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Summary. The paper deals with neara�ne planes des
ribed by H. A. Wilbrink. We 
on-sider their 
entral automorphisms, i.e. automorphisms satisfying the Veblen 
ondition,whi
h be
ome 
entral 
ollineations in 
onne
ted proje
tive planes. Moreover, a 
on
eptof 
entral pseudo-automorphism is 
onsidered, i.e. some bije
tions in a neara�ne planeare not automorphisms but they be
ome 
entral 
ollineations in the related proje
tiveplanes.1. Basi
 
on
epts. The paper deals with neara�ne planes 
onsideredby H. A. Wilbrink in [5℄. Some de�nitions and properties 
on
erning a�neand proje
tive planes given in [2, pp. 115�116, 120�121℄ and [4, pp. 62�65℄will also be used. We wish to study automorphisms and other bije
tions ofneara�ne planes whi
h be
ome 
entral 
ollineations in the related proje
tiveplanes. We apply the terminology of [5℄ but we use the notation from [3℄. Inall stru
tures 
onsidered, points will be denoted by 
apital Latin letters andblo
ks by small Latin or Greek letters. The extension of an automorphism
ϕ of an a�ne plane A to the proje
tive extension A will be denoted by ϕ.The following statements will be used:Theorem 1.1 ([2, p. 120℄). If ϕ and ψ are 
ollineations in a proje
tiveplane su
h that ϕ has 
enter A and axis a, and ψ has 
enter B and axis b,then:(1) ϕψ = ψϕ if and only if A ∈ b and B ∈ a.(2) If a 6= b and A 6= B then ϕψ is a 
entral 
ollineation if and only if ϕand ψ are homologies su
h that A ∈ b, B ∈ a, and ϕ(X) = ψ−1(X)2000 Mathemati
s Subje
t Classi�
ation: 51A15, 51A30, 51A35, 51A45.Key words and phrases: a�ne plane, 
entral automorphism, 
ollineation, Desarguespostulate, neara�ne plane, proje
tive plane, Veblen 
ondition.[337℄
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for every X ∈ AB. If this is the 
ase, then ϕψ is a homology with
enter ab and axis AB.We also re
all the so-
alled Veblen 
ondition:(V) Let g be a straight line in a neara�ne plane; P,Q,R distin
t pointson g; and b a line di�erent from g with base point P and S ∈ b\{P}.Then (R ≡ Q� S) ∩ b 6= ∅.

QP R

S

SQ >

b

g Fig. 1Theorem 1.2 ([5, p. 55℄). Let NA = (Ω,Ξ,�,≡) be a neara�ne planesatisfying (V) and let g be any straight line. Set
Lg := {X � Y ∈ Ξ; X ∈ g} ∪ {h; h ≡ g}.Then NA(g) = (Ω,Lg) is an a�ne plane.Corollary 1.1. If g is a straight line in NA, P,Q ∈ g and P � R ≡

Q� S, then PR is parallel to QS in NA(g).2. Central automorphisms in neara�ne planes satisfying (V).For any straight line g the point set of NA(g) 
oin
ides with the point setof NA, but the set of all lines of NA(g) is a proper subset of the set of linesof NA. An automorphism ϕ of NA be
omes an automorphism of NA(g) i�
ϕ(g) = g. In this 
ase the notation ϕg means the restri
tion of ϕ to the linesof NA(g).Definition 2.1. An automorphism ϕ of a neara�ne plane NA is 
entralif there exists a straight line g su
h that ϕg is a 
entral 
ollineation in NA(g).The 
enter and axis of ϕg are 
alled the 
enter and axis of ϕ.It follows from De�nition 2.1 and Theorem 1.2 that every 
entral auto-morphism of NA preserves two lines of NA(g): the ideal line and g∪{[g]≡}.The 
olle
tion of all 
entral automorphisms of a neara�ne plane may bedivided into three 
lasses. We 
onsider two of them, sin
e the third one(translations) is des
ribed in [5℄. We omit easy proofs.2.1. ϕ is a homothetyProposition 2.1. If ϕ is an automorphism of NA then the following
onditions are equivalent :
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(a) ϕ is a homothety of NA with 
enter A.(b) For every straight line g through A, ϕg is a homothety of NA(g) with
enter A.(
) For some straight line g through A, ϕg is a homothety of NA(g) with
enter A.One 
an easily verify that the transitivity of the group of homotheties with�xed 
enter U implies the following versions of Desargues' postulate [1, p. 72℄:(D2) If U,X,X ′, Y, Y ′, Z, Z ′ ∈ Ω are pairwise distin
t, U � X is straightand U�Y , U�Z are lines di�erent from ea
h other and from U�X,then X ′ ∈ U �X, Y ′ ∈ U � Y , Z ′ ∈ U � Z, X � Y ≡ X ′

� Y ′ and
X � Z ≡ X ′

� Z ′ imply Y � Z ≡ Y ′
� Z ′.

Y
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U

Fig. 2(D3) If U,X,X ′, Y, Y ′, Z, Z ′ ∈ Ω are pairwise distin
t, U �X, U � Y and
U � Z are pairwise distin
t lines, and X ′ ∈ U � X, Y ′ ∈ U � Y ,
Z ′ ∈ U � Z, and if X � Y ≡ X ′

� Y ′ and X � Z ≡ X ′
� Z ′ arestraight then Y � Z ≡ Y ′

� Z ′.
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2.2. Some nonideal line is the axis of ϕ. Let Υ denote the set of allstraight lines and g the axis of ϕ. We know that the 
enter must be ideal.The number of �xed 
lasses of straight lines is either 1 or 2: if g is properthen the 
lass of straight lines must be the 
enter.Theorem 2.1. If NA 
ontains at least three 
lasses of straight lines and

ϕ is an automorphism with nonideal axis g, then the following 
onditions areequivalent :(i) ϕ is an involution.(ii) If X,Y ∈ g, X 6= Y , X�A ∈ Υ , X�A ≡ Y �ϕ(A), then X�ϕ(A) ≡
Y �A and Y �A ∈ Υ .Figure 4 presents all possibilities for the pair (axis g, 
enter P ): g ∈ Υand P = [g]≡; g ∈ Υ and P = [a]≡, where a ∈ Ξ \ Υ ; g ∈ Υ and P = [a]≡,where a ∈ Υ and a 6≡ g; g ∈ Ξ \ Υ and P = [a]≡ for some a ∈ Υ .Proposition 2.2. Suppose a straight line g is the axis of an automor-phism ϕ.(1) If ϕ is an involution then: some 
lass of straight lines nonparallel to
g is the 
enter of ϕ if and only if the number of 
lasses of straightlines is even.(2) If NA 
ontains exa
tly two 
lasses of straight lines then the 
lass
[h]≡ must be the 
enter , where h ∈ Υ and h 6≡ g.(3) If NA 
ontains exa
tly three (resp. four) 
lasses of straight linesand [g]≡ or some 
lass [a]≡ of proper lines (resp. some 
lass [h]≡ ofstraight lines, where h 6≡ g) is the 
enter of ϕ, then ϕ is an involution.From Proposition 2.2 and Theorem 2.1 the following is immediate.Corollary 2.1.(a) In an a�ne plane of even order every involution pointwise �xing oneline determines 
on�gurations of parallelograms with parallel diago-nals (Fano 
on�gurations; see the upper left part of Figure 4).(b) In an a�ne plane of odd order every involution pointwise �xing oneline determines 
on�gurations of trapeziums with parallel diagonals(the axis and a line through the 
enter are arms of su
h a trapezium;see the lower left part of Figure 4).(
) In an a�ne plane of order 2 or 3 every automorphism pointwise �xinga line is an involution.Proposition 2.3. Suppose a proper line g is the axis of an automor-phism ϕ.(1) If ϕ is an involution then the number of 
lasses of straight lines isodd.
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Fig. 4(2) The number of 
lasses of straight lines is not two.(3) If there exist exa
tly three 
lasses of straight lines then ϕ is an invo-lution.(4) If there exist exa
tly four 
lasses of straight lines then:(a) ϕ is a mapping of order 3, i.e. if A /∈ g then A 6= ϕ(A) 6=
ϕ(ϕ(A)) 6= ϕ(ϕ(ϕ(A))) = A.(b) If X,Y, Z ∈ g, A /∈ g, X � A ∈ Υ and X � A ≡ Y � ϕ(A) ≡
Z�ϕ(ϕ(A)), then X�ϕ(A) ∈ Υ and X�ϕ(A) ≡ Y �ϕ(ϕ(A)) ≡
Z �A.3. Examples. Proper neara�ne planes with more than two 
lasses ofstraight lines are not well known. Also our examples are given for neara�neplanes with exa
tly two 
lasses of straight lines. We shall 
onsider some
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neara�ne planes related to ordered �elds [3℄. Here the set of proper linesis given by {{(p, q)} ∪ {(x, y); (x − p)(y − q) = r}; p, q, r ∈ F, −r > 0} ∪
{{(p, q)} ∪ {(x, y); (f(x) − p)(g(y) − q) = r}; p, q, r ∈ F, −r < 0}, where
f , g are some bije
tions satisfying the 
ondition

(u− v)(w − z)(f(u) − f(v))(g(w)− g(z)) > 0for u, v, w, z ∈ F , u 6= v, w 6= z.Example 3.1. Let F be an Eu
lidean ordered �eld. For s ∈ F , 0 < s 6= 1,take the fun
tions
f(x) =

{

x for x ≥ 0,

sx for x ≤ 0,
g(y) = y.Consider the mapping

ϕ(x, y) =

{

(−x, y) for x ≥ 0,

(−sx, y) for x ≤ 0.We obtain
ϕ({(x, y); (x− p)(y − q) = r, x ≥ 0})

= {(x, y); (x+ p)(y − q) = −r, x ≤ 0};
ϕ({(x, y); (x− p)(y − q) = r, x ≤ 0})

= {(x, y); (x/s+ p)(y − q) = −r, x ≥ 0};
ϕ({(x, y); (sx− p)(y − q) = r, x ≤ 0})

= {(x, y); (x+ p)(y − q) = −r, x ≥ 0}.In ordered �elds r > 0 ⇔ −r < 0. Therefore ϕ is an automorphism. Of
ourse the straight line given by x = 0 is its axis and the 
lass [a]≡ is its
enter, where a is des
ribed by y = 0.For every z ∈ F and 1 6= u > 0 the mapping hz,u(x, y) = (x/u,
u(y − z) + z) is a homothety with 
enter (0, z) [3, p. 356℄. Note that the
enter of hz,u is on the axis of ϕ and vi
e versa. Thus we have

hz,u(x, y) ◦ ϕ = ϕ ◦ hz,u(x, y) =

{

(−x/u, u(y − z) + z) for x ≥ 0,

(−sx/u, u(y − z) + z) for x ≤ 0.It is not a 
entral automorphism sin
e for the straight line y = z joiningboth 
enters we have
ϕ ◦ hz,u(x, z) =

{

(−x/u, u(z − z) + z) 6= (x, z) for some x ≥ 0,
(−sx/u, u(z − z) + z) 6= (x, z) for some x ≤ 0.For every w ∈ F there exists a straight translation τw(x, y) = (x, y+w),

τw and hz,u are dilatations, so τw ◦ hz,u and hz,u ◦ τw also must have theideal axis. We obtain τw ◦ hz,u = (x/u, u(y − z) + z + w) with 
enter
(0, z + t/(1 − u)) and hz,u ◦ τw(x, y) = (x/u, u(y − z + w) + z) with 
en-ter (0, z + ut/(1 − u)).
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In the same way we obtain the non
entral automorphism τw ◦ ϕ =

ϕ ◦ τw.Example 3.2. Let F be the �eld of reals with standard order and take
f(x) = x3 and f(y) = y. Then hz,u = (x/u, u(y − z) + z) is a non
entralautomorphism for u 6= −1 [3, p. 356℄. It is a homothety with 
enter (0, z)for every z ∈ F and u = −1. For every w ∈ F the mapping τw(x, y) =
(x, y +w) is a straight translation again. As before, we obtain distin
t non-
entral automorphisms τw ◦ hz,u and hz,u ◦ τw (they are also distin
t for
u = −1).Consider the bije
tions ϕs(x, y) = (sx, y) and ψt(x, y) = (x, ty). Theyare automorphisms if s > 0 and t > 0. The straight line y = 0 (respe
tively
x = 0) is the axis of ψt (resp. ϕs) and the ideal point 
orresponding to thestraight line x = 0 (y = 0) is the 
enter of ψt (resp. ϕs). Of 
ourse the 
enterof ϕs is on the axis of ψt and vi
e versa, so ϕs ◦ ψt(x, y) = ψt ◦ ϕs(x, y) =
(sx, ty). The line joining both 
enters is ideal in NA(g), where g is given by
x = 0. Only the ideal line may be the axis of ϕs ◦ψt. If this is the 
ase, thenevery line with base point on g is mapped onto some parallel line. But ϕs◦ψtmaps the proper line x(y − q) = r with r < 0 onto the line x(y − tq) = str.The line x3(y− q) = r with r > 0 is mapped onto the line x3(y− tq) = s3tr.Thus str = r for r < 0 and s3tr = r for r > 0. This is possible only for
s = t = 1 or s = t = −1. But s, t > 0 and then ϕs = ψt = id. Note that ϕs◦ψtmay be a 
entral automorphism although ϕs and ψt are not automorphisms.This happens if s = t = −1, but then ϕs ◦ ψt = ϕ−1 ◦ ψ−1 = h0,−1.In general the 
enter (0, z) of hz,−1 is not on the axis y = 0 of ψt.Therefore hz,−1 ◦ ψt 6= ψt ◦ hz,−1. But h0,−1 ◦ ψt = ψt ◦ h0,−1 sin
e (0, 0) ison the line y = 0. However, hz,−1 ◦ ψt is a non
entral automorphism.In 
ontrast to ψt, the 
enter of hz,−1 is on the axis of ϕs. Hen
e we obtain
hz,−1◦ϕs = ϕs ◦hz,−1. The produ
t hz,−1◦ϕs is a non
entral automorphism.Example 3.3. Let F be the �eld of reals with standard order and put
f(x) = g(x) = x3. For every u ∈ F , u 6= 0, 1, h0,u(x, y) = (x/u, uy) isa homothety with 
enter (0, 0) [3, p. 356℄. We de�ne ϕs and ψt as in Ex-ample 3.2. Then ϕs, ψt are (
entral) automorphisms if s, t > 0 and then
ϕs ◦ ψt = ψt ◦ ϕs. In general ϕs ◦ ψt is not 
entral. But ϕs ◦ ψt is 
entral if
t = s−1. Indeed, ϕs maps the line (x−p)(y− q) = r with r < 0 onto the line
(x−sp)(y−q) = sr, and the line (x3−p)(y3−q) = r with r > 0 onto the line
(x3 − s3p)(y3 − q) = s3r. For ψt the situation is analogous. Therefore ϕs ◦ψtmaps the line (x − p)(y − q) = r onto (x − sp)(y − tq) = str and the line
(x3 − p)(y3 − q) = r onto (x3 − s3p)(y3 − t3q) = s3t3r. In parti
ular, for thestraight line g des
ribed by x = 0 all proper lines with base points on g aregiven by the equations x(y−q) = r with r < 0 and x3(y3−q) = r with r > 0,and ϕs ◦ ψt maps them onto lines x(y − tq) = str and x3(y3 − t3q) = s3t3r
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respe
tively. Only the ideal line may be the axis of ϕs ◦ ψt, sin
e it passesthrough the 
enters of ϕs and of ψt. Every ideal point of NA(g) is �xed by
(ϕs)g ◦ (ψt)g if r = str and r = s3t3r. This is possible if t = s−1. In this 
ase
ϕs ◦ψs−1 is a 
entral automorphism with the ideal axis and 
enter (0, 0). Weobtain ϕs ◦ ψs−1(x, y) = (sx, s−1y) = h0,s−1(x, y).Consider the remaining produ
ts. We have h0,u◦ϕs(x, y) = ϕs◦h0,u(x, y)
= (sx/u, uy) and h0,u◦ψt(x, y) = ψt◦h0,u(x, y) = (x/u, uty). The line joiningthe 
enters of ϕs and h0,u is y = 0, so h0,u ◦ϕs is 
entral if every point (x, 0)is �xed. We obtain (sx/u, 0) = (x, 0), hen
e s = u and then h0,u ◦ ϕu = ψuis a 
entral automorphism with the ideal 
enter 
orresponding to the line
x = 0 and the axis y = 0.The line joining the 
enters of ψt and h0,u is x = 0, so now (0, y) shouldbe �xed by the produ
t and we obtain (0, uty) = (0, y), i.e. u = t−1, h0,t−1 ◦
ψt(x, y) = (tx, y) = ϕt(x, y).It is not di�
ult to 
on
lude that for every u 6= 1, 0, the group generatedby h0,u, ϕu, ψu is Γu = {ϕn,m; n,m ∈ Z}, where Z is the set of integers and
ϕn,m(x, y) = (unx, umy)

4. Pseudo-automorphisms of a neara�ne plane. There exist ex-amples of bije
tions of the point sets of neara�ne planes whi
h are notautomorphisms, but be
ome automorphisms on a�ne planes determined bystraight lines.Definition 4.1. A bije
tion ϕ of a neara�ne plane NA is a pseudo-automorphism if there exists a straight line g su
h that ϕg is an automor-phism of NA(g). Su
h a pseudo-automorphism ϕ is 
alled 
entral if ϕg is a
entral 
ollineation in NA(g).Of 
ourse ϕ is a pseudo�automorphism if ϕ maps a line with base pointon g onto a line with base point on g, although the image of the base pointneed not be the base point. Moreover, lines whi
h have base points not on gneed not be mapped onto lines.Example 4.1. Let NA be the 
lassi
al neara�ne plane over the �eldof reals. Consider the proper line a = {(0, 0)} ∪ {(x, y)}; xy = 1}. Forevery point P = (u, v) the straight lines through P are given by x = u,
y = v. If u 6= 0 6= v then they interse
t a at the points U = (u, 1/u),
V = (1/v, v), respe
tively. The remaining two straight lines through U or
V are des
ribed by the equations x = 1/v, y = 1/u and they interse
t atthe point Q = (1/v, 1/u). In the same way we 
onsider the 
ase u = 0 or
v = 0. Therefore, the proper line a determines the following bije
tion Sa ofthe point set:



Veblenian Neara�ne Planes 345
Sa(x, y) =



















(1/y, 1/x) for x 6= 0 6= y,

(0, 1/x) for x 6= 0 = y,

(1/y, 0) for x = 0 6= y,

(0, 0) for x = 0 = y.Clearly, Sa(P ) = P ⇔ P ∈ a. Note that Sa is never an automorphism ofthe neara�ne plane, sin
e the line {(p, q)} ∪ {(x, y); (x − p)(y − q) = pq}with p 6= 0 6= q is mapped onto the set {(1/q, 1/p)} ∪ {(x, y); qx+ py = 1}whi
h is not a line. But any proper line c with base point on the straightline g des
ribed by x = 0 is given by x(y − q) = r. We �nd that the imageof c is given by x(y+ q/r) = 1/r. Note that the base point (0, q) with q 6= 0of c is mapped to (1/q, 0) whi
h is not the base point of Sa(c) but it is on
Sa(c). The line a is the axis of the pseudo-automorphism Sa and the 
lass ofproper lines des
ribed by x(y− q) = −1 is the 
enter of Sa. In the same waywe 
on
lude that every proper line b = {(p, q)}∪{(x, y)}; (x−p)(y−q) = v}with v 6= 0 and arbitrary p, q determines a pseudo-automorphism Sb.

b

b

a

a

)( bS a

)( bS a

Fig. 5
Example 4.2. Let F and the neara�ne plane NA be as des
ribed inExample 3.3. For the line a = {(0, 0)} ∪ {(x, y)}; xy = v}, where v 6= 0, we
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use the same arguments whi
h work for Example 4.1 and obtain:

Sa(x, y) =



















(v/y, v/x) for x 6= 0 6= y,

(0, v/x) for x 6= 0 = y,

(v/y, 0) for x = 0 6= y,

(0, 0) for x = 0 = y.The line b = {(p, q)}∪{(x, y)}; (x− p)(y− q) = pq} with p 6= 0 6= q, pq < 0,is not mapped onto a line again. Clearly, Sa maps any line
c = {(0, q)} ∪ {(x, y); x(y − q) = r},where r < 0, onto the line

Sa(c) =

{(

0,−vq
r

)}

∪
{

(x, y); x

(

y +
vq

r

)

=
v2

r

}

.Consider any line
d = {(0, q)} ∪ {(x, y); x3(y3 − q3) = r}with r > 0 and with its base point (0, q) on the straight line x = 0. We have

Sa(d) =

{(

0,− vq
3
√
r

)}

∪
{

(x, y); x3

(

y3 +
v3q3

r

)

=
v6

r

}

.Note that v2/r and v6/r are of the same sign as r. Therefore Sa is a pseudo-automorphism. It is 
entral sin
e a is its axis. A simple 
al
ulation showsthat the 
lass {{(0, q)}∪{(x, y); x3(y3−q3) = −v3}; q ∈ F} (resp. {{(0, q)}∪
{(x, y); x(y − q) = −v}; q ∈ F}) of parallel lines is the 
enter of Sa if v < 0(resp. v > 0).Now if b = {(p, 0)} ∪ {(x, y); (x− p)y = r}, r < 0 and p 6= 0 then set

Sb(x, y) =















































(

r

y
+ p,

r

x− p

) for x 6= p, y 6= 0,

(

p,
r

x− p

) for x 6= p, y = 0,

(

r

y
+ p, 0

) for x = p, y 6= 0,

(p, 0) for x = p, y = 0.This time Sb is not a pseudo-automorphism. The line
{(p, q)} ∪ {(x, y); (x3 − p3)(y3 − q3) = s}with s > 0 and the base point on the straight line x = p is mapped onto theset

{(

r

q
+ p, 0

)}

∪
{

(x, y);

((

r

y
+ p

)

3

− p3

)((

r

x− p

)

3

− q3
)

= s

}
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whi
h is not a line. Using the same arguments, we 
on
lude that in this plane
Sb is a pseudo-automorphism if and only if (0, 0) is the base point of a.
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