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Summary. The quantization dimension function for the image measure of a shift-in-
variant ergodic measure with bounded distortion on a self-conformal set is determined,
and its relationship to the temperature function of the thermodynamic formalism arising
in multifractal analysis is established.

1. Introduction. The term quantization in this paper refers to the idea
of estimating a given probability on Rd with a discrete probability, that is,
a “quantized” version of the probability supported on a finite set. Following
the work of Graf and Luschgy (cf. [GL1, GL2]), we define the quantization
dimension (or perhaps better, the quantization dimension function) as fol-
lows. Given a Borel probability measure µ on Rd, a number r ∈ (0,+∞)
and a natural number n ∈ N, the nth quantization error of order r for µ is
defined by

en,r = inf
{( �

d(x, α)r dµ(x)
)1/r

: α ⊂ Rd, card(α) ≤ n
}
,

where d(x, α) denotes the distance from the point x to the set α with respect
to a given norm ‖ · ‖ on Rd. We note that if

	
‖x‖r dµ(x) <∞ then there is

some set α for which the infimum is achieved (cf. [GL1]). The quantization
dimension of order r for µ is defined to be

Dr = Dr(µ) = lim
n→∞

log n
− log en,r

,
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if the limit exists. If the limit does not exist then we define Dr as the lim sup
of the sequence and Dr as the lim inf. Graf and Luschgy also define en,r for
r = 0 and r = +∞, but in this paper we only deal with the case 0 < r < +∞.
One sees that the quantization dimension is actually a function r 7→ Dr which
measures the asymptotic rate at which en,r goes to zero. If Dr exists, then
one can write

log en,r ∼ log(1/n)1/Dr .

Graf and Luschgy determined a formula for the quantization dimension func-
tion for a self-similar probability measure µ defined for an iterated function
system using a finite number of contracting similarity mappings φ1, . . . , φN
on Rd satisfying the open set condition, and given a probability vector
(p1, . . . , pN ). The measure µ satisfies

µ =
N∑
i=1

piµ ◦ φ−1
i .

They showed that Dr := Dr(µ) satisfies

(1)
N∑
i=1

(pisri )
Dr/(r+Dr) = 1,

where si is the contraction coefficient for the mapping φi. Note that from
(1) it is clear that the quantization dimension for a self-similar probability
measure has a relationship to the temperature function arising in the thermo-
dynamic formalism of multifractal analysis (cf. [F1]). The above result was
extended by Lindsay and Mauldin to F -conformal measures with finitely
many conformal mappings (cf. [LM]). In [R], we determined the quantiza-
tion dimension function for the image measure of a Gibbs measure induced
on the coding space via the coding map on a self-similar set, and showed its
functional relationship to the temperature function of the thermodynamic
formalism. In this paper, the quantization dimension function for the im-
age measure of a shift-invariant ergodic measure with bounded distortion on
a self-conformal set is determined, and its relationship to the temperature
function of the thermodynamic formalism arising in multifractal analysis is
established.

2. Basic definitions, lemmas and propositions. Let us write

Vn,r = inf
{ �

d(x, α)r dµ(x) : α ⊂ Rd, card(α) ≤ n
}
,

un,r = inf
{ �

d(x, α ∪ U c)r dµ(x) : α ⊂ Rd, card(α) ≤ n
}
,
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where U is a set which comes from the open set condition (definition follows)
and U c denotes the complement of U . We see that

u1/r
n,r ≤ V 1/r

n,r = en,r.

We will call sets αn ⊂ Rd for which the above infimums are achieved
n-optimal sets for en,r, Vn,r or un,r respectively. As stated above, Graf and
Luschgy have shown that n-optimal sets exist when

	
‖x‖r dµ(x) <∞.

Let V ⊂ Rd be an open set. A C1-map φ : V → Rd is conformal if the
differential φ′(x) : Rd → Rd satisfies |φ′(x)y| = |φ′(x)| · |y| 6= 0 for all x ∈ V
and y ∈ Rd, y 6= 0; |φ′(x)| represents the norm of the derivative at x ∈ Rd.
Furthermore, φ : V → Rd is contracting if there exists 0 < γ < 1 such that
|φ(x)− φ(y)| ≤ γ|x− y| for all x, y ∈ V . We say that {φi : X → X}Ni=1 is a
conformal iterated function system (conformal IFS) on a compact setX ⊂ Rd

if each φi extends to an injective contracting conformal map φi : V → V on
an open set V ⊃ X.

Let {φi}Ni=1 be a conformal IFS on a compact set X ⊂ Rd for some finite
N ≥ 2 such that ‖φ′i‖ ≤ s < 1 for some s where ‖φ′i‖ denotes the supremum
norm of the derivative.

Let Σ = {1, . . . , N}N be the code space over the indices 1, . . . , N . Let
Σn = {1, . . . , N}n, and Σ∗ =

⋃∞
n=0Σn be the set of all sequences of fi-

nite length (also called words) including the empty sequence ∅. For ω =
(ω1, . . . , ωn) ∈ Σn we write |ω| = n to denote the length n of ω, and
ω|k = (ω1, . . . , ωk), k ≤ n, to denote the truncation of ω to the length k.
We write ωτ = ω ∗ τ = (ω1, . . . , ω|ω|, τ1, τ2, . . .) for the juxtaposition of
ω = (ω1, . . . , ω|ω|) ∈ Σ∗ and τ = (τ1, τ2, . . .) ∈ Σ∗ ∪ Σ. For ω ∈ Σ∗ and
τ ∈ Σ∗ ∪Σ we say τ is an extension of ω, written as ω ≺ τ , if τ ||ω| = ω. For
ω = (ω1, . . . , ω|ω|) ∈ Σ∗ we set

ω− =
{
∅, |ω| = 1,
(ω1, . . . , ω|ω|−1), |ω| > 1,

φω =
{

IdRd , ω = ∅,
φω1 ◦ · · · ◦ φω|ω| , |ω| ≥ 1.

Let µ̂ be a shift-invariant ergodic measure on Σ satisfying the bounded dis-
tortion property, i.e., there exists a constant K ≥ 1 such that

K−1µ̂([ω])µ̂([τ ]) ≤ µ̂([ωτ ]) ≤ Kµ̂([ω])µ̂([τ ])

for any two words ω and τ in Σ∗. Since given ω = (ωi)∞i=1 ∈ Σ, the diameters
of the compact sets φω|n(X) = φω1 ◦ · · · ◦ φωn(X), n ≥ 1, converge to zero
and since they form a descending family, the set

∞⋂
n=0

φω|n(X)
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is a singleton and therefore, if we denote its element by π(ω), this defines
the coding map π : Σ → X. The main object of our interest is the limit set

J = π(Σ) =
⋃
ω∈Σ

∞⋂
n=1

φω|n(X).

Note that J satisfies the natural invariance equality J =
⋃N
i=1 φi(J), and

is called the self-conformal set corresponding to the conformal IFS. Let us
assume that the iterated function system satisfies the open set condition, i.e.,
there exists a non-empty open set U ⊂ X such that φi(U) ⊂ U for every
1 ≤ i ≤ N and φi(U)∩φj(U) 6= ∅ for every pair i, j in {1, . . . , N} with i 6= j.
Furthermore, the system satisfies the strong open set condition if U can be
chosen such that U ∩ J 6= ∅. Note that in the case of a conformal iterated
function system using a finite number of mappings, the open set condition
implies the strong open set condition (cf. [P-S]). Hence, in our case if U is
the open set from the open set condition, then it also satisfies U ∩ J 6= ∅.

The following two lemmas for conformal iterated function systems are
borrowed from Patzschke (cf. [P]).

Lemma 2.1. There exists a constant C ≥ 1 such that |φ′ω(y)| ≤ C|φ′ω(x)|
for every ω ∈ Σ∗ and every pair of points x, y ∈ V .

Lemma 2.2. There exists a constant C̃ ≥ C such that

C̃−1‖φ′ω‖d(x, y) ≤ d(φω(x), φω(y)) ≤ C̃‖φ′ω‖d(x, y)

for every ω ∈ Σ∗ and every pair of points x, y ∈ V , where d is the metric
on X.

The following lemma plays a vital role in this paper.

Lemma 2.3. For any ω, τ ∈ Σ∗ and any t ∈ R,

C−(t)‖φ′ω‖t‖φ′τ‖t ≤ ‖φ′ωτ‖t ≤ C(t)‖φ′ω‖t‖φ′τ‖t,

where

C(t) =
{
Ct if t ≥ 0,
C−t if t < 0,

and C−(t) = (C(t))−1.

Proof. For any ω, τ ∈ Σ∗ and any x ∈ X with y = φτ (x) we know that
φ′ωτ (x) = φ′ω(y)φ′τ (x). Hence by Lemma 2.1 we have

C−1|φ′ω(x)| |φ′τ (x)| ≤ |φ′ωτ (x)| ≤ C|φ′ω(x)| |φ′τ (x)|

and thus C−1‖φ′ω‖ ‖φ′τ‖ ≤ ‖φ′ωτ‖ ≤ C‖φ′ω‖ ‖φ′τ‖. Thus for any t ≥ 0 we have

C−t‖φ′ω‖t‖φ′τ‖t ≤ ‖φ′ωτ‖t ≤ Ct‖φ′ω‖t‖φ′τ‖t.
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If t < 0, then Ct ≤ 1 and so

Ct‖φ′ω‖t‖φ′τ‖t ≤ ‖φ′ωτ‖t ≤ C−t‖φ′ω‖t‖φ′τ‖t.
This yields the assertion.

Let us first define the auxiliary function

Zn(q, t) =
∑
|ω|=n

‖φ′ω‖tµ̂[ω]q

for n ∈ N and q, t ∈ R. Now for the ergodic measure µ̂ and the conformal
mappings φ1, . . . , φN we can define the topological pressure P (q, t) as follows:

(2) P (q, t) = lim
n→∞

1
n

logZn(q, t) = lim
n→∞

1
n

log
∑
|ω|=n

‖φ′ω‖tµ̂[ω]q

for q, t ∈ R. The limit above exists by the standard theory of subadditive
sequences since, using Lemma 2.3 and the bounded distortion property of
the ergodic measure µ̂, we have

(3) C−(t)K−(q)
∑
|ω|=n

‖φ′ω‖tµ̂[ω]q
∑
|τ |=p

‖φ′τ‖tµ̂[τ ]q ≤
∑

|ωτ |=n+p

‖φ′ωτ‖tµ̂[ωτ ]q

≤ C(t)K(q)
∑
|ω|=n

‖φ′ω‖tµ̂[ω]q
∑
|τ |=p

‖φ′τ‖tµ̂[τ ]q

i.e.,

C−(t)K−(q)Zn(q, t)Zp(q, t) ≤ Zn+p(q, t) ≤ C(t)K(q)Zn(q, t)Zp(q, t),

where

K(q) =
{
Kq if q ≥ 0,
K−q if q < 0,

and K−(q) = (K(q))−1, and then K(q) ≥ 1 for any q ∈ R. The follow-
ing proposition states the well-known properties of the function P (q, t) (cf.
[F2, P]).

Proposition 2.4.

(i) P (q, t) : R× R→ R is continuous.
(ii) P (q, t) is strictly decreasing in each variable separately.
(iii) For fixed q we have

lim
t→+∞

P (q, t) = −∞ and lim
t→−∞

P (q, t) = +∞.

(iv) P (q, t) is convex: if q1, q2, t1, t2 ∈ R, a1, a2 ≥ 0, a1 + a2 = 1, then

P (a1q1 + a2q2, a1t1 + a2t2) ≤ a1P (q1, t1) + a2P (q2, t2).

Now for fixed q, P (q, t) is a continuous function of t. Its value ranges
from −∞ (when t → +∞) to +∞ (when t → −∞). Therefore, by the
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intermediate value theorem there is a real number β such that P (q, β) = 0.
The solution β is unique, since P (q, ·) is strictly decreasing. This defines β
implicitly as a function of q: for each q there is a unique β = β(q) such that
P (q, β(q)) = 0.

The following proposition gives the well-known properties of the function
β(q) (cf. [F2, P]).

Proposition 2.5. Let β = β(q) be defined by P (q, β(q)) = 0.

(i) β is a continuous function of the real variable q.
(ii) β is strictly decreasing: if q1 < q2, then β(q1) > β(q2).
(iii) limq→−∞ β(q) = +∞ and limq→+∞ β(q) = −∞.
(iv) β is convex: if q1, q2, a1, a2 ∈ R with a1, a2 ≥ 0 and a1 + a2 = 1,

then
β(a1q1 + a2q2) ≤ a1β(q1) + a2β(q2).

The function β(q) is sometimes denoted by T (q) and called the temper-
ature function. A more general discussion of this function can be found in
[H-P], where our β(q) function corresponds to −τ(q) in their notation.

For any u = u1 · · ·uk ∈ Σ∗ we denote Ju = φu(J), which is called a
cylinder set in J of length k ≥ 0. By Dk we denote the collection of all
cylinder sets in J of length k. Let D =

⋃
k≥0Dk. Clearly the Borel σ-algebra

on J is generated by D. Let µ = µ̂◦π−1. Then µ is called the image measure
of µ̂ under π on the self-conformal set J such that for any Borel E ⊂ J ,

µ(E) = inf
{∑

i

µ(Ui) : E ⊆
⋃
i

Ui, Ui ∈ D
}
.

For this measure µ we will determine the quantization dimension and its
relationship to the temperature function arising in the thermodynamic for-
malism of multifractal analysis.

3. Main result. The relationship between the quantization dimension
function Dr and the temperature function β(q) for the probability measure
µ is given by the following theorem.

Theorem 3.1. Let µ be the image measure on the self-conformal set
J of the shift-invariant ergodic measure µ̂ on the coding space under the
coding map. Let β = β(q) be the temperature function of the thermodynamic
formalism. For each r ∈ (0,+∞) choose qr such that β(qr) = rqr. Then the
quantization dimension for the probability measure µ is given by

Dr =
β(qr)
1− qr

.
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Lemma 3.2. Let 0 < r < +∞ be fixed. Then there exists exactly one
number κr ∈ (0,+∞) such that

lim
n→∞

1
n

log
∑
|ω|=n

(‖φ′ω‖rµ̂[ω])κr/(r+κr) = 0.

Proof. From (2) we have,

P (t, rt) = lim
n→∞

1
n

log
∑
|ω|=n

(‖φ′ω‖rµ̂[ω])t.

Proposition 2.4 says that P (t, rt) is continuous, convex and strictly decreas-
ing, and hence there exists a unique t ∈ R such that P (t, rt) = 0.

If t = 0 then

P (0, 0) = lim
n→∞

1
n

log
∑
|ω|=n

1 = lim
n→∞

1
n

logNn = logN > 0;

and if t = 1 then

P (1, r1) = lim
n→∞

1
n

log
∑
|ω|=n

‖φ′ω‖rµ̂[ω]

≤ lim
n→∞

1
n

log
∑
|ω|=n

snrµ̂[ω] = r log s < 0.

Therefore by the intermediate value theorem, the unique t ∈ R for which
P (t, rt) = 0 must lie between 0 and 1. Then κr = rt/(1− t) satisfies the
conclusion of the lemma.

Lemma 3.3. Let 0 < r < +∞ and let κr be as in Lemma 3.2. Then for
any n ≥ 1 we have

(C(r)K)−κr/(r+κr) ≤
∑
|ω|=n

(‖φ′ω‖rµ̂[ω])κr/(r+κr) ≤ (C(r)K)κr/(r+κr).

Proof. For ω ∈ Σ∗, let sω = ‖φ′ω‖rµ̂[ω]. Then for any ω, τ ∈ Σ∗ with
|ω| = n, |τ | = p (n, p ≥ 1), by (3) we have (C(r)K)−1sωsτ ≤ sωτ ≤
(C(r)K)sωsτ . Since C(r)K ≥ 1, it is also true that (C(r)K)−2sωsτ ≤ sωτ ≤
(C(r)K)2sωsτ . Hence by the standard theory of subadditive sequences,
limn→∞ n

−1 log
∑
|ω|=n s

t
ω exists for any t ∈ R. Let us denote this limit by

h(t). Hence for any t ≥ 0 we have

h(t) = lim
p→∞

1
np

log
∑
|ω|=np

stω,

and so

lim
p→∞

1
np

log
(∑
|ω|=n

stω(C(r)K)−t
)p
≤ h(t) ≤ lim

p→∞

1
np

log
(∑
|ω|=n

stω(C(r)K)t
)p
,
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which implies
1
n

log
∑
|ω|=n

stω(C(r)K)−t ≤ h(t) ≤ 1
n

log
∑
|ω|=n

stω(C(r)K)t

and therefore

enh(t)(C(r)K)−t ≤
∑
|ω|=n

stω ≤ enh(t)(C(r)K)t.

Now substitute t = κr/(r + κr) and note that h(t) = 0 to obtain the asser-
tion.

We call Γ ⊂ Σ∗ a finite maximal antichain if Γ is a finite set of words in
Σ∗ such that every ω ∈ Σ is an extension of some word in Γ , but no word
of Γ is an extension of another word in Γ . Of course, this requires the index
set {1, . . . , N} to be finite. We will make this assumption in the remainder
of this paper. By |Γ | we denote the cardinality of Γ .

Lemma 3.4. Let Γ be a finite maximal antichain. Then

(a) K−1
∑
ω∈Γ

µ̂[ω]µ ◦ φ−1
ω ≤ µ ≤ K

∑
ω∈Γ

µ̂[ω]µ ◦ φ−1
ω ,

(b)
∑
ω∈Γ

(‖φ′ω‖rµ̂[ω])κr/(r+κr) ≤ (C(r)K)2κr/(r+κr),

where κr is as in Lemma 3.2.

Proof. (a) Let us first prove µ ≤ K
∑

ω∈Γ µ̂[ω]µ ◦ φ−1
ω . It is enough to

prove that for any Jτ ∈ Dk (k ≥ 1),

µ(Jτ ) ≤ K
∑
ω∈Γ

µ̂[ω]µ ◦ φ−1
ω (Jτ ).

Since Γ is a finite maximal antichain, for τ ∈ Σ∗ there exists x ∈ Γ such that
τ = xy for some y ∈ Σ∗. Then Jτ = Jxy = φxy(J) = φx(φy(J)) = φx(Jy).
Hence,∑
ω∈Γ

µ̂[ω]µ ◦ φ−1
ω (Jτ ) =

∑
ω∈Γ

µ̂[ω]µ ◦ φ−1
ω (φx(Jy)) = µ̂[x]µ ◦ φ−1

x (φx(Jy))

= µ̂[x]µ(Jy) = µ̂[x](µ̂ ◦ π−1)(Jy) = µ̂[x]µ̂[y]

≥ K−1µ̂[xy] = K−1µ̂[τ ] = K−1µ(Jτ ),

so that
µ(Jτ ) ≤ K

∑
ω∈Γ

µ̂[ω]µ ◦ φ−1
ω (Jτ ) for any Jτ ∈ Dk (k ≥ 1).

Similarly, it can be proved that K−1
∑

ω∈Γ µ̂[ω]µ ◦ φ−1
ω (Jτ ) ≤ µ(Jτ ) for any

Jτ ∈ Dk (k ≥ 1), completing the proof (a).
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To prove (b), let m = min{|ω| : ω ∈ Γ \ {∅}}. Then for each ω ∈ Γ \ {∅}
there exists τ(ω) ∈ Σ∗ with |τ(ω)| = m and τ(ω) ≺ ω, i.e., there exists
x(ω) ∈ Σ∗ such that ω = τ(ω)x(ω). Now for any ω ∈ Γ we can write

‖φ′ω‖ ≤ C‖φ′τ(ω)‖ ‖φ
′
x(ω)‖ ≤ C‖φ

′
τ(ω)‖,

µ̂[ω] ≤ Kµ̂[τ(ω)]µ̂[xω] ≤ Kµ̂[τ(ω)].

From the above inequalities and Lemma 3.3 we have∑
ω∈Γ

(‖φ′ω‖rµ̂[ω])κr/(r+κr) ≤ (C(r)K)κr/(r+κr)
∑
ω∈Γ

(‖φ′τ(ω)‖
rµ̂[τ(ω)])κr/(r+κr)

≤ (C(r)K)κr/(r+κr)
∑
|τ |=m

(‖φ′τ‖rµ̂[τ ])κr/(r+κr)

≤ (C(r)K)2κr/(r+κr).

Lemma 3.5. Let Γ ⊂ Σ∗ be a finite maximal antichain, n ∈ N with
n ≥ |Γ |, and 0 < r < +∞. Then

Vn,r(µ) ≤ inf
{
C̃rK

∑
ω∈Γ
‖φ′ω‖rµ̂[ω]Vnω ,r(µ) : nω ≥ 1,

∑
ω∈Γ

nω ≤ n
}
.

Proof. Suppose nω ≥ 1 for each ω ∈ Γ, and
∑

ω∈Γ nω ≤ n. For each
ω ∈ Γ let αω be an nω-optimal set for Vnω ,r(µ).

Since |
⋃
ω∈Γ φω(αω)| ≤ n and µ ≤ K

∑
ω∈Γ µ̂[ω]µ ◦ φ−1

ω , we have

Vn,r(µ) ≤
�
d
(
x,
⋃
φω(αω)

)r
dµ(x)

≤ K
∑
ω∈Γ

µ̂[ω]
�
d
(
x,
⋃
φω(αω)

)r
d(µ ◦ φ−1

ω )(x)

≤ K
∑
ω∈Γ

µ̂[ω]
�
d(φω(x), φω(αω))r dµ(x)

≤ C̃rK
∑
ω∈Γ
‖φ′ω‖rµ̂[ω]

�
d(x, αω)r dµ(x) (by Lemma 2.2)

= C̃rK
∑
ω∈Γ
‖φ′ω‖rµ̂[ω]Vnω ,r(µ),

which implies the lemma.

Proposition 3.6. Let 0 < r < +∞ and let κr be as in Lemma 3.2.
Then lim supn→∞ neκr

n,r < +∞.
Proof. Let qr = κr/(r + κr); then β(qr) = rqr. Choose ε0 so that 0 <

ε0 < 1. Fix m ∈ N. Choose any n ∈ N so that m/n < ε0, and set ε = ε0m/n,
so that 0 < ε < 1. Let

Γ = Γ (ε) = {ω ∈ Σ∗ : (‖φ′ω‖rµ̂[ω])κr/(r+κr) < ε ≤ (‖φ′ω−‖
rµ̂[ω−])κr/(r+κr)}.

Since the index set {1, . . . , N} is finite, Γ is a finite maximal antichain.
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Hence by the previous lemma we have

Vn,r(µ) ≤ C̃rK
∑
ω∈Γ
‖φ′ω‖rµ̂[ω]Vm,r(µ)

= C̃rK
∑
ω∈Γ

(‖φ′ω‖rµ̂[ω])κr/(r+κr)(‖φ′ω‖rµ̂[ω])r/(r+κr)Vm,r(µ)

< C̃rK
∑
ω∈Γ

(‖φ′ω‖rµ̂[ω])κr/(r+κr)εr/κrVm,r(µ)

≤ C̃rK(C(r)K)2κr/(r+κr)εr/κrVm,r(µ) (by Lemma 3.4)

= C̃rK(C(r)K)2κr/(r+κr)ε
r/κr

0 (m/n)r/κrVm,r(µ),

and therefore
nV κr/r

n,r (µ) ≤ (C̃rK)κr/r(C(r)K)2κ
2
r/(r(r+κr))ε0mV

κr/r
m,r (µ).

Since the inequality holds for all but a finite number of n, we have

lim sup
n→∞

neκr
n,r ≤ (C̃rK)κr/r(C(r)K)2κ

2
r/(r(r+κr))ε0me

κr
m,r < +∞.

Lemma 3.7. Let Γ ⊂ Σ∗ be a finite maximal antichain. Then there exists
n0 = n0(Γ ) such that for every n ≥ n0 there exists a set {nω := nω(n)}ω∈Γ
of positive integers such that

∑
ω∈Γ nω ≤ n and

un,r ≥ (C̃rK)−1
∑
ω∈Γ
‖φ′ω‖rµ̂[ω]unω ,r.

Proof. Let U be the open set from the strong open set condition. Then
there exists τ ∈ Σ∗ such that φτ (X) ⊂ U . Let ε = d(φτ (X), U c) and
λ = C̃−1 minω∈Γ {‖φ′ω‖}. Then for ω ∈ Γ we have d(φωφτ (X), φω(U c)) ≥
C̃−1‖φ′ω‖d(φτ (X), U c) ≥ λε, which implies d(x, U c) ≥ d(x, φω(U c)) ≥ λε for
any x ∈ φω(φτ (X)). For each n, let αn be an n-optimal set for un,r and let
δn = max{d(x, αn ∪ U c) : x ∈ J}. Since δn → 0 as n → ∞ we can choose
n0 such that δn < λε for all n ≥ n0. Suppose n ≥ n0 and x ∈ φω(φτ (J)).
There exists a ∈ αn ∪ U c such that d(x, αn ∪ U c) = d(x, a) ≤ δn < λε, and
so a ∈ φω(U). Therefore, letting αnω = αn ∩ φω(U), we get nω := |αnω | ≥ 1
and

∑
ω∈Γ nω ≤ n. Hence,

un,r =
�
d(x, αn ∪ U c)r dµ(x) ≥ K−1

∑
ω∈Γ

µ̂[ω]
�
d(φω(x), αn ∪ U c)r dµ(x)

≥ K−1
∑
ω∈Γ

µ̂[ω]
�
d(φω(x), αn ∪ φω(U c))r dµ(x)

= K−1
∑
ω∈Γ

µ̂[ω]
�
d(φω(x), αnω ∪ φω(U c))r dµ(x)
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≥ K−1C̃−r
∑
ω∈Γ
‖φ′ω‖rµ̂[ω]

�
d(x, φ−1

ω (αnω) ∪ U c)r dµ(x)

≥ (C̃rK)−1
∑
ω∈Γ
‖φ′ω‖rµ̂[ω]unω ,r.

Proposition 3.8. Let {φ1, . . . , φN} satisfy the strong open set condition
and let 0 < r < +∞. Moreover, let κr be as in Lemma 3.2. Let 0 < ` < κr.
Then lim infn→∞ ne`n,r > 0.

Proof. Since 0 < ` < κr and κr is unique for which

lim
n→∞

1
n

log
∑
|ω|=n

(‖φ′ω‖rµ̂[ω])κr/(r+κr) = 0,

we have ∑
|ω|=m

(‖φ′ω‖rµ̂[ω])`/(r+`) →∞ as m→∞.

Choose m so that the above sum is greater than 1 and let Γ = {ω ∈ Σ∗ :
|ω| = m}. Then Γ is a finite maximal antichain. The previous lemma yields
an n0 and for n ≥ n0 the numbers {nω := nω(n)}ω∈Γ which satisfy the
conclusion of that lemma. Set c = min{nr/`un,r : n ≤ n0}. Clearly each
un,r > 0 and hence c > 0. Suppose n ≥ n0 and kr/`uk,r ≥ c for all k < n.
Using the previous lemma we have

nr/`un,r ≥ nr/`(C̃rK)−1
∑
ω∈Γ
‖φ′ω‖rµ̂[ω]unω ,r

= nr/`(C̃rK)−1
∑
ω∈Γ
‖φ′ω‖rµ̂[ω](nω(n))−r/`(nω(n))r/`unω ,r

≥ c(C̃rK)−1
∑
ω∈Γ
‖φ′ω‖rµ̂[ω]

(
nω(n)
n

)−r/`
.

Using Hölder’s inequality (with exponents less than 1) we have

nr/`un,r

≥ c(C̃rK)−1
(∑
ω∈Γ

(‖φ′ω‖rµ̂[ω])`/(r+`)
)1+r/`

(∑
ω∈Γ

(
nω(n)
n

)(−r/`)(−`/r))−r/`
.

By our choice of Γ , which depends only on ` and not on n, and the fact that∑
ω∈Γ nω(n) ≤ n, we see that nr/`un,r ≥ c(C̃rK)−1. Hence, by induction,

lim inf
n→∞

nu`/rn,r ≥ (c(C̃rK)−1)`/r > 0, i.e. lim inf
n→∞

ne`n,r > 0.

Proof of Theorem 3.1. From Proposition 11.3 of [GL1] we know that:

(a) If 0 ≤ t < Dr < s then
lim
n→∞

netn,r = +∞ and lim inf
n→∞

nesn,r = 0.
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(b) If 0 ≤ t < Dr < s then
lim sup
n→∞

netn,r = +∞ and lim
n→∞

nesn,r = 0.

From (a) and Proposition 3.8 we have ` ≤ Dr whenever ` < κr. Hence
κr ≤ Dr. From (b) and Proposition 3.6 we have Dr ≤ κr. Hence κr ≤ Dr ≤
Dr ≤ κr, i.e., the quantization dimension Dr exists and Dr = κr. Note that
for qr = κr/(r + κr) and β(qr) = rqr we have Dr = β(qr)/(1− qr). This
completes the proof of the theorem.
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