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Summary. We study a correspondence L between some classes of functions holomorphic
in the unit disc and functions holomorphic in the left halfplane. This correspondence is
such that for every f and w € H, exp(L(f)(w)) = f(expw).

In particular, we prove that the famous class S of univalent functions on the unit
disc is homeomorphic via L to the class S(H) of all univalent functions g on H for which
g(w + 2mi) = g(w) + 27i and limge »——oo (g(w) — w) = 0.

1. Introduction and preliminaries. A usual way to establish a cor-
respondence between holomorphic functions in the left halfplane and those
in the unit disc is to take the composition with the fractional linear map
o(z) = % Note that ¢ o ¢ = Id.

In this note we shall use the fact that the exponential function exp(z) =
e? is a covering map from the left halfplane onto the punctured unit disc to
define another correspondence between some classes of holomorphic func-
tions.

Let us introduce some notations. D will denote the unit disc and H will
denote the left halfplane {z : Rez < 0}. Let In stand for the branch of the
logarithm such that —m <Imlnz <7 and Inl1 = 0.

We now define some classes of functions holomorphic on D or H.

1) So={f€ HD): f(0) =0 and f(z) # 0 for z # 0}.
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2) Sj consists of the functions from Sy which have a zero of order k at
zZero.

Each function from S), can be written as

f(z) =cz"fi(z), where ¢ #0, fi(0) =1
and fi1(z) does not vanish on D. We have Sy = [Jp—; Sk.

3) S} consists of the functions from S for which ¢ = 1.

4) S contains all functions from S} which are univalent on D. In other
words, it is the class of functions f univalent on D and such that
f(0) =0 and f’(0) = 1. This is the most important of all the classes
considered. Note that f(z) = z + 22 belongs to S{ but not to S.

5) So(H) consists of the functions h holomorphic on H for which there
exist k € N and a € C with —7m < Ima < 7 such that
(i) h(w) — kw is a 2mi-periodic function,

(ii) if {wp, tnen is a sequence in H for which lim,,_,~, Re w,, = —o00 then
lim (h(wy,) — kw,) = a.
n—oo

6) Sk(H) consists of all functions from Sp(H) for which (i) and (ii) hold

with the given k € N.

7) SY(H) consists of all functions from Sy (H) for which a = 0.
8) S(H) is the class of univalent functions from S (H).

If h € Si(H) then h(w + 27i) = h(w) + 2kmi.
In particular, if A € S;(H) then
h(z 4 2mi) = h(z) + 2mi.
Note that all sets Sg(H) and SP(H) are convez.

2. The correspondence. Let f € Sy. Then f € Sy for some k € N,
and f can be written as f(z) = c2¥f1(2), ¢ # 0, f1(0) = 1. By a monodromy
argument there exists g holomorphic on D with g(0) = 0 such that fi(z) =
e9(?) . For w € H put

L(f)(w) :=Inc+ kw + g(e).
It is easy to check that L(f)(w) € So(H). Since e is 2mi-periodic, (i)
holds. Condition (ii) is satisfied because if Rew, — —oo then e¥» — 0
and g(e*") — 0. We have
(%) PN — f(e®)  for each w € H.

THEOREM 1. For each k € N the mapping L is one-to-one and maps Sy,
onto Si(H). It also maps S} onto SP(H).

Proof. The fact that L is one-to-one follows directly from (k). If fi, fo €
Si and L(f1) = L(f2) then fi(e®) = fa(e") for each w € H, and so f1 = fa.
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Now let h € Sk(H). Put ¢1(w) = h(w) — kw —a. If z € D, z # 0, then
there exists w € H such that e¥ = z. Define g(z) = g¢1(w). Since ¢; is
2mi-periodic, g is well defined on D\ {0}. We have ¢g(z) = g1(Inz) for each
branch of Inz. Since exp(z) = e is a covering map, g(z) is holomorphic
on D\ {0}. Condition (ii) implies that ¢;(w) — 0 if Rew — —oo. Hence
g(z) — 0 for z — 0. Thus g(z) extends to a function holomorphic on D by
setting ¢(0) = 0. Now define f(z) = e*2#¢9%). Then f € S}, and L(f) = h.

It also follows from the above proof that L maps S} onto Sp(H).

Let now H (D) and H(H) be the spaces of holomorphic functions on D and
H respectively, endowed with the compact-open topology. We shall consider
Si and SP(H) as topological subspaces of H(D) and H(H) respectively.

We have

THEOREM 2. The mapping L is a homeomorphism between S} and S, (H)
for each k € N.

Proof. Let {fn}nen C S} converge almost uniformly to fo € S}. We
have f,(z) = 2%e9(*)| g, (0) = 0 for each n € N and fo(z) = zFe9(2),
90(0) = 0. The almost uniform convergence of f,, implies that e9" converges
almost uniformly to e%. Since g/, = (e9")'/e9 and g{, = (%) /e we see
that g}, converges almost uniformly to g(. Since g,(0) = go(0) = 0 for all
n, we have g, (2) = Sg gr(&)d¢. Thus g, converges almost uniformly to gg. It
follows that L(f,)(w) = kw + gn(e®) converges almost uniformly on H to
L(fo)(w) = kw + go(e™).

Conversely, if L(f,) converges almost uniformly to L(fy) on H then g,
converges almost uniformly to gg and hence f, converges almost uniformly
to f().

WARNING. The mapping L is not continuous between Sy and Sy (H)

(with compact-open topology) (because of the term a = In ¢ in the definition
of L).

We can also prove

PROPOSITION 1. The class S}, is a closed subset of H(D), and SP(H) is
a closed subset of H(H).

Proof. The Hurwitz theorem implies that S} is a closed subset of H (D).
If the sequence h,(w) = L(f,)(w) converges almost uniformly on H then
the sequence g, (e") converges almost uniformly on H since for f,, = 2k egn(2)
with g,(0) = 0 we have h,(w) = kw + gn(e”). Then g, converges almost
uniformly on D\ {0} and therefore on D. It follows that f, converges on D
to fo € Si. We have L(fo) = limy,— o0 hy, € SY(H).

REMARK 1. The assumptions g(0) = 0 and —7 < Ima < 7 were
introduced to ensure that L is a one-to-one correspondence between Sy
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and So(H). If we omit them we obtain a 1-co correspondence. For ev-
ery f € Sy we shall have a countable family of functions {L,,(f)}mez,
Ly (f) = L(f) + 2mmi.
REMARK 2. Let f € Si and let
Fm = W f(zm) =Mk edE M for moe N
Then | )
nc
L =—+4k — g(e™?).
() (w) = 5 ko g(e™)
REMARK 3. The correspondence L can be used to construct other classes
of holomorphic functions. Let ¢(z) = 5. Let f € S;. We have L(f)(w +

z—

27i) = L(f)(w) + 2mi. Put A(f) = ¢ o L(f) o ¢. The function A(f) maps D
into the Riemann sphere C and has the following properties.

1) The nontangential limit of A(f) at 1 is equal to 1.
2) We have

Vrez uro A(f) = A(f) our, uo =1d,
u(z)*a—k Z— Qg w ki
YT a T T Tk
For f(z) = ze9®) with g(0) = 0,
B 2z—|—g(e%) (z—1)
2+ gle 1) - (2 — 1)

if k £ 0.

A(f)(2)

3. The case of univalent functions. We start from

THEOREM 3. Let f € S1. The function f is univalent iff L(f) is univa-
lent.

Proof. Let f = cze9%?) € ). Assume that f is univalent. Let L(f)(wy) =
L(f)(ws). Since f is univalent and e“()®) = f(e®), we see that e¥' = e
and wy, = wy + 2mmi for some m € Z.

We have L(f)(w) = Inc+ w + g(e*). Hence L(f)(w1) = L(f)(w2) and
w1 = wo + 2mme imply that m = 0 and w; = ws.

Assume now that L(f) is univalent. Since f € S; we have L(f)(w + 2mi)
= L(w) 4 2mi. Assume that f(z1) = f(z2). If it is equal to zero then z; = 2
= 0 by the definition of S7. Hence we can assume that there exist wy, ws € H
such that z; = e* and 2z = e®2. This implies, as before, that eL())(w1) —=
elNw2) 5o there exists m € Z for which L(f)(w1) = L(f)(ws) + 2mmi =
L(f)(wa 4 2mmi). Thus w; = we + 2mmi and e*! = e“2. Hence 21 = 2».

Theorem is not true for Sy with & > 1. The function f(z) = 2, k > 1,
is not univalent but L(f)(w) = kw is univalent.

PROPOSITION 2. For every f € Sy there exists fi € Sy such that f = fF.
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Proof. For f(z) = czFed® take fi(z) = ¢'/Fze9)/k,
Theorem [3] and Proposition [2] yield

THEOREM 3. Let f € Sy. The function L(f) is univalent iff f = fF
where f1 € S1 is univalent.

Proof. There exists m € Z such that
L(f) = L(ff) = k- L(f1) + 2mmi.
EXAMPLES.

1. Let f(z) = 2+ 22/2. Then f € S is univalent and hence L(f)(w) =
w + In(1 + e"/2) is univalent on H.

2. If f(2) = 2+ 2% then L(f)(w) = w +In(1 + €*). The function L(f) is
not univalent because f is not.

In the rest of this note we shall study the famous class S of univalent
functions from S7.

Let us consider S as a subset of H(D) with compact-open topology and
S(H) as a subset of H(H) with compact-open topology. Recall that S(H) is
the set of univalent functions from S9(H).

The Hurwitz theorem implies that S is closed in H(ID). Proposition
together with Theorems and (3| shows that S(H) is closed in H (H).

As an immediate consequence of Theorem [3| we have
THEOREM 4. The mapping L is a homeomorphism from S onto S(H).

COROLLARY. The class S(H) is compact in H(H). More generally, for
each k € N the class §2(H) consisting of all univalent functions from S?(H)
is compact in H(H).

Proof. The class S is compact since for each f € S and z € D, |f(2)| <
S0 nlz|™ = |2]/(1 — |2])? (De Branges Theorem). Thus S(H) must also
be compact. Moreover, by Theorem 3’, gg(H) is the continuous image of §
under the mapping f — L(f*). Hence §£(H) is compact.

REMARK 4. The class SY(H) is not compact since S} is not compact.
It contains all functions f.(z) = ze®, ¢ € C. The set of values f”(0) = 2c is
not bounded.

We now consider two important definitions:

DEFINITION 1. A univalent function f € H(D) with f(0) = 0 is starlike
iff f(D) is a domain starlike with respect to zero.

DEFINITION 2. A univalent function f € H(D) with f(0) = 0 is convez
iff f(D) is a convex domain.
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The following facts are well known and can be found in [D] or [P].
THEOREM A. A function f is starlike iff Re{zf'(2)/f(z)} > 0.

THEOREM B. A function f is convez iff the function fi(z) = zf'(z) is
starlike. (One assumes here that f € H(D) and f(0) =0.)

THEOREM 5.

(1) f €S is starlike iff Re (L(f))(w) > 0 for all w € H.
(2) f €S is convex iff

Voer Re(u:(f))’(w) n (((

Proof. (1) Let f(z) = ze9*). We have
2f'(2) _ 2(e99) + 2e9P)g/(2))
( ) zeg(z)

L(f)(w) =w+g(e®) and (L(f)) (w) = 14+4'(e")e” = 14 24'(z) for z = ™.
If 2 =0 then z2f/'(2)/ ( ) = 1. Hence and by Theorem A, f is starlike iff

Re (L(f)Y (w) > 0.

(2) By Theorem B, f(z) = 2ze9) is convex iff fi(z) = zf'(z) = z(e9*) +
2e9() g/ (2)) = ze9(A)tIn(1+29'(2)) ig starlike. Note that Re(1 + z¢'(z)) > 0 for
z e D.

Hence and by the first part of Theorem |5, f is convex iff Re (L(f1)) (w)
> 0 for each w € H. We have

L(f1) = L(f) + n((L(f)) (w))
since L(f1)(w) = w + g(e*) + In(1 + e*¢'(e*)). We obtain

(L)Y = (L)Y + (( (( ))>)

=1+ z4'(2),

Thus f is convex iff
Voer  Re(L(f1)) () = Re(<L<f>>'<w> n W) 0. .

REMARK. We thank the referee for pointing out that the operator very
similar to our L was used in Krzyz’s paper [Kl proof of Theorem 1] to study
quasiconformal automorphisms of the unit disc. Very recently Chéritat [Ch]
used Krzyz’s operator to construct a holomorphic function with a strange
Siegel disc.
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