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Summary. We prove that every map T between two F ∗-spaces which preserves equality
of distance and satisfies T (0) = 0 is linear.

1. Preliminaries and introduction. Recall from [7] that a non-nega-
tive function ‖ · ‖ defined on a linear space E is called an F -norm provided

(i) ‖x‖ = 0 iff x = 0;
(ii) ‖ax‖ = ‖x‖ for all a with |a| = 1;
(iii) ‖x+ y‖ 6 ‖x‖+ ‖y‖;
(iv) ‖anx‖ → 0 provided an → 0;
(v) ‖axn‖ → 0 provided xn → 0.

An F -norm ‖ · ‖ induces a translation invariant distance d by

d(x, y) = ‖x− y‖ for all x, y ∈ E.

A linear space E with an F -norm ‖ · ‖ is said to be an F ∗-space. A complete
F ∗-space is called an F -space.

Let E = (E, ‖ · ‖), F = (F, ‖ · ‖) be two F ∗-spaces and R+
0 = {t ∈ R :

0 ≤ t <∞}. We say that a map T : E → F preserves equality of distance if
there exists a function φ : R+

0 → R+
0 such that for all x, y ∈ E,

‖Tx− Ty‖ = φ(‖x− y‖).
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The function φ is called the gauge function for T , and this definition equiv-
alently means that

u, v, z, w ∈ E, ‖u− v‖ = ‖z − w‖ ⇒ ‖Tu− Tv‖ = ‖Tz − Tw‖.
In particular, when φ is the identity function, the map T is an isometry.
Such mappings were studied by Schoenberg [9] and by von Neumann and
Schoenberg [5] for Hilbert spaces.

The classical theorem of Mazur–Ulam [4] states that an onto isometry
between two real normed spaces is affine. Charzyński [2] and Rolewicz [8]
have shown, respectively, that surjective isometries of finite-dimensional F -
spaces and of locally bounded spaces with concave norm are also linear. Ding
and Huang [3] have extended the result of Mazur–Ulam to locally midpoint
constricted F -spaces. More generally, Vogt [10] has shown that continuous
surjective equality of distance preserving maps between two real normed
spaces are affine.

The present paper extends the result of Vogt to a large class of F ∗-spaces
including all p-normed spaces (0 < p ≤ 1). The proof of the main result here
depends on the technique of Vogt. All the linear spaces mentioned in this
paper are assumed to be real.

2. Main results. The following lemma in metric space theory was
proved by Vogt [10]; it is similar to one stated by Aronszajn [1].

Lemma 2.1. Let (M,d) be a bounded metric space. Suppose there exists
an element m in M , a surjective isometry V : M → M , and a constant
K > 1 such that d(V x, x) ≥ Kd(m,x) for all x in M . Then m is a fixed
point for every surjective isometry S : M →M.

Rassias [6] shows that the ratio ‖2x‖/‖x‖ plays an important role in
generalizations of the Mazur–Ulam theorem. It is also of importance in the
following statement.

Theorem 2.2. Let (E, ‖·‖), (F, ‖·‖) be two real F ∗-spaces. Suppose that
there exists a number r > 0 such that

αF (r) = inf{‖2x‖/‖x‖ : x ∈ F, 0 < ‖2x‖ ≤ r} > 1.

Let T : E → F with T (0) = 0 be a continuous surjective map which preserves
equality of distance, i.e. there exists a function φ : R+

0 → R+
0 such that for

all x, y in E,
‖Tx− Ty‖ = φ(‖x− y‖).

Then T is linear.

Proof. Since T is continuous, there is a δ > 0 such that for any a, b ∈ E
satisfying ‖(a− b)/2‖ ≤ δ, we have ‖T ((a− b)/2)‖ ≤ r/4.
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Step 1. Fix any a, b ∈ E satisfying ‖(a− b)/2‖ ≤ δ. Let

m = T

(
a− b

2

)
and M := {y ∈ F : ‖y‖ = ‖2m− y‖ ≤ 2‖m‖ ≤ r/2}.

Define
V : M →M by V (y) = 2m− y.

It follows that

(i) M 6= ∅ with m ∈M.
(ii) M is a bounded metric space.
(iii) V is an isometry from M onto M since V 2 = idM and ‖V (y1) −

V (y2)‖ = ‖2m− y1 − 2m+ y2‖ = ‖y1 − y2‖ for all y1, y2 ∈M.
(iv) d(V y, y) = ‖V y − y‖ = ‖2(m − y)‖ ≥ K‖m − y‖ = Kd(m, y) with

K = αF (r) > 1.

Hence the conditions of Lemma 2.1 are satisfied. Thus m = T ((a− b)/2) is
a fixed point for every surjective isometry of M .

Let x0 ∈ E be such that

(2) T (x0) = 2T
(
a− b

2

)
= 2m.

Define S : M → M byS(y) = T (x0 − T−1(y)). We shall prove that S is
well-defined and it is an isometry from M onto M .

• S is well-defined. Indeed, if T (x1) = T (x2) = y, then

‖T (x0 − x1)− T (x0 − x2)‖ = φ(‖x1 − x2‖) = ‖Tx1 − Tx2‖ = 0.

• S is an isometry from M onto M . For any y1, y2 ∈M with T (x1) = y1

and T (x2) = y2, by the definition of S, we get

‖S(y1)− S(y2)‖ = ‖T (x0 − x1)− T (x0 − x2)‖
= φ(‖x1 − x2‖) = ‖Tx1 − Tx2‖ = ‖y1 − y2‖.

Moreover for every y ∈M with T (x) = y, we have

(3) S(y) = T (x0 − x) and ‖Tx‖ = ‖2m− Tx‖.
By (2) and (3) and the fact that T (0) = 0, it is easy to see that

‖Sy‖ = ‖T (x0 − x)‖ = ‖T (x0 − x)− T (0)‖
= φ(‖x0 − x‖) = ‖Tx0 − Tx‖
= ‖2m− Tx‖ = ‖Tx‖ = ‖T (x)− T (0)‖
= φ(‖x− 0‖) = φ(‖x0 − (x0 − x)‖)
= ‖T (x0)− T (x0 − x)‖ = ‖2m− Sy‖.

This implies S(M) ⊆ M and by the definition of S, we can easily get
S2 = idM , hence S(M) = M.
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It now follows from Lemma 2.1 that m is a fixed point of S, i.e.,

(4) T

(
a− b

2

)
= m = Sm = T

(
x0 −

a− b
2

)
.

We apply equations (2) and (4) to get∥∥∥∥T (a− b)− 2T
(
a− b

2

)∥∥∥∥ = ‖T (a− b)− Tx0‖ = φ(‖a− b− x0‖)

= φ

(∥∥∥∥a− b2
−

(
x0 −

a− b
2

)∥∥∥∥)
=

∥∥∥∥T(
a− b

2

)
− T

(
x0 −

a− b
2

)∥∥∥∥ = 0,

that is,

T (a− b) = 2T
(
a− b

2

)
.

For fixed b, define Tb : E → F by Tb(x) = T (x+ b)− T (b). Then Tb has the
following properties:

(i) Tb is a continuous map which preserves equality of distance with
Tb(0) = 0 and it has the same gauge function φ as T .

This follows from

‖Tb(x)− Tb(y)‖ = ‖T (x+ b)− T (b)− T (y + b) + T (b)‖

= ‖T (x+ b)− T (y + b)‖ = φ(‖x− y‖).

(ii)
∥∥Tb

(
a−b
2

)∥∥ =
∥∥Tb

(
a−b
2

)
− Tb(0)

∥∥ = φ
(∥∥a−b

2

∥∥)
=

∥∥T (
a−b
2

)∥∥ ≤ r
4 .

Properties (i) and (ii) show that Tb has the same properties as T . Therefore
we conclude that

Tb(a− b) = 2Tb

(
a− b

2

)
.

It follows that

T

(
a+ b

2

)
= T

(
a− b

2
+ b

)
− T (b) + T (b)

= Tb

(
a− b

2

)
+ T (b) =

Tb(a− b)
2

+ T (b)

=
T (a− b+ b)− T (b)

2
+ T (b) =

T (a) + T (b)
2

for all a, b ∈ E with ‖(a− b)/2‖ ≤ δ.
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Step 2. In case ‖(a− b)/2‖ > δ, we may also show by induction and
Step 1 that

T

(
a+ b

2

)
=
T (a) + T (b)

2
.

We can find a detailed proof for Step 2 in [7] and also in [8].

From Steps 1 and 2, for every a, b ∈ E we obtain

T (a) = T

(
2a+ 0

2

)
=
T (2a) + T (0)

2
=
T (2a)

2
and

T (a+ b) = T

(
2a+ 2b

2

)
=
T (2a) + T (2b)

2
= T (a) + T (b).

Hence T is additive. Since it is continuous and the spaces are real, it is easy
to check that it is a linear operator.

Corollary 2.3. Let E, F be p-normed spaces (0 < p ≤ 1), and let
T : E → F with T (0) = 0 be a surjective continuous map which preserves
equality of distance. Then

(i) T is linear ,
(ii) T = rV where r ∈ R and V is an isometry.

Proof. It is easy to see that (i) is a consequence of Theorem 2.1 and we
only need to prove (ii). Let φ be the gauge function for T . Since T is linear,
we see that for all x ∈ E with x 6= 0,

‖Tx‖
‖x‖

=
∥∥∥∥T(

x

‖x‖1/p

)∥∥∥∥ = φ(1).

Obviously, the equation ‖Tx‖ = φ(1)‖x‖ holds for x = 0. Thus the proof is
complete.

When φ is the identity function, i.e., φ(t) = t for all t ≥ 0, from Theo-
rem 2.2 we get the following result for isometries between F ∗-spaces.

Corollary 2.4. Let E,F be F ∗-spaces. Suppose that there exists a pos-
itive number r such that inf{‖2x‖/‖x‖ : x ∈ F, 0 < ‖2x‖ ≤ r} > 1. Let
V : E → F with V (0) = 0 be a surjective isometry , i.e.

‖V x− V y‖ = ‖x− y‖ for all x, y ∈ E.
Then V is linear.

Remark. Rolewicz’s book [7, p. 397] and his paper [8] contain the fol-
lowing result: Let a map T from a locally bounded space onto another locally
bounded space be an isometry with T (0) = 0. If the norms on two spaces
are concave, then T is linear. It should be pointed out that Rolewicz’s proof
of this result can also be applied to proving the above corollary.
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