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Summary. Results of Emmanuele and Drewnowski are used to study the containment
of ¢ in the space K+ (X*,Y), as well as the complementation of the space K= (X*,Y)
of w*-w compact operators in the space L+ (X™*,Y) of w*-w operators from X* to Y.

Definitions and notations. Throughout this paper X and Y will de-
note real Banach spaces and X* denotes the continuous linear dual of X. An
operator T : X — Y will be a continuous and linear function. By X ®, Y
we denote the injective tensor product of X and Y. Notation is consistent
with that used in Diestel [5]. Let (e,) be the Schauder basis of ¢, (€}) be
the basis of /1, and (e2) the unit vector basis of £3. The set of all contin-
uous linear transformations from X to Y will be denoted by L(X,Y), and
the compact (resp. weakly compact) operators will be denoted by K(X,Y)
(resp. W(X,Y)). The w*-w continuous (resp. w*-w continuous compact)
maps from X* to Y will be denoted by Ly« (X*,Y) (resp. Ky+(X*,Y)).

A bounded subset A of X is called a limited subset of X if each w*-null
sequence in X* tends to 0 uniformly on A. If every limited subset of X is
relatively compact, then we say that X has the Gelfand—Phillips property. If
every weakly compact operator defined on X is completely continuous, then
we say that X has the Dunford-Pettis property (DPP); see [6] and [1] for
inventories of classical results related to the DPP.

Introduction. Numerous authors have studied the containment of ¢g
in the spaces of compact operators K(X,Y) and K~ (X*,Y"). This problem
has been studied together with the complementation of the space of com-
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pact operators K« (X*,Y) (resp. K(X,Y)) in the space Ly+(X*,Y) (resp.
L(X,Y)) and the containment of lo in Ly« (X™*,Y) (resp. L(X,Y")). See Ba-
tor and Lewis [2|, Kalton [23], Emmanuele [13]|, Emmanuele and John [16],
Ghenciu [19], Lewis [25]|, and Tong and Wilken [31] for an indication of the
extensive literature that deals with these problems. The survey paper [29]
by Ruess is a valuable resource for the structure of the space of operators
Ky (X*Y).

Theorem 4 of Kalton [23] states that { embeds in K(X,Y) if and only
if it embeds in X* or in Y. In [8] Drewnowski generalized Theorem 4 of
Kalton and proved that ¢, embeds in K, (X*Y) if and only if it em-
beds in X or in Y. In this paper we use techniques of Emmanuele [11] and
Drewnowski’s result [8] to obtain results about the complementation of the
space Ku+(X*Y) of compact w*-w operators in the space L,+(X*,Y) of
bounded w*-w operators. Applications to the complementation of the space
K(X,Y) in W(X,Y) are given. We also give sufficient conditions for the
containment of ¢y in the space K« (X*,Y), resp. K(X,Y). Results in this
paper generalize results in [3], [11], [13], [14], [17], [20], [23], and [25].

Spaces of operators. We recall the following well-known isometries [29]:

1) Lo (X*,Y) n Ly (V*, X) and Koo (X*,Y) ~ Koo (Y*, X) (T — T,
2) W(X,Y) ~ Ly (X*,Y) and K(X,Y) = Kue (X*,Y) (T — T*).

It is known that if X is infinite-dimensional and ¢y — L(X,Y’), then
loo — L(X,Y) (see, e.g., [23] and [25]). Part (i) of the following theorem
generalizes this result, as well as Theorem 3 in [3].

THEOREM 1.

(i) Suppose that X and Y are infinite-dimensional and S is a closed
linear subspace of L(X,Y) which contains all the rank one operators
Ry, e X yeY. Ilf cog = S and S is complemented in
L(X,Y), then loo — S.

(ii) Suppose that X and Y fail to have the Schur property, and S is
a closed linear subspace of Ly~ (X*,Y') which contains all rank one
operators t @y, x € X,y €Y. If co — S and S is complemented
in Ly« (X*,Y), then loo — S.

Proof. (i) Consider the following two cases.

Suppose first that ¢y < Y and let (y,) be a copy of (ey,) in Y. Use the
Josefson—Nissenzweig theorem and choose a w*-null normalized sequence
(xF) in X*. Define J : oo — L(X,Y) by

J0)@) = Y buat (), wE X
Then J is an isomorphism, and, if b is finitely supported, J(b) € S.
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Now suppose that ¢y == Y. Let B : ¢g — S be an isomorphic embedding.
Note that > [(B(en)(x),y*)| < oo for all z € X and y* € Y*. Since ¢y «» Y,
> B(ep)(x) is unconditionally convergent in Y for all x € X. Define p by
p(0) =0 and

w(A) = Z B(en) (strong operator topology)
neA
for any non-empty subset A of N. Note that u is bounded, finitely additive
and not strongly additive (||u({n})|| - 0). Apply the Diestel-Faires theorem
to obtain o, — L(X,Y), and observe that if A is a finite subset of N, then
n(A) e S.

Now suppose that S is complemented in L(X,Y), andlet P: L(X,Y) — S
be a projection. Let v(A) = P(xa) for A C N. The first part of the proof
shows that /o, — L(X,Y), thus v is well-defined. Then v : P(N) — S is
bounded and finitely additive. Moreover, ||[v({n})|| - 0. Therefore another
application of the Diestel-Faires theorem tells us that oo — S.

(ii) Assume first that ¢g < Y. Let (x;,) be a w-null normalized sequence
in X and (yy) be a copy of (e,) in Y. Define ¢ : £oo — Ly (X*,Y) by

$(b)(a*) =) bpa*(@n)yn, 2" € X7,

We note that the series converges unconditionally. To show that ¢(b) is a
w*-w operator, we need to prove that (¢(z)) is w-null for each w*-null net
(z}) in X*. We can suppose that (z}) is a w*-null net in Bx« by results
about the bounded X topology (or BX topology) for X* (|10, Chapter V]).
Let € > 0 and y* € By~. Since Yy, is wuc, there is an n € N such that

Yz [y (i)l <€/(2[blloc). Then

| Y ey )] < blle - Il < 5

On the other hand, limy Y ;" [bix) (2:)y*(yi)| = 0 since (7)) is a w*-null
net. Therefore, for « large,

(o) @a) y) < | Yo biwa @)y )| + | D bian(@)y* ()| <=
=1 ;

i=n+1

Hence ¢(b) is a w*-w operator. Further, if b € (., is finitely supported,
¢(b) € S. A result in [28] implies that o — Ly (X™*,Y) since ||¢(e,)|| - 0.
Similarly, if ¢p — X (and Y does not have the Schur property), then (o, —
Lo+ (X*,Y).

Without loss of generality assume that c¢g <+ X,Y and let B : ¢g — S be
an isomorphic embedding. Note that > B(e,)(x*) is wue, hence uncondition-
ally convergent for each x* € X* (since ¢y <= Y'). Similarly, > B(e,)*(y*) is
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unconditionally convergent in X for each y* € Y*. Then

Z B(e,) (strong operator topology)

is a w*-w operator from X* to Y. Define p : P(N) — Ly (X*,Y) by u(0) =0
and
u(A) = Z B(e,) (strong operator topology)
ncA

if A is a non-empty subset of N. Then p is bounded (by the Uniform Bounded-
ness Principle) and finitely additive, but u({n}) - 0. The o-algebra version
of the Diestel-Faires theorem [7| implies that foq < Ly« (X*,Y). Observe
that if A is a finite subset of N, then p(A) € S.

Now suppose that S is complemented in L,-(X* Y), and let P :
Ly+(X*,Y) — S be a projection. Let v(A) = P(xa) for A C N. Then v :
P(N) — S is bounded and finitely additive. Moreover, |[v({n})| - 0. By an-
other application of the Diestel-Faires theorem we conclude that /oo <— S. =

If X is infinite-dimensional and ¢o < Ly« (X*,Y), then L, (X*,Y) may
fail to contain /. It is not difficult to check that ¢y — Ky (41,¢1). In
fact, cg N Ky« (01, £1); see the closing remarks in this paper. However, since
Ky (01,01) = Ly~ (£1,£1), Drewnowski’s theorem makes it clear that (o, <
Loy (£1,07).

Our first corollary points out that the exclusion of ¢, is not possible if
X and Y do not have the Schur property.

COROLLARY 2. Suppose that cy < Ly (X*,Y) and X and Y do not
have the Schur property. Then log < Ly (X*,Y).

COROLLARY 3 (Ghenciu and Lewis, [20]).

(i) If X does not have the Schur property and co — Y, then lny —
Lo+ (X*,Y).

(ii) If co does not embed in X orY and co — Ky« (X*,Y), then log —
L+ (X*,Y) provided that X and Y do not have the Schur property.

Proof. Part (i) follows from the proof of Theorem 1, and (ii) is an imme-
diate corollary of the statement of the theorem.

The next theorem is motivated by results in [13].

THEOREM 4. Suppose that X has an unconditional and seminormal-
ized basis (x;) with biorthogonal coefficients (x¥), and T : X — Y is an
operator such that (T'(z;)) is a weakly null seminormalized basic sequence
inY. Let S(X,Y) be a closed linear subspace of L(X,Y") which properly
contains K(X,Y) such that ¢(b) € S(X,Y) for all b € l, where ¢(b)(x) =

Yobixf(x)T (), x € X. Then K(X,Y) is not complemented in S(X,Y).
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Proof. Let § > 0 and (v;;) = (uj) be a subsequence of (x;) such that
| T (u;) — T(uj)|| > 60 for @ # j. Denote the corresponding subsequence of
coefficient functionals by (u}). Note that > bjuj(2)T'(u;) converges uncon-
ditionally in Y for each x € X and b = (b;) € {o.

Let J : [(T'(ui)] — foo be a linear isometry, and let A : Y — {5 be
a continuous linear extension of J. Now suppose that K(X,Y') is comple-
mented in S(X,Y) and let P: S(X,Y) — K(X,Y) be a projection. Define
T:loo — L(X,Y) by

7(b)(z) = Z bjus(2)T(u;), =€ X,

Note that 7({s) C S(X,Y). Consider the operators APT : oo — K (X, lx)
and A7 : log — S(X, lso). Since 7(e;) = uj ® T'(uj;), 7(e;) is a rank one op-
erator, thus compact. Then AP7(e;) = At(e;) for each j € N. Proposition 5
of Kalton [23] produces an infinite subset M of N such that

APr(b) = A7(b), b€ loo(M).

Therefore AT(xar) is compact. But 7(xar)(u;) = T'(u;), j € M, and {T'(u;) :
j € M} is not relatively compact. Therefore 7(x /) is not compact. However,
this is a contradiction since A'[T ()] is an isometry. m

COROLLARY 5 (Emmanuele, [13]). Let Y be a Banach space without the
Schur property. Then K (¢1,Y) is not complemented in W (41,Y).

Proof. Let (y,) be a w-null normalized basic sequence in Y, X = ¢;, and
S(01,Y)=W(£1,Y). Define T : 44 — Y by T(x) = > xnyn, v = (x,) € (4.
If ¢: 0o — L(£1,Y) is defined as in the previous theorem, then ¢(b)(z) =
> bjzjy; for x = (xn) € {1. Since ¢(b)(e},) = (bnyn) is w-null, ¢(b) is weakly

compact for all b € {s. By Theorem 4, K(£1,Y) <> W({1,Y). m
The next corollary contains principal results of [11], [13] and [16].
COROLLARY 6.

(i) If boo — Y and X does not have the Schur property (or loo — X
and Y does not have the Schur property), then K«(X*,Y) is not
complemented in Ly« (X*,Y).

(i) If co — K(X,Y) and K(X,Y) # L(X,Y), then K(X,Y) is not
complemented in L(X,Y).

(iii) If co — Y and X does not have the Schur property (or cg — X
and Y does not have the Schur property), then K«(X*,Y) is not
complemented in Ly« (X*,Y).

(iv) If co — Ky=(X*Y) and X and Y do not have the Schur property,
then Ky« (X*,Y) is not complemented in Ly« (X*,Y).
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Proof. (i) Since oo — Y and { is injective, ¢o is complemented in Y.
Suppose that Ky« (X*,Y) <> Ly« (X*,Y). Then Ky (X*, log) <= Ly (X*, loo).
Let P be a projection of Ly« (X*, ) onto Ky« (X, lo). Note that W (41, X)
~ Ly (X*, loo) and K (€1, X) =~ Ky (X*, £s). Hence the projection P may
be viewed as an operator from W ({1, X) onto K ({1, X). Apply Corollary 5
now.

(i) Suppose that K(X,Y) <> L(X,Y). By Theorem 1, loo — K(X,Y).
Apply Theorem 4 of Kalton [23] to conclude that o, < X* or oo — Y.
The first case produces a contradiction in view of Lemma 3 of Kalton [23]. If
loo — Y, then ¢y — Y, and the conclusion follows from Corollary 1 of
Feder [17].

(iii) Suppose that ¢y <— Y and X does not have the Schur property.
Assume that Ku«(X*,Y) <> Ly (X*,Y). Theorem 1 implies that (o —
K,+(X*,Y). Drewnowski’s result [8] implies that foo — X or loo — Y.
However, this is not possible by part (i).

(iv) The same proof as for (iii). m

Our proof of Corollary 6 made use of the following result in [17]:

THEOREM 7 (Feder, [17]). Suppose T is an operator in L(X,Y") which is
not compact and (T,,) is a sequence in K(X,Y) such that for each x € X,
the series >, Ty (z) converges unconditionally to T'(z). Then K(X,Y) is not
complemented in L(X,Y).

In [11] Emmanuele proved that the containment of ¢p in K(X,Y) is
equivalent to the hypothesis of Feder’s theorem. He used this to obtain (ii)
of Corollary 6 above. In the next theorem we obtain an analogue of Feder’s
theorem in L« (X*,Y).

THEOREM 8. Suppose T is an operator in Ly« (X*,Y") which is not com-
pact and (T,,) is a sequence in Kyu«(X*,Y) such that for each x* € X*,
the series > Ty (x*) converges unconditionally to T'(xz*). Then Ky+(X*,Y)
is not complemented in Ly« (X*,Y). Furthermore, log — Ly+(X*,Y).

Proof. Since Ly (X*,Y) # Ky« (X*,Y), X and Y do not have the Schur
property (if X or Y has the Schur property, Ky«(X*,Y) = L,+(X*,Y)).
Without loss of generality assume ¢y <> X,Y (by Corollary 6(iii)), hence
ls < X,Y. Suppose the operator T and the sequence (7),) are as in the
hypothesis. Since T is not compact, »_ T, diverges in the norm topology of
K+ (X*,Y). This divergence and the pointwise unconditional convergence
of the series > T, (z*) allow us to reblock the sum and to assume that
1T = 0.

Now use the Uniform Boundedness Principle, the finite-cofinite alge-
bra of the subsets of N, and the Diestel-Faires theorem to conclude that
co — Ky« (X*,Y); see the proof of Theorem 1 for details. (Alternatively,
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note that > T, is weakly unconditionally convergent and not unconditionally
convergent.) If K,«(X*,Y) were complemented in L+ (X*,Y’), then Theo-
rem 1 would place £ in K+ (X*,Y). Another application of Drewnowski’s
result [8] would provide the contradiction that ¢, would embed in either
X or Y. To see that o embeds in L« (X*Y) simply apply Theorem 1
again. m

REMARK. The hypothesis of the previous theorem implies that the se-
ries > T), is wuc (by the Uniform Boundedness Principle) and not uncon-
ditionally convergent in K, (X™*,Y"), hence ¢y embeds in Ky« (X*,Y). Con-
versely, if ¢p embeds in Ky« (X™*,Y), but neither in X nor in Y, then there
is a sequence (T},) which satisfies the hypothesis of Theorem 8. In fact, if
cp « X, Y, then oo «» X, Y and thus lo = K= (X*,Y) [8]. Let (T},) be a
copy of (ep) in K+ (X*,Y). Define ¢ : loo — L(X*,Y) by

s(0)(@*) =D bpTn(z"), a*€ X",

This series is unconditionally convergent and ¢(b) is a w*-w operator. If ¢(b)
is compact for each b € l, then ¢ : oy — Ky« (X*,Y) is weakly compact
(since loo o Ky (X*,Y), [28]). Then ||¢(en)| = ||Tn|| — 0. This is a con-
tradiction. Therefore there is a by € ¢, such that ¢(bp) is not compact. The
series »_ bon Ty, and the operator ¢(by) satisfy the hypothesis of Theorem 8.

We are now in a position to present a concise and straightforward proof
of the main result in [13| and to obtain several corollaries concerning the
structure of K(X,Y) and W(X,Y).

THEOREM 9 ([13, Theorem 4|). Suppose co — Ky (X*,Y). Then ei-
ther Ky«(X*,Y) = Ly« (X*Y), or Ky«(X*,Y) is not complemented in
Lo (X%,Y).

Furthermore, Ky« (X*,Y) = Ly (X*,Y) if and only if only one of the
following is true:

(1) co =Y and X has the Schur property,
(ii) co — X and Y has the Schur property.

Proof. If g — Kyp+(X*,Y) and Ky« (X*,Y) # Ly« (X*,Y), then Corol-
lary 6(iv) implies that Ky« (X*,Y) is not complemented in Ly« (X*,Y).

Now assume that Ky«(X*,Y) = L,«(X*,Y) and ¢y embeds neither in
X nor in Y. The proof of Theorem 1 shows that if cg — K, (X*,Y), but
cp » X,Y, then o — K+ (X*,Y). Therefore lo, — X or log — Y [8].
This contradiction shows that either ¢g < X or ¢y — Y.

If cp — Y and X does not have the Schur property, then K«(X*,Y) is
not complemented in L, (X*,Y) by Corollary 6(iii). Hence X has the Schur
property and (i) must hold. m
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Corollaries 10-12 make use of the following isometries:
W(X,Y) >~ Ly« (X™Y), K(X,Y)~ Ky«(X™Y).

COROLLARY 10. Suppose Y is the second Bourgain—Delbaen space which
18 an Loo-space which has the RNP and Y™ is isomorphic to £1. Then co <
K(Y)Y).

Proof. Since Y* is a Schur space, it follows that K(Y,Y) = W(Y,Y)
and ¢y <« Y*. Further, ¢g < Y since Y has the RNP. By Theorem 9,
o+~ K(Y)Y). n

COROLLARY 11. SupposeT : X — 'Y is a weakly compact operator which
is not compact and (T,,) is a sequence in K(X,Y') such that for each x € X,
the series >, Ty, () converges unconditionally to T'(z). Then K(X,Y) is not
complemented in W (X,Y'). Furthermore, loo — W(X,Y).

Proof. Apply Theorem 8. =
COROLLARY 12.

(i) If co — Y and X* does not have the Schur property, then K(X,Y)
is not complemented in W (X,Y) and logc — W(X,Y).

(i) If co — K(X,Y) and K(X,Y) # W(X,Y), then K(X,Y) is not
complemented in W(X,Y) and loo — W(X,Y).

Proof. (i) Apply Corollary 6(iii) to deduce that K(X,Y) R W(X,Y).
An application of Corollary 2 concludes the proof.

(ii) Apply Theorem 9 to find that K(X,Y) o W(X,Y). An application
of Corollary 2 concludes the proof. m

The next theorem, as well as several subsequent corollaries, show that
many familiar spaces of operators contain complemented copies of ¢g.

THEOREM 13. Suppose that (x;) is an unconditional and seminormal-
ized shrinking basis for X and (x}) is the associated sequence of coeffi-
cient functionals. Let T be an operator in Ly«(X*,Y) such that (T'(x}))
is seminormalized. Then ¢y — Kuye(X*)Y), Ky (X*,Y) & Ly (X*,Y),
and los — Lo+ (X*,Y). Moreover, ¢y < Ky (X*,Y).

Proof. Since (x,) is an unconditional shrinking basis for X, () is an
unconditional basis for X*, and the series > *(zy)z], converges uncondi-
tionally to x* for all z* € X* (|32, Thm. 17.7]). Note that (T'(z})) is w-null
since (z7) is w*-null. Bessaga—Pelczynski’s selection principle allows us to
assume that (T'(z})) is a w-null basic sequence in Y. If T; : X* — Y,
Ti(z*) = o*(z;)T(z}), then T; € K,«(X*,Y) and the series ) T;(z*) con-

verges unconditionally to T'(z*) for all * € X*. Since T is not compact,
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> T, is weakly unconditionally convergent and not unconditionally con-
vergent, and thus ¢y — Kyu+(X*,Y). By Theorem 8, K,+(X*,Y) is not
complemented in Ly« (X*,Y) and oo — Ly (X*,Y).

Choose ¢ > 0 and intertwining sequences (my), (ng) of positive inte-
gers so that || 327% Tl > ¢ for each k. Let Ly = > T;, k € N. Note
that > Li(z*) converges unconditionally for each z* € X* since > T;(x*) is
unconditionally convergent. Hence > Lj is weakly unconditionally conver-
gent in K+ (X*,Y). Moreover, inf || Lg|| > 0. By Lemma 3 on p. 160 of [3],
(L) ~ (ex)-

Let (y}) in Y* be a biorthogonal sequence of coefficients of (T'(z})).

(2
We may suppose that ||yf]| < 1. If L € K,+(X*,Y), then (zf @ y7,L) <
| L(z¥)|| — 0. Hence (2} ® y¥) is w*-null in (K« (X*,Y))". For each my, <
i < ng, (f @yl L) = (] @ yf,T;) = 1. Then (Ly) is not limited. By a
result on p. 36 of Schlumprecht [30], ¢y < K+ (X*,Y). u

THEOREM 14. Let X and Y be infinite-dimensional Banach spaces satis-
fying the following assumption: if T is an operator in Ly« (X*,Y"), then there
is a sequence of operators (T),) in Ky« (X*,Y) such that for each x* € X*,
the series Y T, (x*) converges unconditionally to T'(z*). Then the following
are equivalent:

(i) Ko+ (X*,Y) % Lo+ (X*,Y).

(ii) X and Y do not have the Schur property and co — Ky+(X*,Y).
(iii) X and Y do not have the Schur property and log — Ly (X*,Y).
(iv) K+ (X*,Y) is not complemented in Ly+«(X*,Y).

Proof. (i)=(ii). Let T € Ly (X*,Y) be noncompact. Then X and Y do
not have the Schur property. Let (7)) be a sequence as in the hypothesis.
By the remark after Theorem 8, ¢y — K+ (X*,Y).

(ii)=-(iii) by Corollary 3 (or Corollary 2).

(ii))=(1). If Kup«(X*,Y) = Ly (X*Y), then oy — Ky (X*,Y). By
Drewnowski’s result [8], oo = X or oo — Y. By Corollary 6(i), K+ (X*,Y)
%> Ly (X*,Y), a contradiction.

(iv)=-(i) is trivial, and (ii)=-(iv) by Corollary 6(iv). m

A separable Banach space X has an unconditional finite-dimensional ex-
pansion of the identity (u.f.d.e.i.) if there is a sequence (A,,) of finite rank

operators from X to X such that ) A, (x) converges unconditionally to x
for all z € X. In this case, (4,) is called an u.f.d.e.i. of X [18].

COROLLARY 15. If either Y or X has an u.f.d.e.i., then the following
are equivalent:

(i) Kuw(X*Y) # Ly (X*Y).
(ii) X and Y do not have the Schur property and co — K+ (X*,Y).
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(iii) X and Y do not have the Schur property and log < Ly (X*,Y).
(iv) K+ (X*,Y) is not complemented in Ly+«(X*,Y).
(v) X and Y do not have the Schur property and co < K+ (X*,Y).

Proof. Suppose Y has an u.fd.ei. (A,). Then A, : Y — Y is com-
pact for each n and y = > A, (y) unconditionally for each y € Y. Let T €
Ly« (X*,Y). Hence T(z*) = > A,T(x*) unconditionally for each z* € X*
and A, T € K, (X*,Y). Apply Theorem 14 to find that the first four state-
ments are equivalent.

Now, if Y has an u.f.d.e.i. then Y must be separable, hence it has the
Gelfand-Phillips property [4]. By Theorem 18 in [13], if ¢g — K+ (X*,Y),
then cg <> K+ (X*,Y). Hence (ii)=(v). (v)=>(ii) is trivial.

Assume that X has an u.f.d.e.i. (4,). Then A, : X — X is compact and
z = Y, Ap(x) unconditionally for each z € X. Let T € Ly+(X*,Y). Then
T*(y*) = > A,T*(y*) unconditionally for each y* € Y* and T,, = A, T €
K+ (Y*, X). Now apply Theorem 14 and use the isometry K-(X*,Y) ~
Kp(Y*, X).

COROLLARY 16 ([13, Corollary 9]). Let X and Y be infinite-dimensional
Banach spaces such that X* or'Y has an u.f.d.e.i. Then the following are
equivalent:

() K(X,Y) £ W(X,Y).

(ii) X* and Y do not have the Schur property and co — K(X,Y).
(iii)) X* and Y do not have the Schur property and loo — W (X,Y).
(iv) K(X,Y) is not complemented in W(X,Y).

(v) X* and Y do not have the Schur property and ¢y < K(X,Y).

Proof. Apply the isometries at the beginning of this section and Corol-
lary 15. m

COROLLARY 17. Suppose that X* has an u.f.d.e.i. (A,) consisting of
w*-w operators. Then the conclusion of Corollary 15 is true.

Proof. Let (Ay) be an u.f.d.e.i. for X* consisting of w*-w operators. Let
T € Ly«(X*Y) and T,, = TA,,. Then z* = ) A, (z*) unconditionally for
each z* € X*, T*(Y*) C X, A7 (X™) C X, and T, is compact for each n.
We will show that 7T;, is w*-w continuous. Let (z}) be a w*-null net in Bx~
and y* € Y*. For each n € N,

(" Talag)) = (AT (y"), 25) — 0.

Then T), € Ly~ (X*,Y), and thus T, € K+ (X*,Y"). Since the series > T),(z*)
converges unconditionally to T'(xz*) for each z* € X* an application of The-
orem 14, Theorem 18 in [13], and the isometry K« (Y™*, X) ~ K« (X*,Y)
concludes the proof. =
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The following result is motivated by Theorem 1 in [14].

A sequence (X,,) of closed subspaces of a Banach space X is called an
unconditional Schauder decomposition of X if every x € X has a unique
representation of the form x = >z, with z,, € X,, for every n, and the
series converges unconditionally [26].

COROLLARY 18. Let X and Y be infinite-dimensional Banach spaces
satisfying the following assumptions:

(a) Y is complemented in a Banach space Z which has an unconditional
Schauder decomposition (Zy,).

(b) L(X*, Z,) = K(X*,Z,) for each n. Then the conclusion of Theo-
rem 14 1is true.

Proof. Let T € Ly (X*Y), An : Z — Z,, Ap(>_2) = zn, and P
the projection of Z onto Y. Define T}, : X* — Y by T, (z*) = PA,T(z*),
z* € X* n € N. Note that T}, is compact since L(X*, Z,,) = K(X*, Z,), and
T, is w*-w continuous for each n. Since for each z € Z, z = Y A, (z) and the
convergence is unconditional, > T},(z*) converges unconditionally to T'(z*)
for each z* € X*. An application of Theorem 14 gives the conclusion. =

The hypothesis (b) of the previous theorem is satisfied, for instance, in
the following cases:

(1) X is arbitrary and each Z, is finite-dimensional;

(2) ¢1 «» X* and each Z,, has the Schur property;

(3) X = ¢; and each Z,, has the Schur property;

(4) X** has the Schur property and each Z, has (RDP*).

COROLLARY 19. If ¢ «» X*, Y is complemented in a Banach space Z
which has an unconditional Schauder decomposition (Zy,), and each Z, has
the Schur property, then the conclusion of Corollary 15 is true.

Proof. Since Z has an unconditional Schauder decomposition (Z,,) and
each Z, has the Schur property, Z, hence Y, has the Gelfand—Phillips prop-
erty [9]. Apply Corollary 18 and Theorem 18 in [13] to get the conclusion. =

The following theorem continues a theme of Theorem 13 and gives suf-
ficient conditions for K,«(X*,Y) to contain isomorphic (complemented)
copies of ¢g.

THEOREM 20. Let X and Y be Banach spaces satisfying the following
assumption: there erxists a Banach space G with an unconditional basis (gn)
and biorthogonal coefficients (g);) and two operators R : G — Y and S :
G* — X such that (R(g;)) and (S(g})) are seminormalized sequences and
either (R(g;)) or (S(g})) is a basic sequence. Then co embeds in K«(X*,Y)
(indeed, in any subspace H of L(X*,Y) which contains X ®,Y).
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Moreover, if (R(g;)) and (S(g})) are basic and Y (or X) has the
Gelfand—Phillips property, then K,«(X*,Y) contains a complemented copy

of cp.

Proof. Suppose that p < [|R(g;)|| < g and p < ||S(g})|| < ¢ for all i. Let
S(97) @ R(gi) € Ku(X*,Y), (S(g7) ® R(gi), 2*) = 27 (5(¢7)) R(gi), 2™ € X™.

Assume without loss of generality that (R(g;)) is a basic sequence. Choose
C1 > 0 so that for all real numbers (b;) and all positive integers m < n,

|3 beres
=1

Then ||b;R(g;)|| < 2C4 || Z?Zl biR(g;)| for each 1 <i <mn.
We have, for any sequence (a,,) of real numbers,

Hzaz (97) © R(g:) H _SUP{HZCM R(g:)

1 * * *
> sup {QC Joaa* (SN Rlao) o° € B

< H z”: biR(gi)
i=1

1113'* S BX*}

= Dplail [|S(g) p ‘GZ‘

! B
- 20 - 20

for each 1 < ¢ < n. Hence

2(max la;|).

|3 aiston @ Ro)

i=1

On the other hand, S and R induce an operator S ®) R : G* ®\ G —
X ®,Y, which maps (¢} ® g») into (S(g;) ® R(gn)) (|7, Chapter VIII|). So

we have

L2

|- alstan o R, < 156 Al X atsi @),
i=1 =1

Let ({97 (9)g:}) = sup{>_ g% (9;(9)gi)| : g* € Bg+} for g € G and let M be
the unconditional basis constant of the unconditional basis (gy,).

If g€ G and ¢g* € B+, then g =) g7 (g)g; unconditionally, > |¢* (g7 (9)g:)|
< 2M||g||, and sup{e({g;(9)g:i}) : g € Bg} < 2M. Consequently,

n
| > aitgr @9
=1

<SUP{Z|azgz 9)l:9 € Be, g GBG*}

< 2M (mlax ),
1=
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and therefore
|- ails(e) ® Rg)]|, < 2018 ©x Rl it .
i=1

Hence (S(g) ® R(gn)) ~ (en) and thus ¢y — Ky« (X*,Y).

To prove the last part of the theorem, suppose that Y has the Gelfand—
Phillips property and both (R(g,)) and (S(g;;)) are basic. If (R(gy)) is lim-
ited, then R(g,) — 0 since (R(gy)) is relatively compact and the only weak
limit of a basic sequence is zero [5, p. 42]. Therefore (R(gy)) is not limited.
By a result of Schlumprecht [30], we can choose a w*-null sequence () in
Y™ such that (v, R(gm)) = dnm- Let (z)) be a bounded sequence in X* such
that (x7,5(gr,)) = dnm- We may assume that ||z} || < 1. Then (2} ® y}) is
a w*-null sequence in (K« (X*,Y))* since for each T' € K« (X*,Y),

(2, @yp, T) = (T(x7.), yp) < 1T (yp)ll — 0.
Also, (x} @y, S(g},) @ R(gm)) = Onm, thus (S(g),) @ R(gm)) is not limited.
By Theorem 1.3.2 in [30], cg <> Ky (X*,Y). =

REMARK. From Theorem 20 and the first example at the end of the
paper it follows that ¢y embeds in K+ (X*Y) when ¢ embeds in both X

and Y. In fact, cg <> Ky (X*,Y).

COROLLARY 21 ([11, Theorem 3|). Let X and Y be Banach spaces sat-
1sfying the following assumption: there exists a Banach space G with an
unconditional basis (gn) and biorthogonal coefficients (g) and two operators
R:G—Y and S: G* — X* such that (R(g;)) and (S(g;)) are normalized
basic sequences. Then ¢y — K(X,Y).

Moreover, if Y (or X*) has the Gelfand—Phillips property, then K(X,Y)
contains a complemented copy of cg.

Proof. Apply Theorem 20 and the isometry K- (X**,Y) ~ K(X,Y). m

Recall that a basis (x,) for X is said to be perfectly homogeneous if
it is seminormalized and every seminormalized block basic sequence with
respect to (x,) is equivalent to (x,) [32]. A perfectly homogeneous basis is
unconditional. The unit vector bases of ¢o and £,, 1 < p < oo, are, up to
equivalence, the only perfectly homogeneous bases (Zippin) [32, p. 609].

THEOREM 22. Suppose that (z}) is a perfectly homogeneous basic se-

n

quence in X*, [xf]* — X and T : [x}] — Y is a non-completely continuous

operator. Then ¢y — Ky (X*,Y), log — Ly« (X*,Y), and Ky (X*Y) is
not complemented in Ly~(X*,Y).

Proof. Suppose that (z}) is a perfectly homogeneous basic sequence,
[f]* — X, and T : [z}] — Y is an operator which is not completely con-
tinuous. Let U = [z}], and let (u}) be a weakly null sequence in U so that
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(T'(u))) - 0. Without loss of generality, suppose that € > 0 and ||T'(u})|| > &
for each n. Apply the Bessaga—Pelczynski selection principle [5] and let (v}))
be a subsequence of () so that (v}) is equivalent to a block basic sequence
of (x}). In fact, an inspection of the Bessaga—Pelczynski theorem shows that
we may assume that (v}) is seminormalized. Therefore (v}) ~ (x). Since

(x}) is unconditional, ¢y — K« (X*,Y) by Theorem 20. Apply Corollary 2
and Corollary 6(iv) to conclude the argument. m

COROLLARY 23.

(a) Assume that lo — X and there is an operator T : loy — Y such that

the sequence (T(e2)) is seminormalized. Then the four statements in
the conclusion of Theorem 14 hold.

(b) Assume that lo — Y and there is an operator T : by — X such that

the sequence (T(e2)) is seminormalized. Then the four statements in

the conclusion of Theorem 14 hold.

Proof. We prove (a); the case (b) is similar. An application of Theorem 22
(or 20) gives cp — K+ (X™,Y). We note that X and Y are not Schur spaces
by hypothesis. Thus, (ii) holds. The proof of Theorem 14 shows that (ii)=-(i),
(il)=(iii), and (ii)=(iv). =

REMARK. A similar proof shows that if /3 — X and ¢, — Y for some
p > 2, then the four statements in the conclusion of Theorem 14 hold.

COROLLARY 24. Assume that lo — X* and there is an operator T :
lo — Y such that the sequence (T'(e2)) is seminormalized. Then the first

n
four statements in the conclusion of Corollary 16 are true.

Proof. Apply Corollary 23. u

In [17] Feder proved that K (C(S), L) is not complemented in L(C(S), L*)
when S is not dispersed. See also [12]. The following corollary improves
Feder’s result.

COROLLARY 25. Assume that S is a Hausdorff compact space which is
not dispersed. Then K(C(S), L") is not complemented in W (C(S), L').

Proof. Since S is not dispersed, £1 — C(S) [24]. Then L' — C(S)* [27].
Also, the Rademacher functions span /5 inside of L', and thus /5 < C(S)*.
Corollary 21 implies that co — K(C(S), L'). By Corollary 24, K(C(S), L!)
is not complemented in W (C(S),L'). m

See the last section of this paper for a generalization of Corollary 25.

COROLLARY 26 ([13, Corollary 12|). Assume that X has the DPP and
there is an operator T : fo — Y such that the sequence (T(e2)) is seminor-
malized. Then the first four statements in the conclusion of Corollary 16 are

equivalent.
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Proof. We only have to show that (i)=-(ii). Since K(X,Y) # W(X,Y),
X* and Y do not have the Schur property. Since X has the DPP and X* is
not a Schur space, {1 — X [21], [6].

Then L' — X* (by a result in [27]), hence f5 — X* [5]. By Theorem 20,
co — K(X,Y). The rest follows from Corollary 24. =

In [22] the authors proved that if X and Y are weakly sequentially com-
plete and Ky« (X*,Y) = Ly (X*,Y), then K,«(X*,Y) is weakly sequen-
tially complete. Now we give a partial converse.

COROLLARY 27. If Y (or X) has an u.f.d.e.i. and Ky~ (X*,Y) is weakly
sequentially complete, then Ky«(X*,Y) = L+ (X*,Y).

Proof. By Corollary 15, if K,«(X*,Y) # Ly (X*Y), then ¢g —
K+ (X*,Y), a contradiction. m

Closing remarks. Emmanuele made the following two observations on
p. 334 of [11]:

(a) If 44 — X and ¢, — Y for some p > 2, then ¢y — K(X,Y) and
K(X,Y) < L(X,Y).
(b)If1/p+1/p'=1and 1 < p' < ¢ < oo, then ¢ N by ®c ly.

In case (a) we can actually show that K(X,Y) N W(X,Y). Suppose that
l{y — Xand/{, —Y,p>2 Then L; — X*, and thus fo — X*. By Theorem
20, cog — K+ (X*,Y). By Corollary 6, K, (X**,Y) is not complemented in
L+ (X**,Y). Now use the natural isometries at the beginning of the previous
section to conclude that K (X,Y) is not complemented in W(X,Y).

Since K({p,ly) = Ky+(Lp,ly) # L(lp,4y) = Ly+(lp,£y), Theorem 13
allows us to see that ¢y <> Ky, ly), looc — L(ly,Ly), and K (€, L) R
L(¢p,¢q) whenever 1 < p < ¢ < oo.

Since X — K«(X*,Y), obviously ¢y — Kyu=(¢1,Y) for every Banach
space Y. By Theorem 18 in Emmanuele [13] , ¢ <> K- (£1,Y) whenever Y
has the Gelfand—Phillips property. Thus ¢g is complemented in Ky« (41, ¢1).
Further, Theorem 13, as well as the Emmanuele result just cited, show
o < Ky (41,¢,), 1 < p < oo. In fact, we can conclude more. Suppose that Z
contains an infinite-dimensional subspace Y which has a shrinking and semi-
normalized basis (y,). Let (y;;) be the associated sequence of coefficient func-
tionals. Define L : {1 — Y by L(A) = Y72, A\iyi. Then L*(y}) = e, € ¢ for
each k. Since (yy,,) is shrinking, L is a w*-w continuous operator and satisfies
the hypotheses of Theorem 13. (Theorems 14 and 20 also apply to this set-
ting.) In fact, if one defines L : ¢, — Z by L(\) = L(\), then L € Ly ({1, Z).
Thus ¢g <= Ky (€1, Z), loo — Ly (€1, Z), and Ky (01, Z) < Ly (01, Z).
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We note that K,«(¢1,7) may also contain copies of ¢y which fail to
be complemented in this space of operators as well as copies of ¢y which are
complemented. For example, £, contains all spaces with shrinking bases, and

thus ¢g < Ky (41,0). However, £ naturally (and isometrically) embeds
in Ky (41, %), and thus the canonical copy of ¢y contained in ¢+, cannot be
complemented in this space of operators.

Similar arguments show that if 1 < p < ¢ < oo and ¢; — Z, then
co = K (bp, Z) = K(Up, Z), loo = Luy-(lp, Z) = L(£y, Z) and K (£, Z) <=
L(¢y, Z). Note also that K (¢p,{~) contains both complemented and uncom-
plemented copies of ¢q.

ExaMPLES. The first example shows that there are Banach spaces X and
Y such that cg «» X, Y, cg — K« (X*,Y), but Ky« (X*,Y) # L= (X*Y).
Clearly ¢g does not embed in £5. A direct application of Theorem 20 shows
that cg < K= (l2,02) and the identity operator from /o to ¢3 shows that
Kw* (627 €2) 7& Lw* (£2a Z2)

The next example [15] shows that we can find Banach spaces X and Y
such that ¢y <= K+ (X*,Y), but Ky« (X*,Y) = Ly« (X*,Y). Let E = F be
the Bourgain—Delbaen space which is an L, space with RNP and such that
E* is a Schur space even though ¢y <= E. Assume that ¢y — K+ (E**, E)
and let (7)) be a copy of ¢y in K« (E**, E). Define ¢ : log — L(E**, E)
by ¢(b)(x**) = > b, T (2**). Since ¢y <« E*, the series > b, T (y*) con-
verges unconditionally for each y* € E*, hence ¢(b) € L, (E**, E). Note
that ||¢(en)|| = ||Th]] - 0. A result of Rosenthal [28] implies that o, —
Ly« (E**, E). On the other hand, K« (E**, E) = Ly~ (E**, E) since E* is a
Schur space. By Drewnowski’s result, o, — FE or fo, — E*, a contradic-
tion. Hence ¢y < Ky« (E**, E). Thus the spaces X = E* and Y = E are as
desired.

Alternatively, for 1 < g < p, L({p,{q) = K(£p,{,) (Pitt). Kalton showed
that for 1 < ¢ < p, L({p,{,) is reflexive [23]. Thus ¢y < K({p,4,) =~
Ky (457, £g), and the spaces X = £} and Y = {, are as desired.

We conclude the paper by asking the following question.

QUESTION. Are there Banach spaces X, Y such that K,«(X*,Y) #
Ly (X*,Y) and ¢y < K= (X*,Y)?
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