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Summary. We show that the property of having only vanishing triple Massey products
in equivariant cohomology is inherited by the set of fixed points of hamiltonian circle
actions on closed symplectic manifolds. This result can be considered in a more general
context of characterizing homotopic properties of Lie group actions. In particular it can
be viewed as a partial answer to a question posed by Allday and Puppe about finding
conditions ensuring the “formality” of G-actions.

1. Introduction. In this article we prove the following theorem.

Theorem 1.1. Let (M,ω) be a closed symplectic manifold endowed with
a hamiltonian circle action S1 × M → M . Let F be any connected com-
ponent of the fixed point set of this action. If there exists a non-vanishing
triple Massey product in H∗(F ), then the same is valid for the equivariant
cohomology H∗S1(M).

Obviously, the above theorem can be rephrased as follows. If (M,ω)
is a closed symplectic manifold endowed with a hamiltonian circle action
S1 ×M → M such that all the triple Massey products in the equivariant
cohomology H∗S1(M) vanish, then any connected component F of the fixed
point set MS1

also has only vanishing Massey products in H∗(F ).
Thus, the vanishing of the triple Massey products is inherited by the

connected components of the fixed point set. This result can be considered
in a more general context of the cohomology theory of Lie transformation
groups [AP]. Allday and Puppe asked about possible characterizations of
“formal” Lie group actions. Recall that a topological spaceX is called formal
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if it has a minimal modelMX quasi-isomorphic to the cohomology algebra
H∗(MX) (the latter is isomorphic to the cohomology algebra H∗(X) of X;
we do not give any details here, referring to [AP, TO]). It is natural to ask
if one can characterize (in terms of the invariants of the given G-action)
the group actions with formal fixed point set XG. Since the non-vanishing
of Massey products is an obstruction to formality [TO] (see also references
therein), Theorem 1.1 is a partial answer to the above question. It appears
that the weaker property of vanishing of the triple Massey products is indeed
inherited by the fixed points of hamiltonian circle actions.

On the other hand, this result can be viewed as a characterization of
hamiltonian circle actions themselves, and in this respect develops the theory
along the lines of Kirwan’s result [K] that for a closed (M,ω) endowed with
a hamiltonian action of a compact Lie group G the Leray–Serre spectral
sequence associated with the Borel fibration

M → EG×GM → BG

collapses at E2. Note that characterizing hamiltonian and non-hamiltonian
actions is an important question in symplectic topology (cf. [Au, G, JK, LO,
McD, McDS]). For example, it is well known that in dimension 4, a circle
action is hamiltonian if and only if it has fixed points [Au, McD]. This fact
does not hold in higher dimensions, but the counterexample of McDuff is
quite subtle. It is still not known if there exist non-hamiltonian circle actions
with discrete set of fixed points [G].

Acknowledgments. We are grateful to Chris Allday who attracted our
attention to the problem of “formality” of Lie group actions and shared with
us his insights in the theory of group actions. Also, we express our thanks
to Jarek Kędra and James Stasheff for useful remarks, and acknowledge
the support of the Polish Committee for Scientific Research (KBN), grant
2P03A 036 24.

2. Preliminaries and notation

Massey products and the Cartan model. Here we recall briefly the notion
of Massey products in the form suitable for our considerations. In this paper
all algebras and cohomologies are considered over the reals. To get a more
detailed exposition of this topic, one can consult [RT]. Note however, that
we use the term “non-vanishing” or “non-zero” Massey product instead of
“essential” Massey product in [RT]. Let (A, d) be a commutative differential
graded algebra. The cohomology algebra of (A, d) is denoted by H∗(A). If
a ∈ A is a cocycle, we write [a] for the corresponding cohomology class. For
a homogeneous element a ∈ A of degree p we write a = (−1)pa. Assume
that we are given a triple of cohomology classes [a], [b], [c] such that [a][b] =
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[b][c] = 0. Consider x ∈ A and y ∈ A such that dx = ab and dy = bc. One
can check that ay + xc is a cocycle and therefore determines a cohomology
class [ay + xc] ∈ H∗(A). Note that this class depends on the choice of x
and y. By definition the set of all cohomology classes [ay + xc] is denoted
by 〈[a], [b], [c]〉 and is called the triple Massey product.

Definition. We say that the triple Massey product 〈[a], [b], [c]〉 does
not vanish if the set of all cohomology classes [ay + xc] does not contain
zero. In the opposite case we say that 〈[a], [b], [c]〉 vanishes.

One can easily describe the vanishing of the triple Massey product in
the following way (see [RT, Prop. 1.5]). Let 〈[a], [b], [c]〉 be a triple Massey
product in H∗(A). Denote by ([a], [c]) the ideal in H∗(A) generated by [a]
and [c]. The product 〈[a], [b], [c]〉 does not vanish if and only if there exists
a cohomology class x ∈ 〈[a], [b], [c]〉 such that x 6∈ ([a], [c]).

We also need the following formulas (see [RT, Prop. 1.4]):

ξ〈a1, a2, a3〉 ⊂ 〈ξa1, a2, a3〉,
ξ〈a1, a2, a3〉 ⊂ 〈a1, ξa2, a3〉,(2.1)

ξ〈a1, a2, a3〉 ⊂ 〈a1, a2, ξa3〉,
which are valid for any a1, a2, a3 ∈ H∗(A) and for any ξ represented by a
central element in A.

Let f : (A, d) → (A′, d′) be a morphism of differential graded algebras.
Then

f∗〈[a], [b], [c]〉 ⊂ 〈f∗[a], f∗[b], f∗[c]〉(2.2)
(see Prop. 1.3 in [RT]).

Consider now the case of a G-manifold, i.e. a manifold endowed with a
smooth action of a Lie group G. We use the equivariant cohomology of the
G-manifold, i.e. the cohomology of the total space of the Borel fibration

M → EG×GM → BG

associated with the universal principal G-bundle G → EG → BG over the
classifying space BG of the Lie group G. Thus, H∗G(M) = H∗(EG ×G M)
(see [Au, GS]).

In the proof of Theorem 1.1 we will calculate Massey products with
respect to the Cartan model. Recall that with any G-manifold M one can
associate the following differential graded algebra. Let Ω∗(M) be the de
Rham algebra of M , and S(g∗) the symmetric algebra over the dual to the
Lie algebra g of G. Then G acts on g∗ by the coadjoint representation and
hence there is a natural G-action on the tensor product Ω∗(M)⊗S(g∗). We
consider the subalgebra Ω∗G(M) = (Ω∗(M)⊗ S(g∗))G of the fixed points of
this action. The details of this construction can be found in [BV, GS, JK,
McDS]. We use the fact that there is a natural differential D : Ω∗G(M) →



144 Z. Stępień and A. Tralle

Ω∗G(M) and that
H∗(Ω∗G(M),D) ∼= H∗G(M).

Hamiltonian G-actions. Finally, recall the definition of the hamiltonian
action of a Lie group on a symplectic manifold [Au, GS, K, McDS]. Let
(M,ω) be a symplectic manifold and let G be a Lie group acting on M by
symplectomorphisms. A smooth map µ : M → g∗ is called a moment map
of the given G-action if

(1) µ is G-equivariant with respect to the given G-action on M and with
respect to the coadjoint G-action on g∗;

(2) for any m ∈M , X ∈ g and v ∈ TmM the following equality holds:

Tmµ(v)(X) = ω(v, X̃m)

(where X̃ denotes the fundamental vector field on M generated
by X).

Definition 2.2. We call a symplectic G-action on (M,ω) hamiltonian
if it has a moment map.

The moment map need not be unique. It is not difficult to check that
any symplectic action of a compact Lie group on a closed symplectic man-
ifold M such that H1(M) = 0 is hamiltonian. On the other hand, in the
case of manifolds with large fundamental groups, e.g. aspherical symplec-
tic manifolds, the notion of hamiltonian action is related to interesting and
non-trivial topological questions (cf. [LO, McD]).

3. Proof of Theorem 1.1. Consider the triple (M,ω,G). Recall that
if the G-action is symplectic, then the fixed point set MG is a symplectic
submanifold and it is a finite union of connected closed symplectic subman-
ifolds:

MG =
p⋃

i=1

Fi.

Choose one of the connected components, say F1, and denote it by F . We
have a symplectic embedding

iF : F →M.

Consider F as a symplectic G-manifold with a trivial action of G. In partic-
ular, H∗G(F ) = H∗(F )⊗ S(g∗)G. In case G = S1 we have

H∗S1(F ) = H∗(F )⊗ R[h],(3.1)

where R[h] denotes the free polynomial algebra with one generator h of
degree 2. Passing to the Borel fibrations we obtain the following commutative
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diagram:

F M

EG×G F EG×GM

BG BG

��

iF //

��

��

(iF )G //

��= //

On the cohomology level we get the maps (iF )∗G : H∗G(M) → H∗G(F ) and
i∗F : H∗(M) → H∗(F ). Let ν denote the normal bundle of the symplectic
embedding iF . Since G acts on this bundle fiberwise, one can define the
equivariant normal bundle νG = EG×G ν. In this way we obtain the vector
bundle

EG×G ν → EG ×G F.(3.2)

In particular, the Euler class of (3.2) is called the equivariant Euler class
of ν. Throughout the paper, it is denoted by χ ∈ H∗G(F ).

The following facts can be found in [McDS, pp. 192–193] or in [JK].

Proposition 3.1. Let G = S1 act on a closed symplectic manifold
(M,ω) and let F denote a connected component of MG. Then:

(i) the normal bundle ν splits into the sum of complex line bundles

ν =
m⊕

j=1

Lj , m = codimM F,

invariant with respect to the S1-action, where the circle group acts
on each Lj with weight kj ;

(ii) the equivariant Euler class has the form

χ =
m∏

j=1

(c1(Lj) + kjh),(3.3)

where c1(Lj) denotes the first Chern class of Lj.

Consider now the whole set MG =
⋃p
k=1 Fk and apply the described

constructions to each connected component Fk. In this way one gets the
maps (iFk)∗G for all k, determining the map

∑
k(iFk)∗G : H∗G(M)→ H∗G(MG).

The following properties of these maps are valid for any hamiltonian G-
action.

Proposition 3.2 ([Au, p. 139, JK, p. 5]). Assume that G is a torus
and acts on a closed symplectic manifold (M,ω) in a hamiltonian way. Then

(i) the map
∑

Fk
(iFk)∗G : H∗G(M)→ H∗G(MG) is injective;



146 Z. Stępień and A. Tralle

(ii) there exists a linear map (the Gysin homomorphism) ((iF )G)∗ :
H∗G(F )→ H∗G(M) with the property

(iF )∗G((iF )G)∗(x) = χx for any x ∈ H∗G(F );

(iii) χ is not a zero divisor in H∗G(F ).

The Gysin map was introduced in [Au, JK] in topological terms. We need
an alternative way of describing it in the language of the Cartan complex.
This was done in [GS, Chapter 10]. However, to use it, we need to prove (ii),
since we do not know of any source where it is proved that the definitions of
((iF )G)∗ in [Au, J] and [GS] coincide on the level of equivariant cohomology.

Let τ denote the equivariant Thom form of the equivariant normal bundle
[GS]. Recall that τ ∈ Ω∗G(ν)c, where Ω∗G(ν)c denotes the Cartan complex of
equivariant differential forms on the normal bundle ν with compact supports.
If one identifies ν with the tubular neighbourhood of F in M , one can extend
τ onto M by zero. Consider the natural projection π : ν → F . For any
θ ∈ Ω∗G(F ), define i∗θ as

i∗θ = π∗θ ∧ τ.(3.4)

Extending i∗θ onto the whole M by zero, and passing to the equivariant
cohomology, we get the Gysin map

((iF )G)∗ : H∗G(F )→ H∗G(M).

Now the only thing we need is to verify (ii). Since in [GS, formula 10.12] it
is shown that (iF )∗Gτ = χ, the result follows by applying (iF )∗G to both sides
of (3.4).

The proof of Theorem 1.1 will now follow from the two lemmas below.
Note that in both lemmas we keep the same notation and we assume that
G is a torus acting on (M,ω) in a hamiltonian way.

Lemma 3.1. Let 〈u, v, w〉 ⊂ H∗G(F ) be a triple Massey product. Then the
following Massey product is defined in H∗G(F ):

〈χu, χv, χw〉.(3.5)

If the Massey product (3.5) does not contain zero, then the Massey product

〈((iF )G)∗u, ((iF )G)∗v, ((iF )G)∗w〉 ⊂ H∗G(M)(3.6)

is defined and does not contain zero.

Proof. To avoid clumsy notation let us temporarily denote ((iF )G)∗ as
(iF )∗ and (iF )∗G as (iF )∗. Now we will need equivariant differential forms rep-
resenting the equivariant cohomology. Let Ul denote an equivariant tubular
neighbourhood of Fl (identified, as usual, with the equivariant normal bundle
of the embedding), and let [τ ] denote the equivariant Thom class represented
by the equivariant differential form τ with compart support in Ul. Note that
from the very definition of the Thom form and the Gysin map, the image
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of (iFl)∗ is contained in Ul (see (3.4)). This obviously means that for any
x ∈ H∗G(Fl) its image under the Gysin map in fact lies in the cohomology of
Ul with compact supports, and therefore its pullback by i∗Fk must be zero.
Finally, we have obtained the equality

i∗Fk(iFl)∗x = 0 for any x ∈ H∗G(Fl), l 6= k.(3.7)

Now we are ready to show that (3.5) is defined. By (3.7),
∑

Fk

i∗Fk((iF )∗u · (iF )∗v) = i∗F (iF )∗u · i∗F (iF )∗v = χu · χw = 0,

which obviously implies (iF )∗u(iF )∗v = 0 because of Proposition 3.2. Obvi-
uosly, the same could be written for (iF )∗v(iF )∗w. Note that the Gysin map
is not multiplicative, but i∗F is, and this allows us to complete the proof.
The following formulae show that (3.6) does not contain zero:

i∗F 〈(iF )∗u, (iF )∗v, (iF )∗w〉 ⊂ 〈i∗F (iF )∗u, i∗F (iF )∗v, i∗F (iF )∗w〉 = 〈χu, χv, χw〉.
Here we used (2.2) and Proposition 3.2.

Lemma 3.2. Assume G = S1 and that 〈u, v, w〉 is a non-vanishing triple
Massey product in H∗(F ) ⊂ H∗S1(F ) = H∗(F )⊗ R[h]. Then

〈χu, χv, χw〉 6= 0.

Proof. According to Section 2, we need only prove that there exists
z ∈ 〈χu, χv, χw〉 such that z 6∈ (χu, χw). Use the equivariant cohomol-
ogy H∗S1(F ) calculated with respect to the Cartan model. Take a non-trivial
Massey triple product 〈u, v, w〉 considered as a non-trivial Massey product in
the equivariant cohomology (one can easily check by straightforward calcu-
lation that 〈u, v, w〉 cannot become zero in the tensor product H∗(F )⊗R[h]
by writing the corresponding cocycles in the Cartan model). From Lemma
3.1, 〈χu, χv, χw〉 is defined. Since 〈u, v, w〉 6= 0, there exists x ∈ 〈u, v, w〉
such that x 6∈ (u,w). Note that χ3x ∈ 〈χu, χv, χw〉 (by (2.1)). Assume that

〈χu, χv, χw〉 = 0.

This means that any z ∈ 〈χu, χv, χw〉 belongs to the ideal (χu, χw) ⊂
H∗S1(F ). In particular, χ3x ∈ (χu, χw). Hence

χ3x = χua+ χwb, a, b ∈ H∗S1(F ).

Therefore
χ(χ2x− ua− wb) = 0.

Recalling that χ is not a zero divisor (Proposition 3.2(iii)) one can write

χ2x = ua+ wb.
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Taking into consideration that u,w ∈ H∗(F ) ⊂ H∗S1(F ) and the expression
for the Euler class (3.3) one obtains
m∏

j=1

(c1(Lj)+kjh)2x = u(a0+a1h+· · ·+a2mh
2m)+w(b0+b1h+· · ·+b2mh2m).

Note that h is a free generator, and k1 · · · km 6= 0, because all kj are the
weights of the normal representation of the circle. Using this and comparing
the coefficients of h2m on both sides of the latter equation yields x ∈ (u,w),
a contradiction. Finally, z = χ3x is the required element.

Now we can complete the proof of Theorem 1.1. If 〈u, v, w〉 is a non-trivial
triple Massey product in H∗(F ), then Lemma 3.2 implies that 〈χu, χv, χw〉
is a non-vanishing triple Massey product in H∗S1(F ). From Lemma 3.1 we get
a non-trivial triple Massey product in H∗G(M) expressed by formula (3.6).

Remark. In [McD] an example of a non-hamiltonian circle action on
some closed 6-dimensional manifold was given. This action had a 2-dimen-
sional submanifold of fixed points. Theorem 1.1 may yield another method of
constructing non-hamiltonian circle actions with “big” sets of fixed points.
Indeed, it would be sufficient to construct a closed symplectic G-manifold M
with vanishing triple Massey products but with MG having a non-vanishing
one. However, this does not seem easy.
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