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Summary. Supposing that the metric space in question supports a fractional diffusion,
we prove that after introducing an appropriate multiplicative factor, the Gagliardo semi-
norms ||f|lye.2 of a function f € L?(E, u) have the property

SEU) < limint (1= o) fllwos < limsup (1 = o) flwe < CE(S, 1),
o1 o1

where £ is the Dirichlet form relative to the fractional diffusion.

1. Inroduction. For f € LP(R%), 0 < ¢ < 1, p > 1, consider the
so-called Gagliardo seminorm of f:

x) — 1/p
(1.1) Ilhwesior = ((§ § L2 T )

02

where (2 is a connected open subset of R%. The restriction to o < 1 is
mandatory: when o > 1, then the finiteness of (1.1) results in f being a
constant function (see e.g. [8]). The seminorm (1.1) is the intrinsic seminorm
in the fractional Sobolev space WP (£2) (see [1, par. 7.43]). We are interested
in the behaviour of (1.1) as o approaches the critical value 0 = 1. Bourgain,
Brézis and Mironescu in [6], and further in |7], established the relation

(12)  lim (1 - N yonie) = Co § IVIP dz = Cyll £I1510 )
n
(12 is a smooth bounded domain in R?, f € WP(£2), p > 1). Note that the
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meaning of || - ||yyeo.r () is different for o < 1 and for o = 1, which is annoying
but consistent with traditional notation. For the special case p = 2, 2 = R?,
(1.2) follows from the previous work of Maz’ya and Nagel [18].

From another perspective, in this case (2 = R% p = 2, a < 1) the
expression

EOf, ) =Ca | |

R4 R4
(with domain D(£®)) = W®2(R%)) is the Dirichlet form of the subordinated
symmetric 2a-stable process on R?, while the Dirichlet integral

0=\ IVIPdz (=1fl}2),

Rd

U@ -1,

’.T — y|d+2a T (: HfHIZ/VO‘vQ)

with domain W12, is the Dirichlet form of the Brownian motion, and there-
fore the relation (1.2) asserts that the Dirichlet form of the Brownian motion
on R can be recovered from the Dirichlet forms of stable processes.

In this note, we are concerned with a similar phenomenon arising for
Brownian-like diffusions (fractional diffusions, see |2] for the definition) and
related stable processes on metric measure spaces. Namely, suppose that
E(f, f) is the Dirichlet form of the diffusion on a metric space (E, ) equipped
with an Ahlfors d-regular measure p, and for a € (0,1), € (@) is the Dirichlet
form of the subordinated 2a-stable process. Then a similar statement holds:
for any f € D(E),

(13) lim E(F, ) = E(F.6).

Similarly to the classical case, we can consider the Gagliardo seminorms

) — 2 1/2
(1.4) [l = (S A R LC0) du(y)> ,

d+20
vy o)

which are now nontrivial up to o = d,,/2, dy, being the walk dimension of
(E, 0,1) (in [20] it was proved that the finiteness of (1.4) with o > d,,/2
implies f = const). Since it is known (see Stos [21]) that the Dirichlet form
of the 2a-stable process compares to ||f||12/[/0¢dw«27 our statement (1.3) obliges
Il fIlwe.2 to tend to oo when o " d,,/2, and also, for f € D(E),

1 ..
Iel E(f. f) < hgl/lilf (1 = )| fllyaduw /2.2
<limsup (1 — &) fllyyadw/22 < CE(f, f).

a1
Since satisfactory differential techniques are unavailable in the setting
of general metric spaces, our proof requires a different approach than the
original one in [6, 7].
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2. Diffusion processes and their Dirichlet forms. Suppose that
(E, o) is a separable, locally compact metric space and that p is a Radon
measure on E such that

(2.1) Cird < w(B(z,r)) < Cor?

for some d > 1 and all z € E, r > 0 (i.e. the measure u is Ahlfors d-regular).
We require E to satisfy the chain condition:

(C) for any x,y € E and n >1 there exists a “chain” x = xg, 1, ...,Zn, =Y
such that o(z;, zi+1) < (C/n)o(z,y) (C a universal constant).

Further, assume that (E, g, 1) supports a Markovian kernel {p(t,z,y)},
i.e. a family of measurable functions p(¢,-,+) : E x E — R4, t > 0, which
satisfies:

(M1) p(t,x,y) = p(t,y,x) for all t > 0 and x,y € F (symmetry),

(M2) p(s+t,z,y) =\ p(s,z, 2)p(t, z,y)du(z) for all s,t >0 and z,y € E
(the Chapman—Kolmogorov identity, or the Markov property),

(M3) §,p(t,z,y)du(y) =1 for all t > 0 and € E (normalization),

(M4) p(t,z,y) >0 for all ¢ > 0 and =,y € F (irreducibility).

Our further assumption is that the Markovian kernel p(¢,x,y) satisfies
the following estimate for all ¢ > 0 and z,y € E:

B8/(B-1)
or,y
(2.2) dl//lg exp { - 01.2< Sgl/ﬁ )> } <p(t z,y)

B/(B—1)
1.3 o(z,y)
<td/ﬁexp{—cl.4( /8 > }

Examples of such spaces are the nested fractals (|2]) and other post-
critically finite self-similar sets ([15]), Sierpinski carpets ([3]), and spaces
that support the 2-Poincaré inequality ([22]). It is known that the param-
eter 3 does not depend on the particular kernel p(-,-,-), and is one of the
characteristic constants of (F, g, 1), called the walk dimension of E and de-
noted by dy(E) (or just dy). Under the chain condition (C), it is known
(see [2], [13]) that 2 < d, < d + 1. For the Euclidean space RY, as well
as other spaces supporting the 2-Poincaré inequality, the walk dimension is
equal to 2, regardless of d. The walk dimension of the Sierpiriski gasket in
RY is equal to log(d + 3)/log2 > 2. The exact value of the walk dimension
for the Sierpinski carpet is unknown.

It has been proven lately in [14] that if we require the basic estimate (2.2)
to be of the form (¢/t%5)®(o(x, y)/t"/?) with & : [0, 00) — [0, 00) decreasing,
then either & is an exponential function exp(—cs?/(#=1D) 5 > 2, and the
corresponding Markov process is a diffusion, or it is equal to 1/(1 + s)%*8
and the process is not diffusive.



260 K. Pietruska-Patuba

Denote by (P;);>0 the semigroup of selfadjoint contraction operators on
L?(E, 1) associated with {p(t,z,y)}, given by

L*(B,p) 3 f(x) = Pif(z) = | plt,z,9) f(y) dp(y).
E

We require the semigroup to be continuous at zero, i.e.
(M4) lim,_,g+ P,f = f for all f € L?(E, ), the limit taken in L?(E, p).

Such a strongly continuous semigroup on L?(F, 11) gives rise to a Dirichlet
form £. There are several ways of defining it; the most convenient for our
setting is the following (see [9], [11]). For f € L?(E, ) set

(23) E(5,0) = 7 ((F =~ Pof), Prizes
Because of (M1) and (M3), we have

@) &N =5} @)~ 7). 9) dut) duy).
EFE

By an easy application of the spectral theorem, for any given f € L2, the
mapping t — & (f, f) is decreasing. Therefore we can set

DE) ={f e L*(E,pu): igggt(ﬁ f) < oo},

Assuming (M1)—(M5) and (2.2), it has been shown (see [16], [19], [13])
that the domain of this Dirichlet form, D(£), is actually equal to the space
L = Lip(dw/2,2,00)(E).

The definition of this space is the following. For f € L?(E,pu) and n =
1,2,..., let

an(f) = I (f(x) = f())? du(x) du(y).

2= (n+1) <p(z,y) <27

(2.5)

Then

(2.6) ferl & sup[2ndtdelg, (f)] < co.
n>0

The norm in £ is
£ = ILF15 + sup [2r(ddwlg, (£)],

and turns £ into a Banach space. Also, there exists a universal constant C
such that for f € £ one has

GEULS) < sup 2", (1)] < CE(F, ),

n>0



Limiting Behaviour of Dirichlet Forms 261

Consider now the expression

(2.7) E@(f, f) =\ |

EE

) — 2
L) duta) du(y),

and introduce the following spaces A%? (E):
€ A3(E) & E(f, f) < oo,

with the norm
Hf”igf = |13 + E“(f, f).

In the fractal setting, they were first considered in [21]|, and subsequently
appeared in several articles. For a detailed account, see [12] or [17]. Note that
these spaces have been known by the name of Besov—Slobodetskil spaces. In
[20], we have proven that for o > 1, the finiteness of E(®)(f, f) for a function
f € L?(E,p) results in f = const, and so the choice of the smoothness
parameter « is restricted to (0, 1).

The following lemma is similar to its classical counterpart, nevertheless
we give its proof for completeness.

LEMMA 2.1. We have Lip(dy /2,2, 00)(E) C AZ*(E). Moreover, this em-
bedding is continuous,

11l 22 < Cllfllz

Proof. Take f € L. Split the integral defining E(®)(f, f) into two parts:
the first over the region o(z,y) > 1, the other over o(x,y) < 1.
The first one is finite for any f € L? : indeed,

) — 2
5 S
o(z,y)>1

00 r) — )
S TR LR () .

d+ady,
n=02"<g(z,y)<2m+1 ofz, )

<Y ey MW @) - F@) dut) duty)

2n<p(z,y)<2ntt

<2 oy M (G FW)) duta) duty)

27 <g(z,y)<2ntl

=13 sy W f@Pdp@) ) (by symmetry)

n 2n<o(z,y)<2nt!

=4y ﬁ g F@)u{y : 2" < olx,y) < 2"} du(z) < C|f13

n

(in the last equality we used (2.1)).
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As to the remaining integral, we write

z) — 2
I wa) du(y)
o(z,y)<1 ’

< ) onldtady) I (f(z) = f(y))* du(x) du(y)
n=0

2= (D) <p(z,y) <27

X 0o i 1 2d+adw2dw(1—a)
n=0

and the continuity of the embedding is proven. =

In particular, we see that all the spaces A3’2(E), a < 1, are dense in
L?(E, ). This is so because £, being the domain of the Dirichlet form of a
Markov process, is in particular dense in L?(E).

3. Stable processes and their Dirichlet forms

3.1. Preliminaries on stable processes on metric spaces. The following
definition of a stable process on a metric space supporting a fractional dif-
fusion is taken from [5].

For a fixed parameter a € (0,1), let (&)¢>0 be the a-stable subordina-
tor, i.e. the process whose Laplace transform is given by Eexp(—u&) =
exp(—tu®). Let ni(u), t > 0,u > 0, be its one-dimensional distribution den-
sity. For ¢t > 0 and z,y € X define

o0
Ptz y) = | plu, 2, y)m(u) du.
0
It is classical (see e.g. |4, p. 18]) that p®(¢,x,y) is the transition density of
a Markov process, which we denote by X and call the symmetric 2a-stable
process on E. For further properties of this process and its transition density
we refer the reader to [5].
From the property (see Th. 37.1 of [10])
li I4+a/2 _ o
i (w)u oI (1 — a/2)
and the scaling relation
me(u) =t 2/ (%), tu >0,
one deduces:
(P1) limy_ot b (u) = (/T(1 — ))u=172 for u > 0,
(P2) (formula (9) of [5]) n:(u) < ctu™17% for t,u > 0,
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(P3) (formula (10) of [5]) n¢(u) > ctu=1=% for t > 0 and u > ugt'/?,

where up = up(@).

The Dirichlet form of the 2a-stable process on F is defined by (2.3)—(2.5)

and will be denoted by E@(f, f). In [21] it was proven that D(£®)
AZ*(E), and that there exists a universal constant D = D(«) such that

(31) S B, f) < €O, f) < DEC(S, f).

3.2. The main theorem. First, we prove the following theorem.

THEOREM 3.1. Suppose f € D(E) (= Lip(dw/2,2,00)(E)). Then

; (@) -

Proof. In view of Lemma 2.1 and the characterization of the domain

D(EW@), £@)(f, f) is well-defined. The explicit formula for £(®) is

O, 1) = 2§ {062, 0)(F () — F))? () du(y)
E

(33)  =tim | (] plw.29)(f(2) = F@) dp) dply) )m(w) du
EE

8

= 211§ oz ) (F@) — £ )2 dule) dia(y)) tim 22
2 t—0

0 EFE

To justify the last step (of putting the limit under the integral sign) we use
the Lebesgue dominated convergence theorem: since for all u,¢ > 0 we have
ni(u) < ctu=!1=% (property (P2)), the integrand in (3.3), being equal to

3 (f = Puf, f>%u), can be estimated by

c
(3.4) W<f—Puf7f>~
For large u the contraction property of the semigroup yields
cllf13
(3.4) < e

which is integrable for large u, and for small u write

34y = ZElLT) 280

which in turn is integrable in the vicinity of 0 as long as o < 1.

Next, by (P1), one has

. ne(u) « 1
im = ,
t—0 t I'l—a) ulte




264 K. Pietruska-Patuba

and so by Fubini,

EOf ) = s | | S “iay du ) (f(z) — ()2 () dp(y)
2I'(1 — «) u
EFFE

o T
. — Y e nd
(35) F(la)éuacf(ff) u
It follows that for any fixed number a > 0, any o € (0,1), and any f € D(E),
as a result of the monotonicity of &,(f, f),

(@) a1l .o Ly
£ (f,f>zm_a)§ = Eulf. £) du F(l_a>€a(f,f)§)uad
« al—®
:F(l_a)]._aga(f7f).

In particular, we can choose a = 1 — o, which yields the estimate

« (1—a)t—
Ealf, f) = M- 1-a

Since limy_g+ t' = 1 and lim,_o+ &(f, f) = E(f, f), and lim;_ o+ t I'(t) = 1,
we obtain

(3.6) hm/lnfé’ )(f, ) =&, ).

gl—a(,ﬂ f)

The matching upper bound is simpler: this time around, write the integral

(3.5) as

1 00
@(f, f) = <S u(f5 f) du+§ ! Eulf, f)du>
1

= — (1 + 7).
I'l-a) (i + 1)
These integrals are dealt with separately: I; will give the proper asymptotics,
and I» will be negligible.
More precisely, since &,(f, f) — E(f, f) and the limit is increasing, one
has

—_

L<EfN) 5=

0
The integral I can be rewritten as
o0
L= = (f = Puf, f)d
2 — u1+a uJ U

1
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and since the P,’s are contractions, |(f — P.f, f)| < 2||f||3. Therefore

T od 2
1L < 20713 § s = = 1718,
1
and so
(@) o 24 2
ENEA) S e (B D+ 2 A= lSIR).
giving

limsupg(a)(f,f) <E(f,f) m
a1

As a corollary, we obtain

THEOREM 3.2. Suppose that & is the Dirichlet form associated with a
fractional diffusion on (E,o,p) and let E(f, f), a € (0,1), be defined
by (2.7). Then for any f € Lip(dy/2,2,00)(E) we have

(3.7) ég(f, f) < ligl/i{lf (1= a)EY(f, )
<limsup (1 — ) E(f, f) < CE(f, f)
a1

where the constant C' does not depend on f.

Proof. This follows from the representation (3.5) and the transition den-
sity estimate (2.2). m
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