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Summary. Associated to an Hadamard matrix H € My(C) is the spectral measure
wu € P[0, N] of the corresponding Hopf image algebra, A = C(G) with G C S]'C. We study
a certain family of discrete measures p” € P[0, N], coming from the idempotent state
theory of G, which converge in Cesaro limit to p. Our main result is a duality formula

of type Sév(:r/N)P du"(x) = Sév(a:/N)Tdup(:r), where u",v" are the truncations of the
spectral measures u, v associated to H, H'. We also prove, using these truncations u”, ",
that for any deformed Fourier matrix H = Fiar ®¢g Fn we have p = v.

Introduction. A complex Hadamard matrix is a square matrix H in
My (C) whose entries are on the unit circle, |H;;| = 1, and whose rows are
pairwise orthogonal. The basic example of such a matrix is the Fourier one,
Fn = (wY) with w = e>™/N:

1 1 1 cee 1

1 2 - N-1
Fy = w w w

1 wN-1 2(N-1) w®™-1)?

In general, the theory of complex Hadamard matrices can be regarded
as a “non-standard” branch of discrete Fourier analysis. For a number of
potential applications to quantum physics and quantum information theory,
see [4], [8], [10].

Each Hadamard matrix H € My(C) is known to produce a subfactor
M C R of the Murray—von Neumann hyperfinite factor R, having index [R :
M] = N. The associated planar algebra P = (Pj) has a direct description
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in terms of H, worked out in [7], and a key problem is that of computing
the corresponding Poincaré series, given by

f(z)= Z dim(Py)2".
k=0

An alternative approach to this question is via quantum groups [I1], [12].
The idea is that associated to H € My(C) is a quantum subgroup G C S},
of Wang’s quantum permutation group [9], constructed by using the Hopf
image method, developed in [2]. More precisely, G C S]"\F, appears via a
factorization diagram, as follows:

C(Sy) - My(C)

Here the upper arrow is defined by 7 : u;; — P;; = Proj(H;/Hj), where u;;
are the standard generators of C(SY;), and where Hy, ..., Hy € TV are the
rows of H. The lower left arrow is by definition transpose to the embedding
G C SJJ{,, and the quantum group G C SX, itself is by definition the minimal
one producing such a factorization.

With this notion in hand, the problem is that of computing the spectral
measure p of the main character x : G — C. This is indeed the same problem
as above, because by Woronowicz’s Tannakian duality [12], f is the Stieltjes
transform of pu:

1

1— 2y

fz) =\
G
Here and in what follows, we use the integration theory developed in [11].
For a Fourier matrix Fy the associated quantum group G C SJJ\? is the
cyclic group Zy, and we therefore have p = (1 — 1/N)dy + (1/N)dy in
this case. In general, however, the computation of u is a difficult question
(see [3]).
In this paper we discuss a certain truncation procedure for the main
spectral measure, coming from the idempotent state theory of the associated
quantum group [3], [6]. Consider the following functionals:

| = (trop)
G

where  is convolution, ¥ x ¢ = (¢ ® ¢)A.
The point with these functionals is that, as explained in [3], we have
the following Cesaro limiting result, coming from the general results of
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Woronowicz [11]:

Ed

.1 T
Sgp = lim — S ®.
k—oo k
G r=1G
This formula can of course be used to estimate or exactly compute various
integrals over GG, and doing so will be the main idea in the present paper.

At the level of the main character, we have the following result:

THEOREM A. The law x with respect to Sg equals the law of the Gram
matrix

Xiyipjiodr = Giveviirs Ejrovin)
of the norm one vectors
g’il...ir:L'Hil ® @ . i
\/N Hi2 \/N Hi1
Here the law of X is by definition its spectral measure, with respect to
the trace.

Observe that as r — oo, via the above-mentioned Cesaro limiting proce-
dure, we obtain from the laws in Theorem A the spectral measure p we are
interested in.

Our second and main theoretical result is as follows:

THEOREM B. We have the moment/truncation duality formula
P " P '
N N
GH GHt

where G, Gyt are the quantum groups associated to H, H'.

This formula, which is quite non-trivial, is probably of interest in con-
nection with the duality between the quantum groups Gp, G, Ggt, Gy~
studied in [1].

As an illustration for the above methods, we will work out the case of
the deformed Fourier matrices, H = Fiy ®¢q F, with the following result:

THEOREM C. For H = Fy ®¢g Fy we have the self-duality formula
| e0= | ¢

Gg Gyt
for any parameter matriz Q € Myr«n(T).
The paper is organized as follows: Sections 1-2 are preliminary, and in

Sections 3-5 we present the truncation procedure and prove Theorems A-C
above.
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1. Hadamard matrices. A complex Hadamard matriz is a matrix
H € My(C) whose entries are on the unit circle, and whose rows are pairwise
orthogonal. The basic example is the Fourier matrix, Fy = (w¥) with w =
e2™i/N - A more general example is the Fourier matrix Fg = F. N, @ ® Fi,
of any finite abelian group G = Zy, x --- X Zn, (see [§]).

Complex Hadamard matrices are usually regarded modulo equivalence:

DEFINITION 1.1. Two complex Hadamard matrices H, K € My(C) are
called equivalent, written H ~ K, if one can pass from one to the other
by permuting rows and columns, or by multiplying rows and columns by
numbers in T.

As explained in the introduction, each complex Hadamard matrix pro-
duces a subfactor M C R of the Murray—von Neumann hyperfinite factor R,
having index [R : M| = N, which can be understood in terms of quantum
groups. Indeed, let a magic matriz be any square matrix u = (u;;) whose
entries are projections (p = p? = p*), summing up to 1 along each row and
each column. We then have the following key definition, due to Wang [9]:

DEFINITION 1.2. C(S};) is the universal C*-algebra generated by the
entries of an NV x N magic matrix u = (u;;), with comultiplication, counit and
antipode maps defined on the standard generators by A(u;;) = > wir @usj,
E(uij) = 5Z-j and S(’LLZJ) = Uji.

As explained in [9], this algebra satisfies Woronowicz’s axioms in [I1],
and so SJJ\F, is a compact quantum group, called the quantum permutation
group. Since the functions v;; : Sy — C given by v;;(0) = ;4(;) form a magic
matrix, we have a quotient map C(S3;) — C(Sy), which corresponds to an
embedding Sy C S]J\r,. This embedding is an isomorphism for N = 1,2, 3,
but not for N > 4, where S} is not finite (see [9]).

The link with Hadamard matrices comes from:

DEFINITION 1.3. Associated to an Hadamard matrix H € My (T) is the
minimal quantum group G C S]J\“, producing a factorization of type

C(Sy) = My(C)
N A
c(G)

where 7 : u;; — Pj; = Proj(H;/H;), where Hy,...,Hy € TV are the rows
of H.

Here 7 is indeed well-defined because P = (P;;) is magic, which comes
from the fact that the rows of H are pairwise orthogonal. The existence and
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uniqueness of the quantum group G C S;(, as in the statement comes from
Hopf algebra theory, by dividing C(S7;) by a suitable ideal (see [2]).

At the level of examples, it is known that the Fourier matrix F produces
the group G itself. In general, the computation of G is a quite difficult
problem (see [3]).

At a theoretical level, it is known that the above-mentioned subfactor
M C R associated to H appears as a fixed point subfactor associated to GG
(see [1I).

In what follows we will rather use a representation-theoretic formulation
of this latter result. Let v = (u;;) be the fundamental representation of G.

DEFINITION 1.4. We let o € P[0, N] be the law of the variable x =
>, ui; with respect to the Haar integration functional of C(G).

Note that the main character x = ), u; being a sum of N projections,
we have the operator-theoretic formula 0 < xy < N, and so supp(u) C [0, N],
as stated above.

Observe also that the moments of p are integers, because we have the
following computation, based on Woronowicz’s general Peter—Weyl type re-
sults in [11]:

N
S a* du(x) = S Tr(u)k = S Tr(u®*) = dim(Fix(u®*)).
0 G G

The above moments, or rather the fixed point spaces appearing on the
right, can be computed by using the following fundamental result from [2]:

THEOREM 1.5. We have an equality of complex vector spaces
Fix(u®*) = Fix(P®*)
where for X € My (A) we set XOF = (X j, - Xiir)ir..ingr..in-
Now back to subfactor problems, it is known from [7] that the planar
algebra associated to H is given by P, = Fix(P®*). Thus, Theorem 1.5

tells us that the Poincaré series f(z) = 3 50, dim(P)z* is nothing but the
Stieltjes transform of pu:

1
f<z>=(§;1_zx.

Summarizing, modulo some standard correspondences, the main subfac-
tor problem regarding H consists in computing the spectral measure p in
Definition 1.4.

2. Finiteness and duality. In this section we discuss a key issue,
namely the formulation of the duality between the quantum permutation
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groups associated to the matrices H, H, H', H*. Our claim is that the general
scheme for this duality is, roughly speaking, as follows:
H——H' G—G
-
j— Go—Go
More precisely, this scheme fully works when the quantum groups are finite.
In the general case the situation is more complicated, as explained in [IJ.
The results in [I], written some time ago, in the general context of vertex
models, and without using the Hopf image formalism of [2], are in fact not
very enlightening in the Hadamard matrix case. Below we will present an

updated approach.
First, we have:

PROPOSITION 2.1. The matrices P=(P;j) for H, H,H', H* are related by
H——H' (Pij)kt — (Pra)ij
=

H Hr (Pji)kl
In addition, we have (Pij)i = (Pji)ik-

(Pra)ji

Proof. The magic matrix associated to H is given by P;; = Proj(H;/H;).
Now since H — H transforms H;/H; — H;/H;, we conclude that the magic
matrices P, PH associated to H, H are related by the formula PZ-J;-I = Pﬁ[ ,
as stated above.

In matrix notation, the formula for the matrix P is as follows:

1 HyHy
Py, == 221
(PijJu = HyHj,
Now by replacing H — H', we obtain
1 Hi;Hj;
pHY, — . ZREE _ (pHYy

Finally, the last assertion is clear from the above formula for P¥. u

Let us now compute Hopf images. First, regarding the operation H — H,
we have:

PROPOSITION 2.2. The quantum groups associated to H, H are related by
G =G
where the Hopf algebra C(G?) is C(G) with comultiplication XA, where X
1s the flip.
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Proof. Our claim is that, starting from a factorization for H as in Defi-
nition 1.3 above, we can construct a factorization for H, as follows:

Uij by

N LN T

Vij € C(G) Vji € C(G7)

Indeed, observe first that since v;; € C(G) are the coefficients of a corep-
resentation, so are the elements v;; € C(G?). Thus, in order to produce
the factorization on the right, it is enough to take the diagram on the left,
and compose at top left with the canonical map C(S}) — C(S%7) given by
Uiy — Uj;. m

Let us now investigate the operation H — H'. We use the notion of dual
of a finite quantum group (see e.g. [I1]). The result here is as follows:

THEOREM 2.3. The quantum groups associated to H, H! are related by
the usual duality,

Gy = Gy
provided that the quantum group Gy is finite.

Proof. Our claim is that, starting from a factorization for H as in Defi-
nition 1.3 above, we can construct a factorization for H?, as follows:

7THt

C(Sy) = My (C) C(Sy) My (C)

N

C(G) cG)r
More precisely, having a factorization as the one on the left, let us set

n(e) = (k1))
w(x) = (p())kt-
Our claim is that 7 is a representation, w is a corepresentation, and the

factorization on the right holds indeed. Let us first check that n is a repre-
sentation:

n(pY) = (oY (ve) )k = ((p @ V) A(vki) ki

> ¢(vra) (vaz))kﬁn(@nw),

a

(
(6) (e(vrt)) ket = (Okt) e
= (" (k)i (w(S(le)))kl = (o)) = n(e)"
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Let us now check that w is a corepresentation:

(Awg)(z @ y) = w(zy) = play)u = ZP T)kip(y

= Z wri (v)wi(y) = (Z Wg; @ wil) (z®y),

e(wgt) = wri (1) = 1 = Opr-
We now check that the above diagram commutes on the generators u;;:
t t
N(wap) = (Wap (Vi) et = (P(Vk)ab) et = (P )av )it = (P2 i) = Py -
It remains to prove that w is magic. We have the following formula:
Wagay (Visgs -+ Viggy) = (AP D0aga, ) (Virjy ® -+ © V3, ,)

= Z Wagay UZ1J1) 'wap—lap(vipjp)
c@p_1

1 Z Hila(JHjlal Hipap 1ijap
HilalHjlao H; H]pap 1

1pQ
ai...ap—1 p=P

In order to check that each wg, is an idempotent, observe that

2
waoa][7 (viljl e vipjp)
= (Waga, @ Waga,) Virky - - Vipk, @ Vkyjp -+ - Ukyj
P P pRp pJp
ki...kp
Z Z Z Hilaon‘lal H’ipap_1Hkpap
N2p HilalHklao H Hkpap,1

skp @1ap—1 Q1.0 tp@p

. Hpyao Hjy 04 Hipap 1 Hjpay
HiyonHjjay  HipayHjpop o

The point now is that when summing over k; we obtain Nd,,,, then when
summing over kz we obtain Ndg,q,, and so on until we sum over k,_;, where
we obtain N 5%71%71. Thus, after performing all these summations, we are
left with

2
Wagay (viljl s Uipjp)

H’llao j1a1 Hipap_lﬂkpap . Hkpap_1ijap
—+1 Z Z e .
Np a1 Hzlal jiao Hzpakapap_l HkpapH]pap,1
HijayHjra, Hipap Iijap
Np+ i H; o, Hj g Hipa,Hj,a,
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- i Hi agHjia, Hipaplejpap
N ai...ap—1 Hiya1 Hjag Hzpaijpapfl

= Wagay, (Uiljl s vipjp)'

Regarding the involutivity, the check is simple:

Waga, Virj - - - Vigjp) = Waga, (S (Viyj, - - - Vigji))

= waoap (Ujlil PN Ujpip)
= wzoap(viljl ‘e Uipjp)-
Finally, to check the first “sum 1” condition, observe that

s (W v ) = HivaHia,  Hiyay 1 Hjpar
E aoap\Virj1 - - Vipjp) = J7p E ] - c ' .
ao N Hzlal Hjlao H H

ipQ Ap—
ag...ap—1 pGp =~ JpAp—1

The point now is that when summing over ag we obtain Nd;, ;,, then when
summing over a; we obtain Nd;,;,, and so on until we sum over a,_1, where
we obtain N§ Thus, after performing all these summations, we are left
with

ipJp:
E :waoap (Uiljl T vipjp) = 6i1j1 s 5ipjp = E(Uiljl Tt Uipjp)‘
ag

The proof of the other “sum 1”7 condition is similar, and this finishes the
proof of Theorem .

3. The truncation procedure. Let us now go back to the factorization
in Definition 1.3. Regarding the Haar functional of the quantum group G,
we have the following key result from [3]:
PROPOSITION 3.1. We have the Cesaro limiting formula
1 LA
S = lim — S
k—o00
r=1G
where the functionals on the right are by definition given by Sg = (trop)*".
The evaluation of the functionals Sg is a linear algebra problem. Several
formulations of the problem were proposed in [3], and we will use here the
following formula, which appears in [3], but in a somewhat technical form:

PROPOSITION 3.2. The functionals {i, = (tr o p)*" are given by

r
S Uaiby - - - Uapb, — (T;)al...ap,bl...bp
G

where (Tp)i1...ip,j1...jp == tr(P’hjl e Pipjp); with Pij == PrOJ(HZ/HJ)
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Proof. With as =i and bs = "', we have the following computation:

,
S Uqyby - - - Ugyb, = (tr O p)Zr A (ui?iiﬂ . .uigigﬂ)

G
tr0p®r E Wi0,1 oo U051 Qv s QU vl vv o U v 1
941 p'p iju] inip

7,1 z;

w >R
01 ...P01 @ Q@ Ppryr ... Poprg1.
13 iDip 7] ipip

21 z]’;

On the other hand, we also have the following computation:

(T3)ar...apbr.bp = Z (Tp)io...ig,i}...z‘; e (Tp)iq...z’;,q“.. Tt

1 K

i1...13
= Z tr(Pz(l)z% .. Pzglé) tI‘(PT 1 P r+1)
if...15
= tr®" Z Pioil . P,LD,Ll X - ®P 7‘+1 P.. s
i1 pp
i1...15

Thus we have obtained the formula in the statement. m
We can now define the truncations of u, as follows:
PROPOSITION 3.3. Let pu" be the law of x with respect to {i, = (tro p)*”

(1) u" is a probability measure on [0, N].

(2) p=limp_yoo k! Zle T

(3) The moments of u” are ¢, = Tr(1}).

Proof. (1) The fact that u" is indeed a probability measure follows from
the fact that the linear form (tr o p)*” : C(G) — C is a positive unital

trace, and the assertion on the support comes from the fact that the main
character x is a sum of N projections.

(2) This follows from Proposition 3.1, i.e. from the main result in [3].
(3) This follows from Proposition 3.2 above, by summing over a; = b;. »

Let us now recall that associated to a complex Hadamard matrix H in
Mp(C) is its profile matrix, given by

H, H. H,,H,;
Qabcd < > 72 = Zd'
N\ H, Hy N - H;,H;.

With this notation, we have the following result:

PROPOSITION 3.4. The measures p” have the following properties:

(1) u® =dn.
(2) pt=(1-%)d + &0n.
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(3) uQ = law(S), where Sqp.ca = ]Qab’cd\Q.
(4) For a Fourier matriz Fg we have p' = p? = -+ = p.

Proof. We use the formula ¢, = Tr(7}) from Proposition 3.3(3) above.
(1) For r = 0 we have ¢) = Tr(T})) = Tr(Idn») = N?, so u® = dy.
(2) For r = 1, if we denote by J the flat matrix (1/N);;, we have indeed

(:117 =Tr(Tp) = Z tr(Piyiy - Piiy) = Z tr(JP)

i1 i1..ip

=) tr(J) =N

i1...0p

(3) This can be checked directly, and is also a consequence of Theorem
3.5 below.

(4) For a Fourier matrix the representation p producing the factorization
in Definition 1.3 is faithful, and this gives the result. =

In the general case, we have the following result:
THEOREM 3.5. We have u" = law(X), where

Xal...ar,bl...b,« = Qalbl,a2b2 o Qarbr,albl

where Q@ denotes as usual the profile matriz.

Proof. We compute the moments of p". We first have

g =Te(T)) = > (Tp)age ... (Tp)ira

il.ar
= E ,(Tp)zi KPR z%"‘(Tp)zl RIS
if...05
=Y (P Pagz) .. tr(Py .. Py
if..03

In terms of H, we obtain the following formula:

Cp NT Z Z Pl 2 (Pl 2)(1 ‘11 e (PZIZ%)GIGE P (PZ;,’L%))GZGI

21 7,Ta1 aT
H1 1H21 Hi,1H> 1 Hir,rH
_ E ’ § ag Lpdp =T lpay (% Rk ST 2N
p+1 H1 1H21 Hi1 1Ho2 1 HiyrorHa r
(3 15a za.
19 p21” pap 1

Z1 z’“al aT 1105 1107 110y
HirorH e
ipap T ipal

" Hirgr H;
z;a{ 1 .

zpa
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Now by changing the order of the summation, we obtain

P N@+Dr aloap 1 Hi%a%Hi%a’l' i Hi;a;'*lHiIaé'
H1 HZ1 Z Hithfl ipap
e - Hizga%Hipa; cee - Hi;;a;_l Hi{,a; .

In terms of @, and then of the matrix X in the statement, we get

L1
c, = — ( 1.1 ror ... r—lr—l)...( 1gl ara” « ¢+ ""171)
D NT E Qal%,ala2 Qa{ag,al as Q“ ap,apay Qara{,ap a1

p p
1

al...a;
1
- ﬁ Z Xﬂ%ma’lﬂ,a%.u(lg c ‘Xal ap,a% al = ﬁ TI'(Xp) = tr(Xp)
a%...a;

But this gives the formula in the statement. =

Observe that the above result covers the previous computations of 12,
p', p?, and in particular the formula for 42 in Proposition 3.4(3). Indeed,
for r = 2 we have

ab cd — Qac bded ac Qab,chab,cd = |Qab,cd’2-

In the next section we will discuss some further interpretations of u”.

4. Basic properties and examples. Let us first take a closer look at
the matrices X appearing in Theorem 3.5. These are in fact Gram matrices,
of certain norm one vectors:

PROPOSITION 4.1. We have pu" = law(X), with
Xayoarprobr = (Earars Ebrobr)s

where
1  Hg 1 H,,

PR — R ® .
Sovor = N Ha VN Ha

In addition, the vectors &g, .. q, are all of norm one.

Proof. The first assertion follows from the following computation:

D _ i H, H,, H, H,
at...ar,by...by NT Hbl ; Hb2 e HbT s Hbl
_ 1<Ha1 Hb1> <Har Hbr>
NT HaQ’ Hy, Hal’ Hy,
1 /H H, H, H
:r< N @ =2 bl@...®l”>'
N™\ Hg, H,, " Hy, Hy,

The second assertion is clear from the formula for &;, 4,.. »
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At the level of concrete examples, we first have:
PROPOSITION 4.2. For a Fourier matrix H = Fo we have:

(1) Qab,cd = 5a+d,b+c-

(2) Xa1...ar,b1...br = 5a1—b1,...,ar—b7-

(3) X2=NX, so X/N is a projection.

Proof. We use the formulae H;; Hy, = H; j 1, Fij =H;, jand ), H;j =
N(Sjo.

(1) Indeed,

1
Qab,cd = N Z Hi,a+d—b—c = 5a+d,b+c-
i

(2) This follows from the following computation:

Xalmambln-br = 5al+b2,b1+a2 s 5ar+b1,br+a1
= 5a1—b1,a2—b2 s 6ar—b—r,a1—b1
= 5a1—b1,...,ar—br-

(3) By using the formula in (2) above, we obtain

2
(X )al...ar,bl...br = Z Xal...ar,cl...cTXcl...cT,bl...bT

c1...cr

= § 6a1_01»~~~7ar_cr5cl_b1a-wcr_br

c1...Cr

= Nba;~by,...ar—br = NXa1 . arb1..b0-
Thus (X/N)? = X/N, and since X/N is self-adjoint as well, it is a projec-
tion. m
Another elementary situation is for the tensor product:
PROPOSITION 4.3. Let L =H ® K. Then

(1) Qﬁgb keld = Qﬁ,szﬁ cd
(2) X% I

21a1 zrar,J1b1 Grbe T Mi1ede1e.de <t ar.ar,brby

(3) pp = Wy * e for any r > 0.
Proof. (1) Indeed,

L o 1 Lme,iaLme,ld
tajb,kcld — Z ]
NM me Lme,kche,jb

_ 1 Z HmiKeaHleld
NM me HkaechjKeb

1 KeaKed K
Z mkaJ ; KecKep Q”’le“vad'
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(2) This follows from (1) above, because

L L L
X21a1 drar,j1b1...grbr — QilaljlbLlQanQbQ ce Qirarjrbr,i1a1j1b1
= QH K H oK
11J1,42J2 ¥ a1bi,a2ba * *  Wirjr,i1j1 ¥ arbr,a1by
—xH = xK

1. bpyJ1eJr<ral...ar,by. byt

(3) This follows from (2), which tells us that, modulo certain standard
identifications, we have X* = X# @ XX . u

We will return to concrete examples in Section 5. Now let us discuss
some general duality issues.

THEOREM 4.4. We have the moment/truncation duality formula
F(X) = p(x)
N N
Gy Gyt

where G, Gyt are the quantum groups associated to H, H'.

Proof. We use the following formula from the proof of Theorem 3.5:
PRI ol o HpatHizay  HiyapHizat  HijapHigy
P N+Dr Hj 1 Hpe 1 Hi})a%Higa}) Hi{agHi}a{

Hiror Hj1

zal

Higa{Hizl,a;

By interchanging p <> r, and by transposing as well all the summation
indices according to the rules i% — iy and ay — a,, we obtain the following
formula:

o = Z Z HyoHiyez  HigapHigey  Hijay Hijaz
p (m e UL b L
H’Ll %Hzéa% H{ % T 71‘ HZ%,CLZHI 1

T
za1

‘HZTG/T HZT
Hi;aéHifa;

Now by interchaging all the summation indices, i% ¢+ a%, we obtain

@ - Z Z Halz}Hal 2 Ha’{i’{Hagi} H})})Hal
" T+1 H, Li 2H alil Har-i% ; HaliQHalil

ahi’
17 al 21

Hapir Horay
Haril a’i’

P°p 1°p
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With H — H!, we obtain the following formula, this time for H:
Hi1H> 1 anqﬂi%ag Hi},a},Higa%

Z Z ija; Tia;
r N(+1p H->11H Ha o Hirgr Hog H
22 10111 -1 Tal 2,101,711
11 'Lral ar ifa; T ijas ijay it as 150, ipay
HzrarH1

zal

Hzll,a; Hz;al

The point now is that, modulo a permutation of terms, the quantity on the
right is exactly the one in the above formula for ¢j,. Thus, if we denote this
quantity by «, then

¢ (H) = a «

N (+1)r’ N(+Dp’
Hence N"¢,(H) = NP¢/(H"), and by dividing by NP*", we obtain
cp(H)  AL(HY)
N N7
But this gives the formula in the statement. =

(H') =

The above result shows that the normalized moments v, = c,/N? are
subject to the condition ~;(H) =~/ (H"). We have the following table of ~}
numbers for H:

p\r ‘ 1 2 r ()
1 | yn 1N 1N 1N
2 1/N  tr(S/N)*  +tr(S/N)" ¢
D 1/N  tr(S/N)P ? Cp
o | 1/N c2 p (1) p(1)

Here we have used the well-known fact that for supp(u) C [0,1] we have
¢, — (1), a fact which is clear for discrete measures, and for continuous
measures too.

Since the table for H! is transpose to the table of H, we obtain:

PROPOSITION 4.5. pp(1) = pge(1).

Proof. This follows indeed from Theorem 4.4 by letting p,r — co. =
Observe that this result recovers a bit of Theorem 2.3, because we have:
PROPOSITION 4.6. For G C Sy, finite we have u(1) = 1/|G].

Proof. The idea is to use the principal graph. So, let first I" be an arbi-
trary finite graph, with a distinguished vertex denoted 1, let A € Mj,(0,1)
with M = |I'| be its adjacency matrix, set N = ||I'||, and let ¢ € R be a
Perron—Frobenius eigenvector for A, known to be unique up to multiplica-
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tion by a scalar. Our claim is that

(AP)11 &

lim = 2=
o N7 el

Indeed, if we choose an orthonormal basis (£°) of eigenvectors, with ¢! =
€/€]|, and write A = UDU" with U = [¢}...¢M] and D diagonal, then we
have, as claimed:

(Ap) (UDpUt 11 - ZUlkak - UllN = thng

Now back to our quantum group G C S]J\“,, let I' be its principal graph,
having as vertices the elements r € Irr(G). The moments of p being the
numbers ¢, = (A?”)11, we have

T Cp . (AP)1y . 5%
(1) = Jim 5 = m N T e

On the other hand, it is known that with the normalization & = 1, the
entries of the Perron—Frobenius eigenvector are simply & = dim(r). Thus
we have

£ 1 1

I€l? 32, dim(r)? |G
Together with the above formula for (1), this finishes the proof. m

5. Deformed Fourier matrices. In this section we study the deformed
Fourier matrices, L = Fy; ®q Fv, constructed by Dita [5]. They are defined

by Lia,jb = Qib(Fn)ij (FN)ab-
We first have the following technical result:

PROPOSITION 5.1. Let H = Fyy ®q Fn, and set

mx Qmand
Z chme ‘

ab cd —

Then:

i+l—k—j
(1) Qiajb,kcld = 5a7b,cdeab,cd ’
i1+j27j172'2 7;'r+j17j7“7i1

(2) Xilal---iramjlbl---jrbr = 5a1_blr--yar_bTRalbl,ang tee arbr,albl
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Proof. First, for a general deformation H = K ®¢q L, we have

me mHme,ld
me kche,jb

Qzajb keld — MN Z H

— Z QmaKmiLeandelle
MN e chKkaechmej Leb

1 ZQmand KmiKml . 1 LeaLed

M~ QueQmy  KmkKmj N~ LecLe’

Thus for a deformed Fourier matrix H = Fi; ®¢g Fn we have

chme

But this gives (1), and then (2), and we are done. m

Qiajbkeld = Oatd, b+c

With the above formulae in hand, we can now prove:

THEOREM 5.2. For the matrix H = Fy @ Fn we have

HH = pgt
for any value of the parameter matriz Q € My n(T).

Proof. We use the matrices X, R constructed in Proposition 5.1. Accord-
ing to Proposition 5.1(2), we have

1
T _ —_— -~ - . .
Cp = NT E : Xa%...cﬂl,a%,..a; s Xa}).,.a;,a%“.a{
a% -ap

-1 e 21 21

51 RH'HQ i§—ih R11+’2_11_Z2
al—ad,...af—a5 Yalal 242 T aralatal
1202 102,07103 102,0105

s )T

al ap11 Zp -2 e 1 sl e

5 R p+ll 7,1 4 'Lp+11 —ip =1

. al 1 r T

p—a150p—a1" “alal a2 lal

Ce -
> pal apaf,apa;

b
Observe that the conditions on the a indices, coming from the Kronecker
symbols, state that the columns of @ = (a]) must differ by vertical vectors
of type (s,...,s).
Now let us compute the sum over the ¢ indices, obtained by neglecting
the Kronecker symbols. According to the formula for R¥ ab,ca 10 Proposition

5.1, this is

Z Z m 1g1 leag me(ﬂQm{a%
Npr il.. 5 mi.. mp Qm allea% Qm{ang{a%
Qm})a})Qméa% Qm;a;Qm;a%

‘ Qm})a% Qm},a?} o ngaInga}, ‘
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Here the exponent appearing on the right is given by
E(i,m) = my (i1 + i3 — i —i3) + - + m{ (i + i3 — if — i5)
e mp(iy + 0] — i — i) + - mp (i 4 i — iy — i),

Now observe that this exponent can be written as

E(i,m) = ii(m} —m} — m}o—i—m]’;) o (my —my ! —my, —I—m;A)
+ o i (my —my —my, g +my )
4ot i;(m; — mgfl — m;_l + mg:%).

With this formula in hand, we can perform the sum over the ¢ indices, and
the point is that the resulting condition on the m indices will be exactly the
same as the above-mentioned condition on the a indices. Thus, we obtain a
formula as follows, where A(:) is a certain product of Kronecker symbols:

Do T T swagils G
NT leaZQ 2 Qm{ag leal

kA
.afml.. mia? 1

Qm a1 Qm a1 Qm;ang;al

1
szlja{ Qmpa% Qm;a{ nga;

The point now is that when replacing H = F)y ®¢g Fy with its transpose
matrix, H! = Fy ®qt Fr, we will obtain exactly the same formula, with @
replaced by Q. But, with a3 <> m%, this latter formula will be exactly the
one above, and we are done.
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