = | log
X
can be used to bound both from below and from above the variation of the
convex function p +— log ||u||b. This is the content of our first result, Theorem
1.1. This will allow us first to prove the following inequality, which we call
the 4-norms inequality. It is a generalization of the GNI and reads

(0.2) lallg/llully =4 < ClIVally* 4l /4,

where 0 < s < g < pand d > 1, d being a parameter having the role of
dimension. GNI inequalities can then be proved with the help of the results
of [2].

We next prove reverse analogues of the above 4-norms inequalities, as
a consequence of reverse LSI which we prove in Section 3. In fact we first
discuss the consequences of a reverse LSI in the form given by [16], [19], [20]
adapted to the real case. We shall mostly specialize to the Euclidean case,
the underlying measure being the Gaussian measure. This is because that
is the main case in which we are able to prove a reverse LSI for suitable

[|u<x>|] @I

lully § Ilullp
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classes of functions. We hope that such inequalities can be used in order to
study reverse hypercontractivity for suitable classes of data. We shall then
use Theorem 1.1 to prove a new reverse analogue of (0.2), from which reverse
GNI (and in particular reverse Sobolev inequalities) will then follow, again
for a suitable class of functions.

This paper is organized as follows. In the first section we prove the main
property of the entropy functional which will be used in the following, in-
cluding the aforementioned Theorem 1.1. In Section 2 we prove that a suit-
able LSI implies (0.2), and then make some remarks on the connections
with the GNI. Section 3 is devoted to the proof of reverse LSI, Sobolev and
Gagliardo—Nirenberg inequalities.

1. Basic entropy inequalities. In this section we prove the basic in-
equalities concerning the functional J(p, u), defined with respect to a general
positive Radon measure i, which will be the starting point for proving both
direct and reverse Gagliardo-Nirenberg inequalities.

THEOREM 1.1. We have
(L1) lullpe™® ") < frullg < flullpe w0
for any 0 < p<gq andu € LP(X,u) NLI(X, p).

Proof. 1t is well known that the functional

N(r,u) = log||ull} =log | [u(z)|" du(x)
X

defined over (0, 00) x (1,5 LP(X, p) is convex with respect to r > 0, and its
first derivative

%N(r,u) =J(r,u) + % N(r,u)
is nondecreasing with respect to » > 0. For more details one can refer to
Section (2.4) of [8].

By the convexity of N one has, for 0 < p < g,

N(Qa u) — N(p’u)

/ /
N'(p) < p— < N'(q)
which becomes
(0= P .0) +1og Jul] < o 118 < (= P60+ og [l
or equivalently
(@) )|y [a-P < HZ”E < e(q—p)J(q,u)Hu”g—y

The latter inequalities are clearly equivalent to the assertion. =
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We now collect some useful properties of the entropy functional which
will be of help later on.

PROPOSITION 1.2. The functional J has the following properties:
(1.2) J(r,u?) =~J(yr,u)  for all ,r > 0;
(1.3) J(r,us™) > J(r, u) for allr,s >0, h > 0.
Proof. The first statement is an immediate consequence of the definition

of J. For the second, we first prove that the map g — J(l,uﬁ) is nonde-
creasing. In fact, it is well known that the map

a — log|lully/q

is convex (see e.g. [2]). By taking derivatives, the map

1 1
ar—>——J<—,u>
o\«

is nondecreasing. Thus, the map 3 — (J(3,u) is increasing, as also is, by
the previous result, the functional 3 — J(1,u?). Finally,

sJ(s,u™) = J(1,u ) > J(1,uT) = sJ(s,u7). =

2. 4-norms inequalitites via entropy and LSI. In this section we
draw the main consequences of the lower bound in (1.1), by making use of
the inequalities of Proposition 1.2.

We shall first prove

PROPOSITION 2.1. For any 0 < p < o the p-LSI implies the o-LSI.
Proof. We compute

o/pY||P
0J(0,u) = pz—f J(pf)w) = pJ(p,u?/?) < glog [zp M}

Il

[ p p(e/p=1) [T yulP d
= —log Lp<€> SX|U| Q| ul M}
L \P [ulle
d | P o=P|| p o
< Zlog Ep(g) |l Pl [ VP }
pooLoAp lul]$
[ p o—p p
— élog ﬁp<g> M] _ leg[ﬁzl/pg ”VUHQ]
p - p HuHQ P ”qu

where we have also used the Hélder inequality with conjugate exponents
oc=p/p>land o’ =p/(0—p)>1. =

THEOREM 2.2 (4-norms inequality). Suppose that the following LSI holds
true for some p,d > 0:

(2.1) pJ(p,u) < dlog [L;/P HV“”?} .

[l
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Then
(22)
1 1/s—1 1/s—1 1/d
< Ez(; /p)1/ /q”quI()/ [D||u| Y4 for 0< s < q<p.
Moreover if 0 > p then (2.1) implies
(2:3)  ullyllully >

1/s—1/q
= <ﬁ}/“’ g) [Vl )|/ for 0<s<g<p<o.

Proof. We will prove (2.2) by combining the right-hand inequality of
(1.1) and the p-LSI (2.1) rewritten in the form

(2.4) el (Pu) < Eg/l? ‘|Vu|c|lg
[[ullf
To this end we need the monotonicity property (1.3) that we recall here:
qJ(q,u) = J(1,u?) < pJ(p,u) = J(1,uP) for any p > q > 0.
Using this together with the right-hand inequality of (1.1) one obtains

”ﬂksﬁﬁﬂwﬂgsyﬂwﬂ
Ulls

for any p > ¢ > s > 0. Now we combine this last inequality with (2.4) to

obtain 4
s _ v
”UHq < eqs—qJ(l,up) < exp [q S log<ﬁz/p H u|c|lp>}
[[ulls 5 [[ullg

or equivalently

d(1/s—1/q)
(2.5) [[ullg Sﬁéd/p)(l/s—l/q)|’vu‘c|ipl 81 !
lulls |l /5= 1/4)
for any p > ¢ > s > 0. This is clearly equivalent to (2.2). The last part
follows from the first and from Proposition 2.1 =
Given the above result, the GNI is a consequence of the results of [2].
Although the following results are known from [2], for completeness and for
the reader’s convenience we recall concisely how to proceed in this direction
from our starting point.
e p-Nash inequalities. Fix p,d > 0. The first consequence of (2.2) (just
by letting ¢ = p) is the following family of p-Nash inequalities:

2.6 || 1P/ A=) < L1217y, |lu|[P/¥P~*)  whenever 0 < s < p.
p P p s
Similarly inequality (2.3) implies a family of o-Nash inequalities with o > p

and with proportionality constant E;,/ Po/p. We first stress that the above re-
sult holds for any p > 0. Also, the term p-Nash inequality is due to similarity
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to the celebrated Nash inequality:
1+2/d 2/d
Jully ™ < Ol Fullajul .

The above remark does not distinguish the cases of p larger and smaller
than d. The following remarks deal with some more detailed consequences
of the above results, which take into account such differences.

e Gagliardo—Nirenberg inequalities. In the previous remark we proved
that a p-LSI implies a 4-norms inequality such as (2.2) and then a family of
p-Nash inequalities, which are a special case of GNI:

(2.7) lull < €/ Vullpllull s~
for any p,r,s,d > 0 and ¥ € [0, 1] such that

1 1 1 1
2.8 Z=9l==-= 1—¢9)=
(2.5) =i(s-3)ra-03

where C, < L, L, being the constant in the p-LSI.

We now recall that this fact actually guarantees the validity of all the
GNI above, once the relative position of p and d is fixed, see also [2, Th. 10.2].
To this end we will need some results of [2].

The subcritical case: 0 < p < d. By Theorem 3.1 of [2] it is known that a
single GNT of the form (2.7) implies the other GNI inequalities corresponding
to 0 < p < d fixed, while ¥ € [0,1] and 7, s > 0 are related as in (2.8). Then
a p-LSI of the form (2.1) implies the whole family of GNI (2.7) mentioned
above, via a p-Nash inequality. This family also contains as a special case
the classical p-Sobolev inequality:

[ellpa/@—p) < Coll Vullp-

The critical case: p = d. By Theorem 3.3 of 2], a single GNI of the form
(2.7) implies the other GNI corresponding to p =d > 0, 0 < s < r < 00,
v=1-s/r.

With the help of Theorem 3.2.6 of [18], we can also show that the above

mentioned family of GNI implies some versions of Moser—Trudinger inequal-
ities. See |2, Theorem 3.4] for details.

The supercritical case: p > d. By Theorem 3.2 of [2], a single GNI of the
form (2.7) implies the other GNI inequalities corresponding to p > d > 0
fixed, while 0 < s < r < oo, ¥ € [0,1] are related as in (2.8). In particular
by letting r — oo we get

(2.9) lulloo < /P IVullylull~”

for all 0 < s < oo. This last family contains a version of the well known
Morrey inequality.
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e Other Gagliardo—Nirenberg inequalities. In this last remark we focus
our attention on the main consequences of the second 4-norms inequal-
ity (2.3). We proved in a previous remark, using Theorem 2.2, that a suitable
p-LSI implies a 4-norms inequality such as (2.3) and then a p-Nash inequal-
ity, provided g > p. This fact leads us to prove that a p-LSI implies a larger
family of GNI:

(2.10) lull < Gg IVullgllulls™

whenever 0 < p < p, ¥ € [0,1], with G, L’Il)/pq/p and

1 1 1 1
- =9 -—= 1-9)-.
r <g d>+( )S

Thus we can extend the above remarks simply by replacing p with o, and
Eil,/p with Ell,/pg/p. Informally speaking, we recalled that, for fixed p > 0, a
single p-LSI implies a family of o-GNI of the type (2.10), with o > p (this
being the content of [2, Section 8|), and hence all the p-versions of Sobolev,
Moser—Trudinger and Morrey inequalities.

3. Reverse inequalities. In this section we start by proving a new
family of reverse logarithmic Sobolev inequalities in a general setting. These
reverse LSI will give as a direct consequence a reverse Sobolev inequality,
while put together with a reverse 4-norms inequality will give a family of
reverse Gagliardo-Nirenberg inequalities as well.

As far as we know, reverse LSI first appeared in the works of S. B. Sontz
[19], [20] in the setup of Segal-Bargmann spaces. After these pioneering
works, a paper [16] of F. Galaz-Fontes, L. Gross and S. B. Sontz gave a
generalization of reverse LSI over complex manifolds and investigated the
connection between reverse LSI and reverse hypercontractivity.

Although reverse LSI are in a sense typical of the complex setting, we
shall show that they have some real analogue. A reverse LSI of a different
type appears in [11]. Hereafter, we always deal with spaces of real-valued
functions.

We start by proving the main theorems of this section, concerning reverse
inequalities with respect to a positive measure, absolutely continuous with
respect to a reference measure, indicated by dzx:

du(x) = m(z) dz,

m being a function for which Am makes sense as a locally integrable function
(hereafter, A denotes the Laplace—Beltrami operator). In this section we
shall indicate explicitly the measure in the notation of L norms (writing,
e.g., || - llg,n), since we shall make more than one possible choice of measure.
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We denote by C the class of functions v for which the following integration
by parts formula holds:

(3.1) | v(@)(Am)(x) dz = | (Av)(z)m(z) da.

X X
We notice that if f € HY(X,p) (ie. f,Vf € L?(X,u)) and f? € C then the
Leibniz rule implies that {, fAf dpu is finite.

THEOREM 3.1 (Reverse logarithmic Sobolev inequality). Let f be a mea-
surable, real-valued function such that:

(i) fe H(X,pn), f* €C;
(ii) f satisfies the inequality

(3.2) | f(@)(Af)(x) du(e) = 0.

X
(iii) There exists ¢ > 0 such that
(3.3) B(e,m) = S elAm)@)/em() g, (1) < .
X
Then the following reverse LSI holds true:

(34) 23, <c| 1og<

171 )d““log(B(cam))ufu%,#.
X 24

Proof. We adapt to our setting a method of L. Gross and S. B. Sontz [20].
We first recall Young’s inequality:

st < slog(s) —s+e' for s>0andtcR.
The choice s = cf(z)? > 0, t = (Am)(x)/cm(x) together with integration
over (X, u) leads to

§er @2 S ) < § efwP og(er () duta)
X

e em(x)

— [ ef( duta) + | elBm@/E 4y (),
X X

Noticing that log(cf(z)?) = log(c) + log(f(z)?), du(x) = m(z)dr and
B(e,m) = { e(Am)(@)/em(@) q,(2) < oo by hypothesis, we obtain

(35) | f(@)*(Am)(z) dz
X

< c| f(@)’log(f(x)?) du(x) + (clog(c) — o) | f(2)* du(x) + B(c,m).

X X



Gagliardo—Nirenberg Inequalities 331

Integration by parts, allowed by our assumptions, then gives

| f(2)*(Am)(z) do = S(AfQ)( Jym(z) d
X

= §|Vf (z)dz +2 | f(2)(Af)(z)m(z)dz
X X
S

|V f(x x)dz.

v

2

The last inequality follows from our assumption { f(z)(Af)(z)m(z)dz > 0.
Now letting A > 0 and replacing f by Af in (3.5) gives

222 | |V f(2)Pdp(x) < X | f(2)?log(\2f (2)?) dpu()

X X

+ (clog(c) — o) X* | f(x)? dp(w) + B(e,m).
X

Divide both members by A? to obtain
(36)  2|V/I3, <c| f(x)*log(f(2)?) dp(x)

X
B(e,m
+ [elog(¥?) +clo(e) — /1, + 2™
Optimizing with respect to A? gives
2 — B(C7 m)
cllf113,,
Substituting this value in (3.6) leads to
B(m,c
A1V < ¢ § o) di+ [etog( T )+ clogte) — | 1118,
) IR,
+ellf13

which is the claim. =

In what follows it will be useful to rewrite (3.4) in the form

V712, ( e ) 2
37) 2 B o] log(B(c,
61 g tscll Hngu T, 2+ closlBle,m))

= CJM(]-’ f )

As a direct consequence of this theorem we obtain the following

THEOREM 3.2 (Reverse Sobolev inequality). Let f € L2(X, u) satisfy a
reverse LSI of the form (3.7) for some constants ¢, K > 0. Then for any
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e > 0 there exists M. > 0 such that

\V4 2 2
o2 (TR U

c(2+e) [If13, I£13,
In particular, there exists M. > 0 such that the reverse Sobolev inequality
(3.8) M|V fll2pn < 1 fll2+en
holds.

Proof. First we rewrite (3.7) as

IHVszu K 1 |fI° fI?
v K o=t 1og( ) d
c fl3, 27" 58 115,/ 1£15,
’f’2+5 24¢ ”f”QJrs,u
< log - dp = log
S ||f||§L 2 I£113,,

where in the first line we used the property J,,(1, %) = 2.J,,(2, f) while in the
second line we applied the Jensen inequality with respect to the probability
measure (]f]2/HfH%M) du. Now we use the inequality log(xz) < x to obtain

1( 2¢ HVng,u)_ eK 2% IVfI3, K
c2+e) If13, c2+e) T c2+e) |fI3, c2+¢)

||f||2+e,u

< log :
N2
1112,

Exponentiating the three terms gives

ek \ 2 |VSI3,
(3.9) eXp(_c(2+5))c(2+E) ||f||§,uu

v 2 2
< ex ( 2|l f!?,,u ek > < HfH2;—a,u. .
c2+¢) |fllz, c2+e) 1£113,,

As far as we know, reverse Sobolev inequalities appeared first in the work
of S. B. Sontz [19], [20] in the context of Segal-Bargmann spaces. Their
connection with reverse hypercontractivity has been discussed in [16].

THEOREM 3.3 (Reverse 4-norms inequality). Let f € L2(X, u)NL4(X, p),
with q> 2, satisfy a reverse LSI of the form (3.7) for some constants ¢, K >0.
Then

cgp
(3.10) V15, eK/Q[nfnq,u} S
A3, = LAl

for any 2 < p < q and any c > 2.
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Proof. We combine the first part of the entropy inequality (1.1), with
2sps¢ o
=P g (1,fP
1l 0T < F g
rewritten in the form

ap [ 1lg.p
T(1,7) < ¢ g (0
g a=p “\Iflpu
with the reverse LSI (3.4) rewritten in the form
\V4 2
2 % — K < cJu(1, ).
1713,
We notice that we can glue these inequalities using the monotonicity of the
Young functional J,,(1,u?) < .J,(1,uP) for any p > 2. Hence we obtain

\V4 2
|| f!Z,,u _K < CJM(l,UQ) < CJM(l,Up) <c qap 10g<||f||qﬂu>
1F112, a=p "\ fllps

Exponentiating and using the inequality x < e* finally gives

2 2 _cap _
VA2 s < eXp(HVng,M K> - {HfHW} e

1£112 I£5, 2 111,

COROLLARY 3.4 (Reverse Gagliardo—Nirenberg inequalities). Let f €
L2(X,p) NLI(X, ), with ¢ > 2, satisfy a reverse LSI of the form (3.7) for
some constants ¢, K > 0. Then the family of reverse GNI

(3.11) IV A8l 1z < €41 F gy

holds for any q > 2, where 9 = 2(q —2)/cq and K > 0 is the constant in
(3.7).
Proof. Just let p=2in (3.10). m

REMARK 3.5. Notice that condition (3.2) is obviously true for harmonic
functions in the space (X, u), i.e. those functions f which satisfy Af = 0
on the support of u. Condition (3.2) is also fulfilled when the integral ap-
pearing there is finite and when moreover either f is a non-negative subhar-
monic function (i.e. f > 0 and Af > 0 a.e.) or f is a nonpositive super-
harmonic function (i.e. f < 0 and Af < 0 a.e.). It is also satisfied, in the
Euclidean case, by positive convex functions or by negative concave functions
in L2(X, p), if the corresponding integral appearing in (3.2) exists.

2

3.1. The Gaussian setup. In this section first we draw the main conse-
quences of the above results in the Gaussian setup, i.e. when (X, p) = (R%, )
where v is the Gaussian measure

dvy(z) = (271)*“{/26*'“‘2/2 dx.

We then prove some families of reverse Sobolev, 4-norms and Gagliardo—
Nirenberg inequalities. The validity of the last inequalities depends on the
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reverse LSI (3.4) and hence on the condition (3.2) which reads, in the present
context,

(3.12) V£ @) P2 = d) dy(z) > 2 § [V () dy(a).
R¢ R?

In the present setting this inequality plays the role of the identities of
V. Bargmann (see [3, p. 210]) and of E. A. Carlen (see [10]), which hold
in the Segal-Bargmann space. Inequality (3.12) holds for a class of functions
that includes harmonic functions; this class will play, in our context, the role
played by the Segal-Bargmann functions in the complex case.

Although the theorem below is stated for compactly supported functions,
standard approximation procedures allow extending the assertion to larger
classes of functions.

THEOREM 3.6 (Reverse inequalities, Gaussian case). Let f be a smooth,
compactly supported function such that

(313) | f@)(Af)(@)dy(x) = 2m) " | f@)(Af)(@)e /2 dz > 0.
R4 R

Then for any ¢ > 2 there exists a positive constant B(c) such that the fol-
lowing reverse LSI holds true:

f2
1713,

(14) 2SR, <e | 1og<

) dy + Ble, )| 13,
Rd

where

(3.15) B(e,d) — d<—1+ %log<c2_02>>.

Moreover the following inequalities hold:

(a) Reverse Sobolev inequality: for any ¢ > 0 and ¢ > 2 there exists a
constant Ge . > 0 such that

(3.16) GeclVElzay < M fll2en

_aB(c,d)
where G . = ﬁe <@+ and B(c,d) is given by (3.15).
(b) Reverse GNI inequalities: for any ¢ > 2 there exists a positive constant
N(c,d,p,q) such that

[ 1-9
(3.17) VA AR < Nl

forany 0 <r <2and2 < p < q, whered = 4(q — p)/cqp, N = eBled)a—p)/cap
and B(c) is given by (3.15).

Proof. First we prove (3.14). This is a consequence of Theorem 3.1 to-
gether with some calculations. In fact, assumption (i) of that theorem is
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satisfied for the present class of functions. Moreover the Gaussian density
v (z) = (2m)~Y2e17*/2 on RY satisfies the identity

(A9)(@) = (2m) =2 (|2 = d)e 2
for any z € RY. Then we compute the constant B(c,7):

B(c,v) = S eAN@/e@) gy (z) = S e(\wIQ—d)/cd,y(m)
R¢ R4

/2
:@_d/c<—26 > :B(C,d)
2
This proves (3.14).

The reverse Sobolev inequality (3.16) is just a direct consequence of
(3.14), exactly as in the general case.

The reverse GNI (3.17) is a consequence of the 4-norms inequality (3.10),
which holds in the present case as well, together with the Hélder inequality;
in fact || f|, < || flls,y whenever 0 < r < s, since the Gaussian measure on
R? is a probability measure. Moreover this implies

vaHTn < vaHQ,’Y
Hf”s,w N HfH27

which combined with the reverse 4-norms inequality (3.10) gives us

whenever 0 < r <2, s > 2,

: 0<r<2,
vaHz” Bledy/2 | 1S lay Na-p) =
W S e W whenever S Z 2’

i | 2<p<yq.

Finally, let s = p and obtain

4(q—p) _4(a=p) B(c,d)(q—p)

1
IVFllea™ W fllpy = <em e[ fllg
with 0 < 7 < 2,2 < p < ¢. Letting ¥ = 4(q — p)/cqp and N = eBled)(a—p)/cap
gives (3.17). This concludes the proof. =

We remark that the above class of reverse Gagliardo—Nirenberg inequal-
ities contains, as a special case, a reverse Moser inequality, by letting r =
p=2and q > 2:

IV AIEA 125" < NI g,

The reverse Moser inequality is obtained letting ¢ = 2(1 4+ 1/d) > 2.

Y = ch_ 2), c> 2.

References

[1] D. Bakry, L’ hypercontractivité et son utilisation en théorie des semigroupes, in: Lec-
tures on Probability Theory, Lecture Notes in Math. 1581, Springer, 1994, 1-114.



336

M. Bonforte and G. Grillo

2]
[3]
[4]
[5]
[6]
[7]

18]
[9]
[10]

[11]

[12]
[13]
[14]
[15]
[16]

[17]
[18]

[19]

[20]

D. Bakry, T. Coulhon, M. Ledoux and L. Saloff-Coste, Sobolev inequalities in dis-
guise, Indiana Univ. Math. J. 44 (1995), 1033-1074.

V. Bargmann, On a Hilbert space of analytic functions and an associated integral
transform, part I, Comm. Pure Appl. Math. 14 (1961), 187-214.

W. Beckner, Geometric proof of Nash’s inequality, Int. Math. Res. Not. 1998, no. 2,
67-72.

—, Geometric asymptotics and the logarithmic Sobolev inequality, Forum Math. 11
(1999), 105-137.

—, Asymptotic estimates for Gagliardo—Nirenberg embedding constants, Potential
Anal. 17 (2002), 253-266.

M. Bonforte, F. Cipriani and G. Grillo, Ultracontractivity and approach to equilib-
rium for supercritical parabolic equations on Riemannian manifolds, Adv. Differen-
tial Equations 8 (2003), 843-872.

M. Bonforte and G. Grillo, Asymptotics of the porous media equation via Sobolev
inequalities, J. Funct. Anal. 225 (2005), 33-62.

—, —, Hyper and ultracontractive bounds for doubly nonlinear evolution equations,
Rev. Mat. Iberoamer., to appear.

E. A. Carlen, Some integral identities and inequalities for entire functions and their
applications to the coherent state transform, J. Funct. Anal. 97 (1991), 231-249.
D. Chafai, Gaussian mazimum of entropy and reverse log-Sobolev inequality, in:
Séminaire de Probabilités XXXVI, Lecture Notes in Math. 1801, Springer, 2002,
194-200.

F. Cipriani and G. Grillo, Uniform bounds for solutions to quasilinear parabolic
equations, J. Differential Equations 177 (2001), 209-234.

—, —, LP-L*° Hélder continuity for quasilinear parabolic equations associated to
Sobolev derivations, J. Math. Anal. Appl. 270 (2002), 267-290.

E. B. Davies, Heat Kernels and Spectral Theory, Cambridge Univ. Press, 1989.

M. Del Pino, J. Dolbeault and I. Gentil, Nonlinear diffusions, hypercontractivity and
the optimal LP-Fuclidean logarithmic Sobolev inequality, J. Math. Anal. Appl. 293
(2004), 375-388.

F. Galaz-Fontes, L. Gross and S. B. Sontz, Reverse hypercontractivity over mani-
folds, Ark. Mat. 39 (2001), 283-309.

L. Gross, Logarithmic Sobolev inequalities, Amer. J. Math. 97 (1976), 1061-1083.
L. Saloff-Coste, Aspects of Sobolev-Type Inequalities, London Math. Soc. Lecture
Note 289, Cambridge Univ. Press, 2002.

S. B. Sontz, A reverse log-Sobolev inequality in the Segal-Bargmann space, J. Math.
Phys. 40 (1999), 1677-1695.

—, On some reverse inequalities in the Segal-Bargmann space, in: AMS/IP Stud.
Adv. Math. 16, Amer. Math. Soc., 2000, 361-373.

Matteo Bonforte and Gabriele Grillo
Dipartimento di Matematica
Politecnico di Torino

corso Duca degli Abruzzi 24

10129 Torino, Italy

E-mail: bonforteQcalvino.unito.it

gabriele.grillo@polito.it

Received January 10, 2006;
received in final form January 13, 2006 (7498)



