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Summary. We study the family of curves Fm(p) : xp + yp = m, where p is an odd prime
and m is a pth power free integer. We prove some results about the distribution of root
numbers of the L-functions of the hyperelliptic curves associated to the curves Fm(p). As
a corollary we conclude that the jacobians of the curves Fm(5) with even analytic rank
and those with odd analytic rank are equally distributed.

1. Introduction. Let E be an elliptic curve over Q given by the equation
y2 = x3 + ax + b (a, b ∈ Z). If d is a squarefree integer, then we define the
dth quadratic twist Ed of E to be the elliptic curve defined by the equation
dy2 = x3+ax+b. It is widely expected that for a given E the set of squarefree
integers d such that rank(Ed(Q)) = 0 has a positive density, but this is only
known for special cases. Such an expectation follows, under the Riemann
hypothesis, from the work of Iwaniec and Sarnak [5]. Conditional results in
more general situations (including abelian varieties) are also proved in [2].
One can consider other families of elliptic curves (or abelian varieties) as
well.

In general it is very difficult to calculate the rank of any specific elliptic
curve (or abelian variety). It is much easier to treat the global root number
ε(A) of an abelian variety over Q. Let us recall that the parity conjecture
states that ε(A) = (−1)rA , where rA denotes the rank of Q-points of A.

Mai [6] showed that the set of cubefree natural numbers m for which the
root number of Em : x3 + y3 = m is positive, has density 1/2. The parity
conjecture implies that in this family (of cubic twists of the Fermat curve
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x3 + y3 = 1) the rank of Q-points of Em is even for half of the cubefree
natural numbers m.

In this article we will generalize the result of Mai to the family of curves
Fm(5) : x5 + y5 = m (Corollary 2).

According to the referee’s suggestion, we will include the proof of a more
general result (Theorem 1). The remaining part of the introduction contains
definitions and constructions leading to the formulation of that result. We
will consider the curve Fm(p) : xp + yp = m (p is an odd prime) of genus
(p− 1)(p− 2)/2. We also consider the curves of genus (p− 1)/2

Cm,s(p) : yp = x(m− x)s for s = 1, . . . , p− 2.

The curves Cm,(p−1)/2(p) and Cm,p−2(p) are birationally equivalent; the cor-
responding map Cm,(p−1)/2(p)→ Cm,p−2(p) is

(x, y) 7→
(
m− yp

(m− x)(p−1)/2
,

yp−2

(m− x)(p−3)/2

)
.

For s = 1, . . . , p− 2 we define the maps

φm,s : Fm(p)→ Cm,s(p)

by the formula
φm,s(x, y, 1) = (xp, xys, 1).

The map φm,s induces the well-defined map Jm(p) → Jm,s(p) between the
corresponding jacobians. Similarly to [3], [4] we obtain the isogeny defined
over Q

(1) φ :=
p−2∏
s=1

φm,s : Jm(p)→
p−2∏
s=1

Jm,s(p).

In particular, the problem of computing the rank of Jm(5)(Q) reduces to
calculating the ranks of Jm,s(5)(Q) for s = 1, 2.

For s = 1, (p − 1)/2, p − 2 the curves Cm,s(p) are hyperelliptic. By the
substitution

(x, y) 7→
(
m−

(
4m
x

)p( y

2pm(p−1)/2
− 1

2

)
,

(
4m
x

)p−1( y

2pm(p−1)/2
− 1

2

))
in the equation of Cm,p−2(p) and (x, y) 7→ (y/2p+m/2,−x/4) in the equation
of Cm,1(p) we obtain the hyperelliptic curves

Am,p : y2 = xp + (4m)p−1, Bm,p : y2 = xp + 4p−1m2.

We assume that m is a pth power free positive integer and p - m.

2. Proof of the main result. Using the results of [8] we can calculate
the sign of the functional equation of the L-functions of the hyperelliptic
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curves Am,p, Bm,p. Let

N(p) = {m ∈ N : p -m, m is pth power free}.
For m ∈ N(p) we put

τp(m) = #
{
q ∈ P : q > 2, q |m,

(
q

p

)
= −1

}
.

LetWm,p, W
A
m,p, W

B
m,p denote the (global) root numbers of the curves Fm(p),

Am,p, Bm,p respectively. It turns out that WA
m,p, W

B
m,p (for fixed p and m)

depend only on the parity of τp(m) and on the remainder of m modulo p2.
For example (p = 5, m odd)

WA
m,5 = (−1)τ5(m)+εA(m), WB

m,5 = (−1)τ5(m)+εB(m),

where

εA(m) =
{ 0 for m ≡ ±1,±2,±7,±11 (mod 25),

1 for m ≡ ±3,±4,±6,±8,±9,±12 (mod 25),

εB(m) =
{ 0 for m ≡ ±1,±3,±4,±7 (mod 25),

1 for m ≡ ±2,±6,±8,±9,±11,±12 (mod 25).

Theorem 1. The sets {m∈N(p) : WA
m,p = 1} and {m∈N(p) : WB

m,p = 1}
have density 1/2 in the set N(p).

Corollary 2. The set {m ∈ N(5) : Wm,5 = 1} has density 1/2 in N(5).

Proof. From isogeny (1) we have Wm,5 = (WA
m,5)

2WB
m,5 = WB

m,5.

The proof of Theorem 1 splits into a few lemmas.

Lemma 3. For any Dirichlet character χ of conductor k we have∑
m∈N(p)

X

(−1)τp(m)χ(m) = O(
√
X logp−2X

√
k log k),

where N(p)
X = {m ∈ N(p) : m ≤ X}.

Proof. Each m ∈ N(p) can be uniquely written in the form np−1
1 np−2

2 · · ·
n2
p−2np−1, where the ni are squarefree, pairwise coprime and not divisible

by p. Then τp(m) = τp(n1) + τp(n2) + · · ·+ τp(np−1), hence∑
m∈N(p)

X

(−1)τp(m)χ(m)

=
∑

np−1
1 ···np−1≤X
ni squarefree
and coprime
p-n1···np−1

p−1∏
i=1

(−1)τp(ni)χ(np−ii ) =
∑

np−1
1 ···np−1≤X
ni squarefree
and coprime

p−1∏
i=1

ψ(ni)χ(np−i),
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where ψ(·) =
( ·
p

)
(therefore ψ(x) = (−1)τp(x) for x squarefree not divisible

by p). Let χa be the principal character modulo 2a, i.e. χa(b) = 1 if (2a, b) = 1,
and 0 otherwise. Then∑
m∈N(p)

X

(−1)τp(m)χ(m)

=
∑

n1≤ p−1√X
n1 squarefree

ψ(n1)χ(np−1
1 )χ1(n1)

∑
n2≤ p−2

q
X/np−1

1

n2 squarefree

ψ(n2)χ(np−2
2 )χn1(n2)

× · · · ×
∑

np−2≤
√
X/

q
np−1

1 ···n3
p−3

np−2 squarefree

ψ(n2)χ(n2
2)χn1···np−3(np−2)

×
∑

np−1≤X/np−1
1 ···n2

p−2

np−1 squarefree

ψ(np−1)χ(np−1)χn1···np−2(np−1).

The last sum can be written in the form∑
np−1≤X/np−1

1 ···n2
p−2

ψ(np−1)χ(np−1)χn1···np−2(np−1)
∑

l2|np−1

µ(l)

=
∑

l≤
q
X/np−1

1 ···n2
p−2

µ(l)ψ(l2)χ(l2)χn1···np−2(l
2)

×
∑

n′≤X/np−1
1 ···n2

p−2l
2

ψ(n′)χ(n′)χn1···np−2(n
′).

Now we use the Pólya–Vinogradov inequality: If χ is the primitive char-
acter modulo k > 2, then

∑
n≤X χ(n) = O(

√
k log k). It implies∑

n′≤X/np−1
1 ···n2

p−2l
2

ψ(n′)χ(n′)χn1···np−2(n
′) = O(

√
k log k),

hence ∑
np−1≤X/np−1

1 ···n2
p−2

np−1 squarefree

ψ(np−1)χ(np−1)χn1···np−2(np−1)

= O

(√
X

np−1
1 · · ·n2

p−2

√
k log k

)
.

Next by using the well-known estimate
∑

n≤X 1/n = logX + γ + O(1/X),
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where γ ≈ 0.577 is the Euler constant, we obtain successively∑
m∈N(p)

X

(−1)τp(m)χ(m)

=
∑

n1≤ p−1√X
n1 squarefree

ψ(n1)χ(np−1
1 )χ1(n1)

∑
n2≤ p−2

q
X/np−1

1

n2 squarefree

ψ(n2)χ(np−2
2 )χn1(n2)

× · · · ×
∑

np−2≤
√
X/

q
np−1

1 ···n3
p−3

np−2 squarefree

O

(√
X

np−1
1 · · ·n2

p−2

√
k log k

)

= · · · =
∑

n1≤ p−1√X
n1 squarefree

ψ(n1)χ(np−1
1 )χ1(n1)

×
∑

n2≤ p−2
q
X/np−1

1

n2 squarefree

O

(√
X

np−1
1 np−2

2

log
√
X · · · log p−3

√
X

np−1
1 np−2

2

√
k log k

)

=
∑

n1≤ p−1√X
n1 squarefree

O

(√
X

np−1
1

log
√
X · · · log p−2

√
X

np−1
1

√
k log k

)

= O(
√
X log

√
X · · · log p−2

√
X log p−1

√
X
√
k log k)

= O(
√
X logp−2X

√
k log k).

Lemma 4. The set N(p) has a positive density in the set of natural num-
bers.

Proof. Let pn denote the nth prime. We define

an =
{
pn if pn = p,

ppn if pn 6= p.

Then (an, ak) = 1 for n 6= k, N(p) = {m ∈ N : ak - m for every k}, and the
series

∑
n∈N 1/an converges. Recall that by Theorem 2.18 in [7] the density

of N(p) is∏
n∈N

(
1− 1

an

)
=
∏
q∈P

(
1− 1

qp

)
1− 1/p
1− 1/pp

=
1
ζ(p)

(p− 1)pp−1

pp − 1
.

Lemma 5. The set {m ∈ N(p) : τp(m) even} has density 1/2 in N(p).
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Proof. This follows from Lemma 3:∑
m∈N(p)

X
τp(m) even

1

=
1
2

∑
m∈N(p)

X

(1 + (−1)τp(m)) =
1
2

∑
m∈N(p)

X

1 +O(
√
X logp−2X).

Proof of Theorem 1. Let C denote Am,p or Bm,p, and WC be the sign of
the functional equation of the L-function associated with C. Then∑

m∈N(p)
X

WC=1

1 =
∑

m∈N(p)
X

τp(m) even
m (mod p2)∈U

1 +
∑

m∈N(p)
X

τp(m) odd
m (mod p2)∈T

1,

where U and T are disjoint nonempty sets of integers modulo p2 such that
U∪T contains all numbers modulo p2 nondivisible by p. Letm ≡ k (mod p2),
where (k, p) = 1. Then by Lemma 3 we have∑

m∈N(p)
X

τp(m) even
m≡k (mod p2)

1 =
∑

m∈N(p)
X

τp(m) even

1
φ(p2)

∑
χ (mod p2)

χ(m)χ(k)

=
1

p2 − p
∑

χ (mod p2)

χ(k)
∑

m∈eN(p)
X

τp(m) even

χ(m)

=
1

2(p2 − p)
∑

χ (mod p2)

χ(k)
∑

m∈N(p)
X

χ(m)(1 + (−1)τp(m))

=
1

2(p2 − p)
∑

χ (mod p2)

χ(k)
∑

m∈N(p)
X

χ(m) +O(
√
X logp−2X)

=
1

2(p2 − p)
∑

m∈N(p)
X

∑
χ (mod p2)

χ(k)χ(m) +O(
√
X logp−2X)

=
1
2

∑
m∈N(p)

X

m≡k (mod p2)

1 +O(
√
X logp−2X).

In view of the above equalities (similar computations have to be done for
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τ(m) odd with factor 1− (−1)τ(m)) and Lemma 5 we obtain∑
m∈N(p)

X
WC=1

1 =
1
2

∑
m∈N(p)

X

m (mod p2)∈U

1 +
1
2

∑
m∈N(p)

X

m (mod p2)∈T

1 +O(
√
X logp−2X)

=
1
2

∑
m∈N(p)

X

1 +O(
√
X logp−2X).

Now the assertion follows from Lemma 4.

Remark. We note that if the curve Fm(5) has an affine rational point
(this occurs if m is a sum of two integer 5th powers), then the curves Am,5,
Bm,5 have nontrivial rational points. One can show that the rank of the
groups JAm,5(Q) and JBm,5(Q) is at least 1. Taking into account the isogeny
(1) we obtain rank(Jm(5)(Q)) ≥ 3. The set {a5 + b5 : a ∈ N, a5 + b5

is 5th power free} (b ∈ N fixed) is infinite (even more: it can be proved
by standard sieve methods to have a positive density), hence there are in-
finitely many nonisomorphic curves x5 + y5 = m with rank(Jm(5)(Q)) ≥ 3.
If additionally the sign of the functional equation of the L-functions of the
curves Am,5, Bm,5 is +1, then conjecturally rank(Jm(5)(Q)) ≥ 6. This hap-
pens e.g. for m = 33. In [1] we prove that the unboundedness of ranks in
the family Jm(5)(Q) is equivalent to the divergence of certain infinite se-
ries.
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