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Summary. All wavelets constructed so far for the Hardy space H2(R) are MSF wavelets.
We construct a family of H2-wavelets which are not MSF. An equivalence relation on
H2-wavelets is introduced and it is shown that the corresponding equivalence classes are
non-empty. Finally, we construct a family of H2-wavelets with Fourier transform not
vanishing in any neighbourhood of the origin.

1. Introduction. The classical Hardy space H2(R) is the collection
of all square integrable functions whose Fourier transform is supported in
R+ = (0,∞):

H2(R) := {f ∈ L2(R) : f̂(ξ) = 0 for a.e. ξ ≤ 0},
where f̂ is the Fourier transform of f defined by

f̂(ξ) =
�

R
f(x)e−iξx dx.

Clearly, H2(R) is a closed subspace of L2(R). A function ψ ∈ H2(R) is said
to be a wavelet for H2(R) if the system of functions {ψj,k = 2j/2ψ(2j · −k) :
j, k ∈ Z} forms an orthonormal basis for H2(R). We shall call such a ψ an
H2-wavelet.

Two basic equations characterize all H2-wavelets. The proof of the fol-
lowing theorem can be obtained from the corresponding result for the usual
case of L2(R) (see Theorem 6.4 in Chapter 7 of [6]).

Theorem 1.1. A function ψ ∈ H2(R) with ‖ψ‖2 = 1 is an H2-wavelet
if and only if
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∑

j∈Z
|ψ̂(2jξ)|2 = χR+(ξ) for a.e. ξ ∈ R

and
∑

j≥0

ψ̂(2jξ) ψ̂(2j(ξ + 2qπ)) = 0 for a.e. ξ ∈ R and for all q ∈ 2Z+ 1.

From the Paley–Wiener theorem it follows that there is no compactly
supported function in H2(R) apart from the zero function, hence, there is
no compactly supported H2-wavelet. On the other hand, there exist H2-
wavelets with compactly supported Fourier transform. One such example
is given by ψ̂ = χ[2π,4π], which is the analogue of the Shannon wavelet for
L2(R). P. Auscher [2] proved that there is no H2-wavelet ψ satisfying the
following regularity condition: |ψ̂| is continuous on R and |ψ̂(ξ)| = O((1 +
|ξ|)−α−1/2) at ∞, for some α > 0. In particular, H2(R) does not have a
wavelet ψ with |ψ̂| continuous and ψ̂ compactly supported.

Analogously to the L2 case, an H2-wavelet ψ will be called a minimally
supported frequency (MSF) wavelet if |ψ̂| = χK for some K ⊂ R+. Such
wavelets were called unimodular wavelets in [5]. The associated set K will
be called an H2-wavelet set. In this situation the set K has Lebesgue mea-
sure 2π.

There is a simple characterization of H2-wavelet sets analogous to the
L2 case.

Theorem 1.2. A set K ⊂ R+ is an H2-wavelet set if and only if the
following two conditions hold :

(i) {K + 2kπ : k ∈ Z} is a partition of R.
(ii) {2jK : j ∈ Z} is a partition of R+.

In [5], the authors proved that the only H2-wavelet set which is an in-
terval is [2π, 4π]. They also characterized all H2-wavelet sets consisting of
two disjoint intervals. In [3] (see also [1]) we proved a result on the struc-
ture of H2-wavelet sets consisting of a finite number of intervals and, as an
application, characterized 3-interval H2-wavelet sets. All these wavelet sets
depend on a finite number of integral parameters, which proves that there are
countably many H2-wavelet sets which are unions of at most three disjoint
intervals. We also constructed a family of 4-interval H2-wavelet sets with
some of the endpoints depending on a continuous real parameter, thereby
proving the uncountability of such sets (see [1]). In the proof of Theorem 3.2
below, we exhibit a family of H2-wavelet sets with some of the endpoints de-
pending on two independent continuous parameters. Some more H2-wavelet
sets were constructed in [7] where the author also proves the existence of an
H2-MSF wavelet ψ such that ψ 6∈ Lp(R) for p < 2.
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All wavelets for H2(R) known to date have been MSF, i.e., their Fourier
transform is the characteristic function of a subset of R+. In the next section,
we construct a family of non-MSF H2-wavelets. In Section 3, we introduce
an equivalence relation on the set of H2-wavelets and explicitly construct
examples of H2-wavelets in each of the corresponding equivalence classes. In
the last section, we construct a family of H2-wavelets with Fourier transform
discontinuous at the origin.

2. The construction of non-MSF wavelets. Our strategy of con-
structing the family of non-MSF wavelets of H2(R) is the following. We
start with an H2-MSF wavelet so that |ψ̂| assumes the value 1 on its sup-
port. Then we add some more sets to the support of ψ̂ and reassign values
to ψ̂ in such a manner that the equalities

∑
j∈Z |ψ̂(2jξ)|2 = χR+(ξ) a.e. and∑

k∈Z |ψ̂(ξ + 2kπ)|2 = 1 a.e. are preserved, which are necessary conditions
for ψ to be an H2-wavelet.

Fix r ∈ N and let k be an integer satisfying 1 ≤ k < 2(2r − 1). Define

Kr,k =
[

2(k + 1)
2r+1 − 1

π,
2k

2r − 1
π

]
∪
[

2r+1k

2r − 1
π,

2r+2(k + 1)
2r+1 − 1

π

]
= A ∪B, say.

Observe that the sets A + 2kπ and B are disjoint and their union is an
interval of length 2π so that (i) in Theorem 1.2 is satisfied. Similarly, 2rA
and B are disjoint and their union is the interval [a, 2a], where a = 2r+1(k+
1)π/(2r+1 − 1), hence, (ii) in Theorem 1.2 is also satisfied. Therefore, Kr,k

is an H2-wavelet set. In fact, {Kr,k : r ∈ N, 1 ≤ k < 2(2r − 1)} is precisely
the collection of all H2-wavelet sets consisting of two disjoint intervals, as
observed in [5].

In particular, for k = 2r − 1, we get the following family of H2-wavelet
sets:

Kr =
[

2r+1

2r+1 − 1
π, 2π

]
∪
[
2r+1π,

22r+2

2r+1 − 1
π

]
, r ∈ N.(2.1)

Denote the intervals on the right hand side of (2.1) by Ir and Jr respectively.
Note that 2π/3 ≤ |Ir| < π and π < |Jr| ≤ 4π/3. We denote the Lebesgue
measure of a set S by |S|. First of all, we observe that 2−1Ir + 2r+1π ⊂ Jr.

For r ∈ N, define the function ψr by

ψ̂r(ξ) =





1/
√

2 if ξ ∈ Ir ∪ (2−1Ir) ∪ (2−1Ir + 2r+1π),

−1/
√

2 if ξ ∈ Ir + 2r+2π,

1 if ξ ∈ Jr \ (2−1Ir + 2r+1π),

0 otherwise.

(2.2)

Theorem 2.1. For each r ∈ N, ψr is a wavelet for the Hardy space
H2(R).
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Some preparation is needed before we prove Theorem 2.1. Define the
maps τ and d as follows:

τ : R→ [2π, 4π], τ(x) = x+ 2k(x)π,

d : R+ → [2π, 4π], d(x) = 2j(x)x,

where k(x) and j(x) are unique integers such that x + 2k(x)π and 2j(x)x
belong to [2π, 4π].

We first prove the following lemma which gives useful information on the
support of ψ̂r. This will be crucial for proving Theorem 2.1.

Lemma 2.2. Let Er = supp ψ̂r = (2−1Ir) ∪ Ir ∪ Jr ∪ (Ir + 2r+2π).

(i) If ξ ∈ 2−1Ir, then ξ+2kπ ∈ Er if and only if k = 0, 2r, and 2jξ ∈ Er
if and only if j = 0, 1.

(ii) If ξ ∈ Ir, then ξ+2kπ ∈ Er if and only if k = 0, 2r+1, and 2jξ ∈ Er
if and only if j = 0,−1.

(iii) If ξ ∈ 2−1Ir + 2r+1π, then ξ + 2kπ ∈ Er if and only if k = 0,−2r,
and 2jξ ∈ Er if and only if j = 0, 1.

(iv) If ξ ∈ Jr \ (2−1Ir + 2r+1π), then ξ + 2kπ ∈ Er if and only if k = 0,
and 2jξ ∈ Er if and only if j = 0.

(v) If ξ ∈ Ir + 2r+2π, then ξ + 2kπ ∈ Er if and only if k = 0,−2r+1,
and 2jξ ∈ Er if and only if j = 0,−1.

Proof. Observe that τ(E) = τ(E + 2kπ) and d(F ) = d(2jF ) for every
j, k ∈ Z and every E ⊂ R, F ⊂ R+. Hence,

τ(2−1Ir + 2r+1π) = τ(2−1Ir), τ(Ir + 2r+2π) = τ(Ir),(2.3)

d(2−1Ir) = d(Ir), d(2−1Ir + 2r+1π) = d(Ir + 2r+2π).(2.4)

It also follows from the definition of the maps τ and d that if W is an
H2-wavelet set and E,F ⊂W , then τ(E) ∩ τ(F ) = ∅ and d(E) ∩ d(F ) = ∅.
Since Ir ∪ Jr is an H2-wavelet set and 2−1Ir + 2r+1π ⊂ Jr, we have

τ(Ir) ∩ τ(2−1Ir + 2r+1π) = ∅,(2.5)

τ(Jr \ (2−1Ir + 2r+1π)) ∩ τ(2−1Ir + 2r+1π) = ∅.(2.6)

From (2.3), (2.5) and (2.6), we get

τ(2−1Ir) ∩ τ(Ir) = ∅, τ(2−1Ir) ∩ τ(Ir + 2r+2π) = ∅,
τ(2−1Ir) ∩ τ(Jr \ (2−1Ir + 2r+1π)) = ∅.

Therefore, if ξ ∈ 2−1Ir, then ξ + 2kπ ∈ Er if and only if k = 0, 2r.
Similarly, we have

d(Ir) ∩ d(Jr) = ∅, d(Ir) ∩ d(2−1Ir + 2r+1π) = ∅.(2.7)
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From (2.4) and (2.7) we get

d(2−1Ir) ∩ d(Jr) = ∅, d(2−1Ir) ∩ d(Ir + 2r+2π) = ∅.
From this we deduce that if ξ ∈ 2−1Ir, then 2jξ ∈ Er if and only if j = 0, 1.

We have proved (i) of the lemma. The proof of (ii)–(v) is similar.

Proof of Theorem 2.1. In view of the characterization of H2-wavelets
(see Theorem 1.1), we need to show the following:

(a) ‖ψr‖2 = 1.

(b) %(ξ) :=
∑

j∈Z
|ψ̂r(2jξ)|2 = χR+(ξ) for a.e. ξ ∈ R.

(c) tq(ξ) :=
∑

j≥0

ψ̂r(2jξ) ψ̂r(2j(ξ + 2qπ)) = 0

for a.e. ξ ∈ R and all q ∈ 2Z+ 1.

Proof of (a). We have

‖ψ̂r‖22 =
�

R
|ψ̂r(ξ)|2 dξ = 1

2(|Ir|+ 1
2 |Ir|+ 1

2 |Ir|+ |Ir|) + |Jr| − 1
2 |Ir|

= |Ir|+ |Jr| = 2π.

Hence, ‖ψr‖22 = 1
2π‖ψ̂r‖22 = 1.

Proof of (b). Observe that %(ξ) = 0 if ξ ≤ 0. Since %(2ξ) = %(ξ) for a.e.
ξ, it is enough to show that %(ξ) = 1 on any set E such that d(E) = [2π, 4π];
Ir ∪ Jr is such a set since it is an H2-wavelet set.

If ξ ∈ Ir, then by Lemma 2.2(ii), 2jξ ∈ supp ψ̂r if and only if j = −1, 0.
Hence, %(ξ) = |ψ̂r(ξ/2)|2 + |ψ̂r(ξ)|2 = (1/

√
2)2 + (1/

√
2)2 = 1.

We write Jr = (2−1Ir + 2r+1π) ∪ {Jr \ (2−1Ir + 2r+1π)} = M ∪ L, say.
If ξ ∈ M , then 2jξ ∈ supp ψ̂r if and only if j = 0, 1 (see Lemma 2.2(iii)) so
that %(ξ) = |ψ̂r(ξ)|2 + |ψ̂r(2ξ)|2 = (1/

√
2)2 + (−1/

√
2)2 = 1. For ξ ∈ L, no

other dilate of ξ is in the support of ψ̂r, hence, %(ξ) = 1 a.e. on L.

Proof of (c). Since t−q(ξ) = tq(ξ − 2qπ), it is enough to prove that tq = 0
a.e. for all positive and odd integer q. The term

ψ̂r(2jξ) ψ̂r(2j(ξ + 2qπ))

is non-zero when both 2jξ and 2jξ + 2 · 2jqπ are in the support of ψ̂r.
Referring again to Lemma 2.2, we observe that this is possible if either
2jq = 2r or 2jq = 2r+1. Since the integer q is odd, either j = r, q = 1
or j = r + 1, q = 1. In the first case, 2jξ ∈ 2−1Ir so that 2j(ξ + 2qπ) ∈
2−1Ir + 2r+1π, 2j+1ξ ∈ Ir, and 2j+1(ξ + 2qπ) ∈ Ir + 2r+2π. Hence, tq(ξ) =
(1/
√

2)(1/
√

2) + (1/
√

2)(−1/
√

2) = 0. The second case is treated similarly.
This completes the proof of the theorem.



174 B. Behera

3. An equivalence relation. In this section we shall introduce an
equivalence relation on the collection of all wavelets ofH2(R) and, by explicit
construction, show that each of the corresponding equivalence classes is non-
empty.

Let ψ be an H2-wavelet. For j ∈ Z, define the following closed subspaces
of H2(R): Vj = span{ψl,k : l < j, k ∈ Z}. It is easy to verify that these
subspaces have the following properties:

(i) Vj ⊂ Vj+1 for all j ∈ Z,
(ii) f ∈ Vj if and only if f(2·) ∈ Vj+1 for all j ∈ Z,
(iii)

⋃
j∈Z Vj is dense in H2(R),

⋂
j∈Z Vj = {0}, and

(iv) V0 is invariant under the group of translations by integers.

In view of property (iv), it is natural to ask the following question: Does
there exist other groups of translations under which V0 remains invariant?
We shall answer this question by considering the groups of translations by
dyadic rationals. For y ∈ R, let Ty be the (unitary) translation operator
defined by Tyf(x) = f(x− y). Consider the following groups of translation
operators:

Gr = {Tm/2r : m ∈ Z}, r ≥ 0, r ∈ Z, G∞ = {Ty : y ∈ R}.
Let G be a set of bounded linear operators on H2(R) and V a closed

subspace of H2(R). We say that V is G-invariant if Tf ∈ V for every f ∈ V
and T ∈ G.

Denote by Lr the collection of all H2-wavelets such that the correspond-
ing space V0 is Gr-invariant. Clearly, L0 is the set of all H2-wavelets, and we
have the following inclusions:

L0 ⊃ L1 ⊃ L2 ⊃ · · · ⊃ Lr ⊃ Lr+1 ⊃ · · · ⊃ L∞.
We now define an equivalence relation on H2-wavelets, where the equiv-

alence classes are given by Mr = Lr \ Lr+1, with M∞ = L∞. Thus, Mr,
r ≥ 0, consists of those H2-wavelets for which V0 is Gr-invariant but not
Gr+1-invariant.

This equivalence relation was first defined in [9] for the classical case of
wavelets of L2(R). In the same paper the equivalence classes were charac-
terized in terms of the support of the Fourier transform of the wavelets. It
was also proved thatMr, r = 0, 1, 2, 3, are non-empty. Later, in [4], [8], ex-
amples of wavelets of L2(R) were constructed for each of these equivalence
classes, by different methods.

The characterization of Mr can be easily carried over to the case of
H2(R). First of all we introduce some notation.

Let ψ be an H2-wavelet and let E = supp ψ̂. For k ∈ Z, define E(ψ, k) =
{ξ ∈ E : ξ + 2kπ ∈ E} = E ∩ (E + 2kπ) and Eψ = {k ∈ Z : E(ψ, k) 6= ∅}.
Then the characterization of the equivalence classes is the following.
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Theorem 3.1. (i)M∞ is precisely the collection of all H2-MSF wavelets.

(ii) An H2-wavelet ψ is in Mr, r ≥ 1, if and only if every element of
Eψ is divisible by 2r but there is an element of Eψ not divisible by
2r+1.

(iii) An H2-wavelet ψ is inM0 if and only if Eψ contains an odd integer.

The proof of the above theorem is an easy adaptation of the correspond-
ing result proved in [9] for L2(R). The purpose of this section is to show
that all the equivalence classes are non-empty. Indeed, we show that, the
non-MSF H2-wavelets constructed in the previous section serve as examples
in Mr, r ≥ 1. For the class M0, it is natural to consider the case r = 0 in
(2.2). Unfortunately this does not work since we get ψ̂0 = χ[2π,4π]. Hence,
ψ0 is in M∞, being an MSF wavelet. To show that M0 is non-empty, we
produce an interesting family of H2-wavelet sets consisting of five disjoint
intervals.

Theorem 3.2. The equivalence classes Mr, r ∈ N ∪ {0,∞}, defined
above, are non-empty.

Proof. We mentioned in the introduction that all previously known H2-
wavelets are MSF. Hence, M∞ is non-empty.

Now, fix r ∈ N and consider the H2-wavelet ψr defined in (2.2). From
Lemma 2.2, we notice that Eψr = {0,±2r,±2r+1}. By Theorem 3.1(ii),
ψr ∈ Mr.

We now construct a family of wavelets in M0. Let π < x < y < 2π and
x + 2π > 2y. That is, (x, y) is in the interior of the triangle with vertices(
π, 3

2π
)
, (π, 2π) and (2π, 2π). Consider the following set:

Kx,y = [x, y] ∪ [2π, 2x] ∪ [2y, x+ 2π] ∪ [y + 2π, 4π] ∪ [2x+ 4π, 2y + 4π].

Denote the intervals on the right by I1, . . . , I5. The conditions on x and
y ensure that these intervals are non-empty. Observe that I1, I4 − 2π, I2,
I5 − 4π, I3 are pairwise disjoint, and their union is [x, x + 2π]. Similarly,
I1, 2−1I3, 2−2I5, 2−1I4, I2 are pairwise disjoint, and their union is [x, 2x].
Hence, by Theorem 1.2, Kx,y is an H2-wavelet set.

In particular, we obtain a family of 5-interval H2-wavelet sets where the
endpoints of the intervals depend on two independent real parameters.

Note that 2−1I3∩Kx,y = ∅, I3 +4π∩Kx,y = ∅, and 2−1I3 +2π is properly
contained in I4. Now, define the function ψ0 by

ψ̂0(ξ) =





1/
√

2 if ξ ∈ I3 ∪ (2−1I3) ∪ (2−1I3 + 2π),

−1/
√

2 if ξ ∈ I3 + 4π,

1 if ξ ∈ Kx,y \ (2−1I3 + 2π),

0 otherwise.



176 B. Behera

It can be proved that ψ0 is an H2-wavelet. The proof is similar to that
of Theorem 2.1 and we skip it to avoid repetition. It is also clear that
Eψ0 = {0,±1,±2}. Hence by Theorem 3.1(iii), ψ0 ∈ M0. This completes the
proof.

4. H2-wavelets with Fourier transform discontinuous at the ori-
gin. In this section we construct a family of wavelets for H2(R) whose
Fourier transforms are discontinuous at the origin. First we recall a result
proved in [6] for wavelets of L2(R) (see Theorem 2.7 in Chapter 3 of [6]).

Theorem 4.1. Let ψ be a wavelet for L2(R) such that ψ̂ has compact
support and |ψ̂| is continuous at 0. Then ψ̂ = 0 a.e. in an open neighbourhood
of the origin.

This result also holds for H2(R) with essentially the same proof. We are
interested in the following question: Does there exist an H2-wavelet such
that ψ̂ has compact support and does not vanish in any neighbourhood of
the origin? In this section we shall give a positive answer to this question.
We need the following concepts.

Definition 4.2. A set A is said to be translation equivalent to a set
B if there exists a partition {An : n ∈ Z} of A and kn ∈ Z such that
{An + 2knπ : n ∈ Z} is a partition of B. Similarly, A is dilation equivalent
to B if there exists another partition {A′n : n ∈ Z} of A and jn ∈ Z such
that {2jnA′n : n ∈ Z} is a partition of B.

Theorem 1.2 has the following simple but useful consequence.

Corollary 4.3. Let K1,K2 ⊂ R+ and suppose K1 is both translation
and dilation equivalent to K2. Then K1 is an H2-wavelet set if and only if
K2 is.

Let r ∈ N and tr = 2r+1π/(2r+1 − 1). Then we know that

Kr = [tr, 2π] ∪ [2r+1π, 2r+1tr] = Ir ∪ Jr
is an H2-wavelet set (see (2.1)). For ε>0 such that ε<(2r − 1)π/(2r+1 − 1),
let

S1 = [tr/2 + ε/2r+1, tr/2 + ε],

S2 = [tr + 2ε, 2π],

S3 = [2r+1tr, 2r+1tr + 2ε].

The condition on ε ensures that S2 is non-empty. Let

E0 = S1 + 2r+1π, F0 = 2−(r+2)E0,

En = Fn−1 + 2r+1π, Fn = 2−(n+r+2)En, n ≥ 1.
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Define

Kr,ε =
(
Jr \

∞⋃

n=0

En

)
∪
( ∞⋃

n=0

Fn

)
∪ (S1 ∪ S2 ∪ S3).(4.1)

Theorem 4.4. For each r ∈ N, the set Kr,ε defined in (4.1) is an H2-
wavelet set.

Proof. The result will follow from Corollary 4.3 once we show that Kr,ε

is both translation and dilation equivalent to the wavelet set Kr. First of
all, we show by induction that En ⊂ Jr for all n ≥ 0.

Observe that tr + 2r+1π = 2r+1tr, hence [0, tr] + 2r+1π = Jr. Therefore
E0 = S1 + 2r+1π ⊂ [0, tr] + 2r+1π = Jr. Now assume that Em ⊂ Jr. Then
Fm = 2−(m+r+2)Em ⊂ 2−(m+1)[0, tr] ⊂ [0, tr], hence Em+1 = Fm + 2r+1π ⊂
[0, tr] + 2r+1π = Jr.

The intervals En, n ≥ 0, lie inside Jr and En+1 lies to the left of En for
all n ≥ 0. Similarly, the intervals Fn, n ≥ 0, lie in 2−(n+1)[π, tr] so that Fn+1
lies to the left of Fn for n ≥ 0.

We now show that Kr,ε is dilation equivalent to Kr. We have

2S1 ∪ S2 ∪
1

2r+1 S3 = [tr + ε/2r, tr + 2ε] ∪ [tr + 2ε, 2π] ∪ [tr, tr + ε/2r]

= [tr, 2π] = Ir,

and
(
Jr \

∞⋃

n=0

En

)
∪
( ∞⋃

n=0

2n+r+2Fn

)
=
(
Jr \

∞⋃

n=0

En

)
∪
( ∞⋃

n=0

En

)
= Jr,

since En ⊂ Jr for all n ≥ 0, which proves the dilation equivalence.
Finally, we show that Kr,ε is translation equivalent to Kr. Observe that

S2 ∪ (S3 − 2r+1π) = [tr + 2ε, 2π] ∪ [tr, tr + 2ε] = Ir,

and
(
Jr \

∞⋃

n=0

En

)
∪
( ∞⋃

n=0

(Fn + 2r+1π)
)
∪ (S1 + 2r+1π)

=
(
Jr \

∞⋃

n=0

En

)
∪
( ∞⋃

n=1

En

)
∪ E0 = Jr.

Let ψ̂r,ε be the characteristic function of the set Kr,ε so that ψr,ε is an
H2-wavelet. Since Fn ⊂ 2−(n+1)[π, tr] for all n ≥ 0, ψ̂r,ε does not vanish in
any neighbourhood of 0. In particular, it is discontinuous at the origin.
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