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Summary. The paper deals with nearaffine planes described by H. A. Wilbrink. We con-
sider their central automorphisms, i.e. automorphisms satisfying the Veblen condition,
which become central collineations in connected projective planes. Moreover, a concept
of central pseudo-automorphism is considered, i.e. some bijections in a nearaffine plane
are not automorphisms but they become central collineations in the related projective
planes.

1. Basic concepts. The paper deals with nearaffine planes considered
by H. A. Wilbrink in [5]. Some definitions and properties concerning affine
and projective planes given in [2, pp. 115-116, 120-121] and [4, pp. 62-65]
will also be used. We wish to study automorphisms and other bijections of
nearaffine planes which become central collineations in the related projective
planes. We apply the terminology of [5] but we use the notation from [3]. In
all structures considered, points will be denoted by capital Latin letters and
blocks by small Latin or Greek letters. The extension of an automorphism
¢ of an affine plane A to the projective extension A will be denoted by .
The following statements will be used:

THEOREM 1.1 ([2, p. 120]). If ¢ and v are collineations in a projective
plane such that ¢ has center A and azxis a, and ¢ has center B and azis b,
then:

(1) b =y if and only if A €b and B € a.
(2) If a # b and A # B then v is a central collineation if and only if ¢
and ) are homologies such that A € b, B € a, and ¢(X) = ¢y~ 1(X)
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for every X € AB. If this is the case, then @y is a homology with
center ab and axis AB.

We also recall the so-called Veblen condition:

(V)  Let g be a straight line in a nearaffine plane; P, @, R distinct points
on g; and b a line different from g with base point P and S € b\ {P}.
Then (R=Q > S)Nb# 0.

o>S

P 0 R
Fig. 1

THEOREM 1.2 ([5, p. 55]). Let NA = (§2,=,>,=) be a nearaffine plane
satisfying (V) and let g be any straight line. Set

Ly={Xp>pYeZ, XegtU{h h=g}
Then NA(g) = (£2,Ly) is an affine plane.

COROLLARY 1.1. If g is a straight line in NA, P,QQ € g and P> R =
Q> S, then PR is parallel to QS in NA(g).

2. Central automorphisms in nearaffine planes satisfying (V).
For any straight line g the point set of NA(g) coincides with the point set
of NA, but the set of all lines of NA(g) is a proper subset of the set of lines
of NA. An automorphism ¢ of NA becomes an automorphism of NA(g) iff
©(g) = g. In this case the notation ¢, means the restriction of ¢ to the lines

of NA(g).

DEFINITION 2.1. An automorphism ¢ of a nearaffine plane N A is central
if there exists a straight line g such that @ is a central collineation in NA(g).
The center and axis of @, are called the center and axis of ¢.

It follows from Definition 2.1 and Theorem 1.2 that every central auto-
morphism of NA preserves two lines of NA(g): the ideal line and gU{[g]=}.
The collection of all central automorphisms of a nearaffine plane may be
divided into three classes. We consider two of them, since the third one
(translations) is described in [5]. We omit easy proofs.

2.1. ¢ 1s a homothety

PropoSITION 2.1. If ¢ is an automorphism of NA then the following
conditions are equivalent:
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(a) @ is a homothety of NA with center A.

(b) For every straight line g through A, ¢4 is a homothety of NA(g) with
center A.

(c) For some straight line g through A, ¢4 is a homothety of NA(g) with
center A.

One can easily verify that the transitivity of the group of homotheties with
fixed center U implies the following versions of Desargues’ postulate [1, p. 72]:
(D2) UU X, XY, Y' Z Z € 2 are pairwise distinct, U > X is straight

and Ur>Y, Ur> Z are lines different from each other and from U > X,
then X' e U X, Y eUDY,Z cU>Z, X>Y =X >Y and
X>Z=X'>ZimplyY>Z=Y'1>Z7".

Fig. 2

(D3) WU, X, X"\ Y,Y' Z Z' € £ are pairwise distinct, U > X, U>Y and
U > Z are pairwise distinct lines, and X' e U> X, Y e U Y,
Z'eUp Z,andif XpY =X'>Y and X > 27 = X' > 7' are
straight then Y > 2 =Y’ > 7',

Fig. 3
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2.2. Some nonideal line is the axis of ¢. Let 1 denote the set of all
straight lines and ¢ the axis of . We know that the center must be ideal.
The number of fixed classes of straight lines is either 1 or 2: if g is proper
then the class of straight lines must be the center.

THEOREM 2.1. If NA contains at least three classes of straight lines and
© 18 an automorphism with nonideal axis g, then the following conditions are
equivalent:

(i) ¢ is an involution.
(i) fX,)Yeg, X£AY, X>AeT, X A=Y>p(A), then X1>p(A) =
Y>AandY>Ae€T.

Figure 4 presents all possibilities for the pair (axis g, center P): g € T
and P = [g]=; g € T and P = [a]=, where a € 5\ 7T; g € T and P = [a]=,
where a € T and a Z g; g € 5\ 7 and P = [a]= for some a € 1.

PROPOSITION 2.2. Suppose a straight line g is the axis of an automor-
phism .

(1) If ¢ is an involution then: some class of straight lines nonparallel to
g is the center of ¢ if and only if the number of classes of straight
lines is even.

(2) If NA contains exactly two classes of straight lines then the class
[h]= must be the center, where h € T and h # g.

(3) If NA contains exactly three (resp. four) classes of straight lines
and [g]= or some class [a]= of proper lines (resp. some class [h]= of
straight lines, where h Z g) is the center of @, then ¢ is an involution.

From Proposition 2.2 and Theorem 2.1 the following is immediate.
COROLLARY 2.1.

(a) In an affine plane of even order every involution pointwise fizing one
line determines configurations of parallelograms with parallel diago-
nals (Fano configurations; see the upper left part of Figure 4).

(b) In an affine plane of odd order every involution pointwise fizing one
line determines configurations of trapeziums with parallel diagonals
(the azis and a line through the center are arms of such a trapezium;
see the lower left part of Figure 4).

(¢) In an affine plane of order 2 or 3 every automorphism pointwise firing
a line is an involution.

PROPOSITION 2.3. Suppose a proper line g is the axis of an automor-
phism .

(1) If ¢ is an involution then the number of classes of straight lines is

odd.



Veblenian Nearaffine Planes 341

X h A Xk
\\\\\k ////’ \\Jg
L v L
l o(A)=B
a
g a g
A ~
o(A)=8B
a

Fig. 4

(2) The number of classes of straight lines is not two.

(3) If there exist exactly three classes of straight lines then ¢ is an invo-
lution.

(4) If there exist exactly four classes of straight lines then:

(a) ¢ is a mapping of order 3, i.e. if A ¢ g then A # p(A)
P(p(A)) # pp(p(4))) = A.

b) fX,)Y,Ze€g Ad g X>AET and X>A=Y > ¢(A)
ZD(,O/&O(A)), then X>p(A) € T and X>p(A) =Y >p(e(A))
Z > A

RN

3. Examples. Proper nearaffine planes with more than two classes of
straight lines are not well known. Also our examples are given for nearaffine
planes with exactly two classes of straight lines. We shall consider some
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nearaffine planes related to ordered fields [3|. Here the set of proper lines
is given by {{(p,q)} U{(z,y); (x —p)(y —q) = r};pgr € F, —r > 0} U
{{(. 0} U{(z,9); (f(x) = p)(9(y) —q) = r}ip.q,r € F, —r < 0}, where
f, g are some bijections satisfying the condition
(u—v)(w = 2)(f(u) = f(v))(g(w) - g(2)) > 0
for u,v,w,z € F, u # v, w # z.
ExaMPLE 3.1. Let F' be an Euclidean ordered field. For s € F, 0 < s # 1,
take the functions
xz for x>0,
flx) = {Sx for z < 0, 9(y) =v.
Consider the mapping
(2.9) (—z,y) for x>0,
T,y) =
Y (=sz,y) for z <0.

We obtain

e({(z,y); (x—p)ly—q) =7, 2= 0})
={(z,9); (@ +p)y—q) = —r,x <0}
e({(z,y); (x—p)ly—q) =7, 2 <0})
={(z,y); (/s +p)(y—q) = —r, © = O;
e({(z,y); (sz —p)(y —q) =7, 2 <0})
={(z,y); @ +p)(y —q) = —r, . > 0}.
In ordered fields » > 0 < —r < 0. Therefore ¢ is an automorphism. Of
course the straight line given by z = 0 is its axis and the class [a]= is its
center, where a is described by y = 0.

For every z € F and 1 # w > 0 the mapping h,,(z,y) = (z/u,
u(y — z) + z) is a homothety with center (0,z) [3, p. 356]. Note that the
center of h, , is on the axis of ¢ and vice versa. Thus we have
(—x/u,u(y — z) +z) for x >0,
(—sz/u,u(y — z) + z) for x <O0.

It is not a central automorphism since for the straight line y = z joining

both centers we have
(—x/u,u(z — 2) + 2) # (x,z) for some z > 0,
poh,u(z,2)=
’ (—sz/u,u(z — z) + z) # (x,z) for some x < 0.

For every w € F there exists a straight translation 7, (z,y) = (z,y + w),
Tw and h,, are dilatations, so 7, o h,, and h,, o 7, also must have the
ideal axis. We obtain 7, o h,, = (z/u,u(y — 2) + z + w) with center
0,24+ t/(1 —u)) and h,y o Ty(z,y) = (x/u,u(y — 2 + w) + 2) with cen-
ter (0, z +ut/(1 —u)).

hz,u(m7y) cp=po hz,u('rvy) = {
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In the same way we obtain the noncentral automorphism 7, o ¢ =
© O Ty.

EXAMPLE 3.2. Let F' be the field of reals with standard order and take
f(z) = 2% and f(y) = y. Then h,, = (z/u,u(y — 2) + 2) is a noncentral
automorphism for u # —1 [3, p. 356]. It is a homothety with center (0, 2)
for every z € F and u = —1. For every w € F the mapping 7, (x,y) =
(z,y + w) is a straight translation again. As before, we obtain distinct non-
central automorphisms 7, o h, and h,, o 7, (they are also distinct for
u=—1).

Consider the bijections ¢4(z,y) = (sz,y) and Y(z,y) = (x,ty). They
are automorphisms if s > 0 and ¢ > 0. The straight line y = 0 (respectively
x = 0) is the axis of 1y (resp. ys) and the ideal point corresponding to the
straight line x = 0 (y = 0) is the center of 14 (resp. ps). Of course the center
of ¢, is on the axis of ¢y and vice versa, so s 0 Y (x,y) = ¥ 0 ps(z,y) =
(sx,ty). The line joining both centers is ideal in NA(g), where g is given by
2 = 0. Only the ideal line may be the axis of @g o ;. If this is the case, then
every line with base point on g is mapped onto some parallel line. But ¢g01);
maps the proper line z(y — ¢) = r with < 0 onto the line x(y — tq) = str.
The line 23(y — q) = r with 7 > 0 is mapped onto the line 23(y — tq) = s3tr.
Thus str = r for r < 0 and s3r = r for » > 0. This is possible only for
s=t=1ors=1t=—1.Buts,t > 0and then p; = ¢ = id. Note that 0
may be a central automorphism although ¢ and ), are not automorphisms.
This happens if s =t = —1, but then g0 =¢p_1019_1 = ho 1.

In general the center (0,z) of h,_; is not on the axis y = 0 of .
Therefore h, —1 oty # 1y o hy —1. But hg _1 0 ¢y = 1y 0 hg —1 since (0,0) is
on the line y = 0. However, h, _1 o 1)y is a noncentral automorphism.

In contrast to v, the center of h, _; is on the axis of 5. Hence we obtain
hz—10ps = @soh, _1. The product h, _j oy, is a noncentral automorphism.

EXAMPLE 3.3. Let F be the field of reals with standard order and put
f(z) = g(z) = 23. For every u € F, u # 0,1, hoyu(z,y) = (z/u,uy) is
a homothety with center (0,0) [3, p. 356]. We define s and 9; as in Ex-
ample 3.2. Then ¢, 1, are (central) automorphisms if s,¢ > 0 and then
Ys 0 Wy = Yy 0 . In general pg o1y is not central. But ¢4 o 1y is central if
t = 57! Indeed, 4 maps the line (z —p)(y —q) = r with » < 0 onto the line
(x—sp)(y—q) = sr, and the line (22 —p)(y> —q) = r with » > 0 onto the line
(23 — $3p) (y3 — q) = s®r. For 1 the situation is analogous. Therefore ;o
maps the line (x — p)(y — ¢) = r onto (x — sp)(y — tq) = str and the line
(23 — p)(y® — q) = r onto (2% — s3p)(y® — t3¢) = s3t3r. In particular, for the
straight line g described by x = 0 all proper lines with base points on g are
given by the equations z(y—q) = r with r < 0 and 23(y® —¢q) = r with r > 0,
and (4 o 1; maps them onto lines x(y — tq) = str and 23(y® — t3¢) = s3t3r
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respectively. Only the ideal line may be the axis of p, o v, since it passes
through the centers of ¢ and of ;. Every ideal point of NA(g) is fixed by
(¢s)go (¥t)g if r = str and r = s3¢3r. This is possible if t = s~1. In this case
s 0141 is a central automorphism with the ideal axis and center (0,0). We
obtain s 0 ¥y-1(z, y) = (sz, Sily) = hO,sfl(xv Y)-

Consider the remaining products. We have hg , 0@s(x,y) = @sohgu(x,y)
= (sz/u,uy) and hg o (z,y) = Yrohou(z,y) = (x/u, uty). The line joining
the centers of ¢, and hq,, is y = 0, so ho,, 0 @; is central if every point (z,0)
is fixed. We obtain (sz/u,0) = (z,0), hence s = u and then hg, © v, = 1y,
is a central automorphism with the ideal center corresponding to the line
x = 0 and the axis y = 0.

The line joining the centers of ¢y and hg,, is = 0, so now (0, y) should
be fixed by the product and we obtain (0, uty) = (0,y), i.e. u =t"1, ho -1 0
Ui(z,y) = (t,y) = @iz, y)-

It is not difficult to conclude that for every u # 1,0, the group generated
by hou: us Yu 18 Iy = {@nm; n,m € Z}, where Z is the set of integers and
‘Pn,m(xa y) = (unxv umy)

4. Pseudo-automorphisms of a nearaffine plane. There exist ex-
amples of bijections of the point sets of nearaffine planes which are not
automorphisms, but become automorphisms on affine planes determined by
straight lines.

DEFINITION 4.1. A bijection ¢ of a nearaffine plane NA is a pseudo-
automorphism if there exists a straight line g such that ¢, is an automor-
phism of NA(g). Such a pseudo-automorphism ¢ is called central if Pg is a

central collineation in NA(g).

Of course ¢ is a pseudo—automorphism if ¢ maps a line with base point
on g onto a line with base point on g, although the image of the base point
need not be the base point. Moreover, lines which have base points not on g
need not be mapped onto lines.

EXAMPLE 4.1. Let NA be the classical nearaffine plane over the field
of reals. Consider the proper line a = {(0,0)} U {(z,vy)}; zy = 1}. For
every point P = (u,v) the straight lines through P are given by z = u,
y = v. If u # 0 # v then they intersect a at the points U = (u,1/u),
V = (1/v,v), respectively. The remaining two straight lines through U or
V' are described by the equations © = 1/v, y = 1/u and they intersect at
the point @ = (1/v,1/u). In the same way we consider the case u = 0 or
v = 0. Therefore, the proper line a determines the following bijection S, of

the point set:
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(1y,1/z) forz £0 4y,
(0,1/x) for z #£0 =y,
(1/,0)  forz=0%y,
(0,0) for x =0=y.

Clearly, S,(P) = P & P € a. Note that S, is never an automorphism of
the nearaffine plane, since the line {(p,q)} U {(z,v); (z — p)(y — q) = pq}
with p # 0 # ¢ is mapped onto the set {(1/q,1/p)} U{(x,y); gz + py = 1}
which is not a line. But any proper line ¢ with base point on the straight
line g described by = = 0 is given by z(y — q) = r. We find that the image
of ¢ is given by z(y + ¢/r) = 1/r. Note that the base point (0, ¢) with ¢ # 0
of ¢ is mapped to (1/¢,0) which is not the base point of S,(c) but it is on
Sa(c). The line a is the axis of the pseudo-automorphism S, and the class of
proper lines described by z(y —q) = —1 is the center of S,. In the same way
we conclude that every proper line b = {(p, q) }U{(z,y)}; (x—p)(y—q) = v}
with v £ 0 and arbitrary p, ¢ determines a pseudo-automorphism Sp.

N
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b . N \
_________ ! \a
- ’ \
/. \‘
\ o
S, (a--T b N T
- N o
e
\\ 1 ",
\ D
\\ 1 :':b
\
\ 1 ,.
\ |
o B
i RACY
\..'
|
Fig. 5

EXAMPLE 4.2. Let F' and the nearaffine plane N A be as described in
Example 3.3. For the line a = {(0,0)} U {(z,y)}; zy = v}, where v # 0, we
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use the same arguments which work for Example 4.1 and obtain:
(v/y,v/x) forz#0#y,
(0,v/x) forx #0 =y,
(0/3,0)  forz=0+#y,
(0,0) forx =0=uy.
The line b = {(p, )} U{(z,y)}; (z—p)(y—q) = pq} with p # 0 # ¢, pg <0,
is not mapped onto a line again. Clearly, S, maps any line
c={(0,9)} U{(z,y); 2(y —q) =1},

where r < 0, onto the line

so0- (a3} fer(or3)-5)

Consider any line

d={(0,¢)} U{(z,y); 2°(y* - ¢*) =1}

with » > 0 and with its base point (0, q) on the straight line x = 0. We have

s {(o-38))ofiem (- 20) -2}

Note that v2/r and v%/r are of the same sign as 7. Therefore S, is a pseudo-
automorphism. It is central since a is its axis. A simple calculation shows
that the class {{(0, ¢)}U{(z,y); 2*(y*—¢*) = —v*}; ¢ € F} (resp. {{(0,9)}U
{(z,y); x(y — q¢) = —v}; q € F'}) of parallel lines is the center of S, if v <0
(resp. v > 0).

Now if b = {(p,0)} U{(z,y); (x —p)y =r}, r <0 and p # 0 then set

( [r r
~+p,—— | forax#p, y#0,
Y T—p
T
<p, > forxz #p, y=0,

r—=p

Sa(z,y) =

Sb(ﬁvy) =
<£+p,0> for x = p, y # 0,

L (p,0) forx =p, y=0.
This time .5, is not a pseudo-automorphism. The line

{(, @)} U{(z,y); (@ =p)(y° = ¢°) = s}
with s > 0 and the base point on the straight line x = p is mapped onto the
set

{(Genn)pfem (Gor) -)((5) -7) -
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which is not a line. Using the same arguments, we conclude that in this plane
Sp is a pseudo-automorphism if and only if (0,0) is the base point of a.

References

[1] J. André, On finite non-commutative affine spaces, in M. Hall and J. H. von Lint
(eds.), Combinatorics, Part I, Math. Centre Tracts 55, 1974, 60-107.

[2] P. Dembowski, Finite Geometries, Springer, Berlin, 1968.

[3] J. Jakobowski, Nearaffine planes related to pseudo-ordered fields, Bull. Polish Acad.
Sci. Math. 50 (2002), 345-360.

[4] G. Pickert, Projektive Ebenen, Springer, Berlin, 1955.

[5] H. A. Wilbrink, Nearaffine planes, Geom. Dedicata 12 (1982), 53-62.

Kinga Cudna-Lasecka and Jan Jakébowski

Faculty of Mathematics and Informatics

University of Warmia and Mazury in Olsztyn

Zolnierska 14

10-561 Olsztyn, Poland

E-mail: lasecka@matman.uwm.edu.pl
jjakob@matman.uwm.edu.pl

Received September 12, 2005;
received in final form November 28, 2005 (7476)



