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Summary. Supposing that the metric space in question supports a fractional diffusion,
we prove that after introducing an appropriate multiplicative factor, the Gagliardo semi-
norms ‖f‖Wσ,2 of a function f ∈ L2(E,µ) have the property

1

C
E(f, f) ≤ lim inf

σ↗1
(1− σ)‖f‖Wσ,2 ≤ lim sup

σ↗1
(1− σ)‖f‖Wσ,2 ≤ CE(f, f),

where E is the Dirichlet form relative to the fractional diffusion.

1. Inroduction. For f ∈ Lp(Rd), 0 < σ < 1, p > 1, consider the
so-called Gagliardo seminorm of f :

‖f‖Wσ,p(Ω) =
( �

Ω

�

Ω

|f(x)− f(y)|p

|x− y|d+σp
dx dy

)1/p

,(1.1)

where Ω is a connected open subset of Rd. The restriction to σ < 1 is
mandatory: when σ ≥ 1, then the finiteness of (1.1) results in f being a
constant function (see e.g. [8]). The seminorm (1.1) is the intrinsic seminorm
in the fractional Sobolev spaceW σ,p(Ω) (see [1, par. 7.43]). We are interested
in the behaviour of (1.1) as σ approaches the critical value σ = 1. Bourgain,
Brézis and Mironescu in [6], and further in [7], established the relation

lim
σ↗1

(1− σ)‖f‖pWσ,p(Ω) = Cp
�

Ω

|∇f |p dx = Cp‖f‖pW 1,p(Ω)
(1.2)

(Ω is a smooth bounded domain in Rd, f ∈W 1,p(Ω), p > 1). Note that the
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meaning of ‖·‖Wσ,p(Ω) is different for σ < 1 and for σ = 1, which is annoying
but consistent with traditional notation. For the special case p = 2, Ω = Rd,
(1.2) follows from the previous work of Maz’ya and Nagel [18].

From another perspective, in this case (Ω = Rd, p = 2, α < 1) the
expression

E(α)(f, f) = Cα
�

Rd

�

Rd

(f(x)− f(y))2

|x− y|d+2α
dx dy (= ‖f‖2Wα,2)

(with domain D(E(α)) = Wα,2(Rd)) is the Dirichlet form of the subordinated
symmetric 2α-stable process on Rd, while the Dirichlet integral

E(f, f) =
�

Rd
|∇f |2 dx (= ‖f‖2W 1,2),

with domain W 1,2, is the Dirichlet form of the Brownian motion, and there-
fore the relation (1.2) asserts that the Dirichlet form of the Brownian motion
on Rd can be recovered from the Dirichlet forms of stable processes.

In this note, we are concerned with a similar phenomenon arising for
Brownian-like diffusions (fractional diffusions, see [2] for the definition) and
related stable processes on metric measure spaces. Namely, suppose that
E(f, f) is the Dirichlet form of the diffusion on a metric space (E, %) equipped
with an Ahlfors d-regular measure µ, and for α ∈ (0, 1), E(α) is the Dirichlet
form of the subordinated 2α-stable process. Then a similar statement holds:
for any f ∈ D(E),

lim
α↗1
E(α)(f, f) = E(f, f).(1.3)

Similarly to the classical case, we can consider the Gagliardo seminorms

‖f‖Wσ,2 =
( �

E

�

E

(f(x)− f(y))2

%(x, y)d+2σ
dµ(x) dµ(y)

)1/2

,(1.4)

which are now nontrivial up to σ = dw/2, dw being the walk dimension of
(E, %, µ) (in [20] it was proved that the finiteness of (1.4) with σ ≥ dw/2
implies f ≡ const). Since it is known (see Stós [21]) that the Dirichlet form
of the 2α-stable process compares to ‖f‖2

Wαdw,2 , our statement (1.3) obliges
‖f‖Wσ,2 to tend to ∞ when σ ↗ dw/2, and also, for f ∈ D(E),

1
C
E(f, f) ≤ lim inf

α↗1
(1− α)‖f‖Wαdw/2,2

≤ lim sup
α↗1

(1− α)‖f‖Wαdw/2,2 ≤ CE(f, f).

Since satisfactory differential techniques are unavailable in the setting
of general metric spaces, our proof requires a different approach than the
original one in [6, 7].
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2. Diffusion processes and their Dirichlet forms. Suppose that
(E, %) is a separable, locally compact metric space and that µ is a Radon
measure on E such that

C1r
d ≤ µ(B(x, r)) ≤ C2r

d(2.1)

for some d ≥ 1 and all x ∈ E, r > 0 (i.e. the measure µ is Ahlfors d-regular).
We require E to satisfy the chain condition:

(C) for any x, y ∈E and n≥1 there exists a “chain” x= x0, x1, . . . , xn = y
such that %(xi, xi+1) ≤ (C/n)%(x, y) (C a universal constant).

Further, assume that (E, %, µ) supports a Markovian kernel {p(t, x, y)},
i.e. a family of measurable functions p(t, ·, ·) : E × E → R+, t > 0, which
satisfies:

(M1) p(t, x, y) = p(t, y, x) for all t > 0 and x, y ∈ E (symmetry),
(M2) p(s+t, x, y) =

	
E p(s, x, z)p(t, z, y)dµ(z) for all s, t > 0 and x, y ∈E

(the Chapman–Kolmogorov identity, or the Markov property),
(M3)

	
E p(t, x, y) dµ(y) = 1 for all t > 0 and x ∈ E (normalization),

(M4) p(t, x, y) > 0 for all t > 0 and x, y ∈ E (irreducibility).

Our further assumption is that the Markovian kernel p(t, x, y) satisfies
the following estimate for all t > 0 and x, y ∈ E:

(2.2)
c1.1

td/β
exp

{
− c1.2

(
%(x, y)
t1/β

)β/(β−1)}
≤ p(t, x, y)

≤ c1.3

td/β
exp

{
− c1.4

(
%(x, y)
t1/β

)β/(β−1)}
.

Examples of such spaces are the nested fractals ([2]) and other post-
critically finite self-similar sets ([15]), Sierpiński carpets ([3]), and spaces
that support the 2-Poincaré inequality ([22]). It is known that the param-
eter β does not depend on the particular kernel p(·, ·, ·), and is one of the
characteristic constants of (E, %, µ), called the walk dimension of E and de-
noted by dw(E) (or just dw). Under the chain condition (C), it is known
(see [2], [13]) that 2 ≤ dw ≤ d + 1. For the Euclidean space Rd, as well
as other spaces supporting the 2-Poincaré inequality, the walk dimension is
equal to 2, regardless of d. The walk dimension of the Sierpiński gasket in
Rd is equal to log(d+ 3)/log 2 > 2. The exact value of the walk dimension
for the Sierpiński carpet is unknown.

It has been proven lately in [14] that if we require the basic estimate (2.2)
to be of the form (c/td/β)Φ(%(x, y)/t1/β) with Φ : [0,∞)→ [0,∞) decreasing,
then either Φ is an exponential function exp(−csβ/(β−1)), β ≥ 2, and the
corresponding Markov process is a diffusion, or it is equal to 1/(1 + s)d+β

and the process is not diffusive.
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Denote by (Pt)t≥0 the semigroup of selfadjoint contraction operators on
L2(E,µ) associated with {p(t, x, y)}, given by

L2(E,µ) 3 f(x) 7→ Ptf(x) =
�

E

p(t, x, y)f(y) dµ(y).

We require the semigroup to be continuous at zero, i.e.

(M4) limt→0+ Ptf = f for all f ∈ L2(E,µ), the limit taken in L2(E,µ).

Such a strongly continuous semigroup on L2(E,µ) gives rise to a Dirichlet
form E . There are several ways of defining it; the most convenient for our
setting is the following (see [9], [11]). For f ∈ L2(E,µ) set

Et(f, f) =
1
t
〈(f − Ptf), f〉L2(E,µ).(2.3)

Because of (M1) and (M3), we have

Et(f, f) =
1
2t

�

E

�

E

(f(x)− f(y))2p(t, x, y) dµ(x) dµ(y).(2.4)

By an easy application of the spectral theorem, for any given f ∈ L2, the
mapping t 7→ Et(f, f) is decreasing. Therefore we can set

D(E) = {f ∈ L2(E,µ) : sup
t>0
Et(f, f) <∞},

E(f, f) = lim
t↓0
Et(f, f).

(2.5)

Assuming (M1)–(M5) and (2.2), it has been shown (see [16], [19], [13])
that the domain of this Dirichlet form, D(E), is actually equal to the space

L = Lip(dw/2, 2,∞)(E).

The definition of this space is the following. For f ∈ L2(E,µ) and n =
1, 2, . . ., let

an(f) =
� �

2−(n+1)<%(x,y)≤2−n

(f(x)− f(y))2 dµ(x) dµ(y).

Then

f ∈ L ⇔ sup
n≥0

[2n(d+dw)an(f)] <∞.(2.6)

The norm in L is

‖f‖2L = ‖f‖22 + sup
n≥0

[2n(d+dw)an(f)],

and turns L into a Banach space. Also, there exists a universal constant C
such that for f ∈ L one has

1
C
E(f, f) ≤ sup

n≥0
[2n(d+dw)an(f)] ≤ CE(f, f).
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Consider now the expression

E(α)(f, f) =
�

E

�

E

(f(x)− f(y))2

%(x, y)d+αdw
dµ(x) dµ(y).(2.7)

and introduce the following spaces Λ2,2
α (E):

f ∈ Λ2,2
α (E)⇔ E(α)(f, f) <∞,

with the norm
‖f‖2

Λ2,2
α

= ‖f‖22 + E(α)(f, f).

In the fractal setting, they were first considered in [21], and subsequently
appeared in several articles. For a detailed account, see [12] or [17]. Note that
these spaces have been known by the name of Besov–Slobodetskĭı spaces. In
[20], we have proven that for α ≥ 1, the finiteness of E(α)(f, f) for a function
f ∈ L2(E,µ) results in f ≡ const, and so the choice of the smoothness
parameter α is restricted to (0, 1).

The following lemma is similar to its classical counterpart, nevertheless
we give its proof for completeness.

Lemma 2.1. We have Lip(dw/2, 2,∞)(E) ⊂ Λ2,2
α (E). Moreover , this em-

bedding is continuous,
‖f‖

Λ2,2
α
≤ C‖f‖L.

Proof. Take f ∈ L. Split the integral defining E(α)(f, f) into two parts:
the first over the region %(x, y) > 1, the other over %(x, y) ≤ 1.

The first one is finite for any f ∈ L2 : indeed,
� �

%(x,y)>1

(f(x)− f(y))2

%(x, y)d+αdw
dµ(x) dµ(y)

=
∞∑
n=0

� �

2n<%(x,y)≤2n+1

(f(x)− f(y))2

%(x, y)d+αdw
dµ(x) dµ(y)

≤
∑
n

1
2n(d+αdw)

� �

2n<%(x,y)≤2n+1

(f(x)− f(y))2 dµ(x) dµ(y)

≤ 2
∑
n

1
2n(d+αdw)

� �

2n<%(x,y)≤2n+1

(f(x)2 + f(y)2) dµ(x) dµ(y)

= 4
∑
n

1
2n(d+αdw)

� �

2n<%(x,y)≤2n+1

f(x)2 dµ(x) dµ(y) (by symmetry)

= 4
∑
n

1
2n(d+αdw)

�

E

f(x)2µ({y : 2n < %(x, y) ≤ 2n+1}) dµ(x) ≤ C‖f‖22

(in the last equality we used (2.1)).
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As to the remaining integral, we write
� �

%(x,y)≤1

(f(x)− f(y))2

%(x, y)d+αdw
dµ(x) dµ(y)

≤
∞∑
n=0

2n(d+αdw)
� �

2−(n+1)<%(x,y)≤2−n

(f(x)− f(y))2 dµ(x) dµ(y)

≤ 2d+αdw
∞∑
n=0

[2n(d+dw)an(f)]
1

2ndw(1−α)
≤ 2d+αdw2dw(1−α)

2dw(1−α) − 1
‖f‖L

and the continuity of the embedding is proven.

In particular, we see that all the spaces Λ2,2
α (E), α < 1, are dense in

L2(E,µ). This is so because L, being the domain of the Dirichlet form of a
Markov process, is in particular dense in L2(E).

3. Stable processes and their Dirichlet forms

3.1. Preliminaries on stable processes on metric spaces. The following
definition of a stable process on a metric space supporting a fractional dif-
fusion is taken from [5].

For a fixed parameter α ∈ (0, 1), let (ξt)t≥0 be the α-stable subordina-
tor , i.e. the process whose Laplace transform is given by E exp(−uξt) =
exp(−tuα). Let ηt(u), t > 0, u ≥ 0, be its one-dimensional distribution den-
sity. For t > 0 and x, y ∈ X define

pα(t, x, y) =
∞�

0

p(u, x, y)ηt(u) du.

It is classical (see e.g. [4, p. 18]) that pα(t, x, y) is the transition density of
a Markov process, which we denote by Xα and call the symmetric 2α-stable
process on E. For further properties of this process and its transition density
we refer the reader to [5].

From the property (see Th. 37.1 of [10])

lim
u→∞

η1(u)u1+α/2 =
α

2Γ (1− α/2)

and the scaling relation

ηt(u) = t−2/αη1(t−2/αu), t, u > 0,

one deduces:

(P1) limt→0 t
−1ηt(u) = (α/Γ (1− α))u−1−α for u > 0,

(P2) (formula (9) of [5]) ηt(u) ≤ ctu−1−α for t, u > 0,
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(P3) (formula (10) of [5]) ηt(u) ≥ ctu−1−α for t > 0 and u > u0t
1/α,

where u0 = u0(α).

The Dirichlet form of the 2α-stable process on E is defined by (2.3)–(2.5)
and will be denoted by E(α)(f, f). In [21] it was proven that D(E(α)) =
Λ2,2
α (E), and that there exists a universal constant D = D(α) such that

1
D
E(α)(f, f) ≤ E(α)(f, f) ≤ DE(α)(f, f).(3.1)

3.2. The main theorem. First, we prove the following theorem.

Theorem 3.1. Suppose f ∈ D(E) (= Lip(dw/2, 2,∞)(E)). Then

lim
α↗1
E(α)(f, f) = E(f, f).(3.2)

Proof. In view of Lemma 2.1 and the characterization of the domain
D(E(α)), E(α)(f, f) is well-defined. The explicit formula for E(α) is

E(α)(f, f) = lim
t→0

1
2t

�

E

�

E

pα(t, x, y)(f(x)− f(y))2 dµ(x) dµ(y)

= lim
t→0

∞�

0

1
2t

( �

E

�

E

p(u, x, y)(f(x)− f(y))2 dµ(x) dµ(y)
)
ηt(u) du(3.3)

=
1
2

∞�

0

( �

E

�

E

p(u, x, y)(f(x)− f(y))2 dµ(x) dµ(y)
)

lim
t→0

ηt(u)
t

du.

To justify the last step (of putting the limit under the integral sign) we use
the Lebesgue dominated convergence theorem: since for all u, t > 0 we have
ηt(u) ≤ ctu−1−α (property (P2)), the integrand in (3.3), being equal to
1
2t〈f − Puf, f〉

ηt(u)
u , can be estimated by

c

u1+α
〈f − Puf, f〉.(3.4)

For large u the contraction property of the semigroup yields

(3.4) ≤ c‖f‖22
u1+α

,

which is integrable for large u, and for small u write

(3.4) =
2c Eu(f, f)

uα
≤ 2c E(f, f)

uα
,

which in turn is integrable in the vicinity of 0 as long as α < 1.
Next, by (P1), one has

lim
t→0

ηt(u)
t

=
α

Γ (1− α)
1

u1+α
,



264 K. Pietruska-Pałuba

and so by Fubini,

E(α)(f, f) =
α

2Γ (1− α)

�

E

�

E

(∞�
0

p(u, x, y)
u1+α

du

)
(f(x)− f(y))2 dµ(x) dµ(y)

=
α

Γ (1− α)

∞�

0

1
uα
Eu(f, f) du.(3.5)

It follows that for any fixed number a > 0, any α ∈ (0, 1), and any f ∈ D(E),
as a result of the monotonicity of Eu(f, f),

E(α)(f, f) ≥ α

Γ (1− α)

a�

0

1
uα
Eu(f, f) du ≥ α

Γ (1− α)
Ea(f, f)

a�

0

1
uα

du

=
α

Γ (1− α)
a1−α

1− α
Ea(f, f).

In particular, we can choose a = 1− α, which yields the estimate

Ea(f, f) ≥ α

Γ (1− α)
(1− α)1−α

1− α
E1−α(f, f).

Since limt→0+ tt = 1 and limt→0+ Et(f, f) = E(f, f), and limt→0+ t Γ (t) = 1,
we obtain

lim inf
α↗1

E(α)(f, f) ≥ E(f, f).(3.6)

The matching upper bound is simpler: this time around, write the integral
(3.5) as

E(α)(f, f) =
α

Γ (1− α)

( 1�

0

1
uα
Eu(f, f) du+

∞�

1

1
uα
Eu(f, f) du

)
=:

α

Γ (1− α)
(I1 + I2).

These integrals are dealt with separately: I1 will give the proper asymptotics,
and I2 will be negligible.

More precisely, since Eu(f, f) → E(f, f) and the limit is increasing, one
has

I1 ≤ E(f, f)
1�

0

du

uα
=
E(f, f)
1− α

.

The integral I2 can be rewritten as

I2 =
∞�

1

1
u1+α

〈f − Puf, f〉 du,
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and since the Pu’s are contractions, |〈f − Puf, f〉| ≤ 2‖f‖22. Therefore

|I2| ≤ 2‖f‖22
∞�

1

du

u1+α
=

2
α
‖f‖22,

and so

E(α)(f, f) ≤ α

Γ (1− α)(1− α)

(
E(f, f) +

2
α

(1− α)‖f‖22
)
,

giving
lim sup
α↗1

E(α)(f, f) ≤ E(f, f).

As a corollary, we obtain

Theorem 3.2. Suppose that E is the Dirichlet form associated with a
fractional diffusion on (E, %, µ) and let E(α)(f, f), α ∈ (0, 1), be defined
by (2.7). Then for any f ∈ Lip(dw/2, 2,∞)(E) we have

(3.7)
1
C
E(f, f) ≤ lim inf

α↗1
(1− α)E(α)(f, f)

≤ lim sup
α↗1

(1− α)E(α)(f, f) ≤ C E(f, f)

where the constant C does not depend on f.

Proof. This follows from the representation (3.5) and the transition den-
sity estimate (2.2).
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