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Summary. We are mainly concerned with the result of Kaplansky, [10], on the com-
position of two normal operators in the case in which at least one of the operators is
unbounded.

1. Introduction. Normal operators are a major class of bounded and
unbounded operators. Among their virtues, they are the largest class of sin-
gle operators for which the spectral theorem is proved (cf. [17]). There are
other classes of interesting non-normal operators, such as hyponormal and
subnormal operators. They have been of interest to many mathematicians
and have been extensively investigated, so that even monographs have been
devoted to them—see for instance [4] and [12].

In this paper we are mainly interested in generalizing the following result
to unbounded normal and bounded hyponormal operators:

Theorem 1.1 (Kaplansky, [10]). Let A and B be two bounded operators
on a Hilbert space such that AB and A are normal. Then B commutes with
AA∗ iff BA is normal.

Before recalling some essential background, we make the following con-
vention:

All operators are linear and are defined on a separable complex Hilbert
space, which we will denote henceforth by H.

A bounded operator A on H is said to be normal if AA∗ = A∗A, and
hyponormal if AA∗ ≤ A∗A, that is, ‖A∗x‖ ≤ ‖Ax‖ for all x ∈ H. Hence a
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normal operator is always hyponormal. Obviously, a hyponormal operator
need not be normal. However, in a finite-dimensional setting, a hyponormal
operator is normal. This is proved via a nice and simple trace argument (see
e.g. [8]). An operator is said to be subnormal if it has a normal extension,
and co-subnormal if its adjoint is subnormal. Another important class of
non-normal operators is that of paranormal ones. We recall that an operator
A is said to be paranormal if ‖A2x‖ ≥ ‖Ax‖2 for any unit vector x in H (it
can easily be shown that hyponormality implies paranormality). Similarly,
an operator A is called co-paranormal if its adjoint is paranormal.

Since the paper is also concerned with unbounded operators, and for
the reader’s convenience, we recall some known notions and results about
unbounded operators.

If A and B are two unbounded operators with domains D(A) and D(B)
respectively, then B is said to be an extension of A (or A is a suboperator
of B), and we write A ⊂ B, if D(A) ⊂ D(B) and A and B coincide on
each element of D(A). An operator A is said to be densely defined if D(A) is
dense in H. The (Hilbert) adjoint of A is denoted by A∗ and it is known to be
unique if A is densely defined. An operator A is said to be closed if its graph
is closed in H ×H. We say that an unbounded operator A is self-adjoint if
A = A∗, and normal if A is closed and AA∗ = A∗A.

A densely defined operator A is said to be formally normal if D(A) ⊂
D(A∗) and ‖Ax‖ = ‖A∗x‖ for all x ∈ D(A). It is easy to see that a densely
defined suboperator of a normal operator is formally normal.

Recall also that the product BA is closed if for instance B is closed and A
is bounded, and that if A, B and AB are densely defined, then only B∗A∗ ⊂
(AB)∗ holds; and if furtherA is assumed to be bounded, thenB∗A∗ = (AB)∗.

The notion of hyponormality extends naturally to unbounded operators.
An unbounded A is called hyponormal if:

(1) D(A) ⊂ D(A∗),
(2) ‖A∗x‖ ≤ ‖Ax‖ for all x ∈ D(A).

Any other result or notion (such as the classical Fuglede–Putnam theo-
rem, polar decomposition, subnormality etc.) will be assumed to be known
by readers. For more details, the interested reader is referred to [2], [3], [7],
[16] and [17]. For other works related to products of normal (bounded and
unbounded) operators, the reader may consult [6], [11], [13], [14] and [15],
and the references therein.

2. Main results: the bounded case. The following was proved in [10]:

Proposition 2.1. If A and B are bounded operators on a Hilbert space H,
A is normal and B commutes with A∗A, then the operators AB and BA are
unitarily equivalent.
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So, under the assumptions of Corollary 2.1 below, BA being unitarily
equivalent to the hyponormal operator AB is automatically hyponormal.
Clearly, hyponormality can be replaced by any other property of AB written
in terms of an inner product. In particular, one can consider (co-) subnor-
mality, (co-) paranormality and so on.

Corollary 2.1. Let A and B be two bounded operators on a Hilbert
space such that A is normal and AB is hyponormal. Then

AA∗B = BAA∗ ⇒ BA is hyponormal.

The reverse implication in Corollary 2.1 does not hold (even if A is self-
adjoint), as shown by the following example:

Example 1. Let A and B act on the standard basis (en) of `2(N) by:
Aen = αnen and Ben = en+1, ∀n ≥ 1,

respectively. Assume further that αn is bounded, real-valued and positive,
for all n. Hence A is self-adjoint (hence normal!) and positive. Then

ABen = αn+1en+1 and BAen = αnen+1, ∀n ≥ 1,

meaning that both AB and BA are weighted shifts with weights {αn}∞n=2

and {αn}∞n=1 respectively.
Now recall (see e.g. [8]) that a weighted shift with weight {αn}∞n=1 is

hyponormal if and only if {|αn|}∞n=1 is increasing.
Hence if {αn}∞n=1 is increasing, then AB and BA are both hyponormal.

Moreover, AB = BA (equivalently, A2B = BA2) if and only if the sequence
{αn}∞n=1 is constant. Taking any nonconstant increasing sequence {αn}∞n=1

gives the desired example.

Another interesting consequence of Theorem 1.1, Proposition 2.1 and
Ando’s theorem (see [1]) is the following result:

Corollary 2.2. Let A,B be two bounded operators such that A is also
normal. Assume that AB is paranormal and that BA is co-paranormal. As-
sume further that the kernels of AB and (AB)∗ (or those of BA and (BA)∗)
coincide. Then

AA∗B = BA∗A ⇔ BA and AB are normal.

3. Main results: the unbounded case. We start by giving an example
to show that the same assumptions as in Theorem 1.1 do not yield the same
result if B is an unbounded operator, let alone when both A and B are
unbounded.

What we want is a normal bounded operator A and an unbounded (and
closed) operator B such that BA is normal, A∗AB ⊂ BA∗A but AB is not
normal.
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Example 2. Let

Bf(x) = ex
2
f(x) and Af(x) = e−x

2
f(x)

with domains

D(B) = {f ∈ L2(R) : ex
2
f ∈ L2(R)} and D(A) = L2(R).

Then it is well known that A is bounded and self-adjoint (hence normal),
and that B is self-adjoint (hence closed).

Now AB is not normal for it is not closed, as AB ⊂ I. On the other
hand, BA is normal as BA = I (on L2(R)). Hence AB ⊂ BA, which implies
that

AAB ⊂ ABA ⇒ AAB ⊂ ABA ⊂ BAA.

The anonymous referee kindly suggested the following result. It is a gen-
eralization of the second result in Corollary 3.1 which was proved earlier by
the authors using a different proof.

Proposition 3.1. If A is a bounded normal operator and B is a closed
operator such that AB is normal and A∗AB ⊂ BA∗A, then

(1) BA is closed and densely defined, and (BA)∗ is formally normal.
(2) BA is normal provided D(BA) ⊂ D[(BA)∗].

Remark. The assumption D(BA) ⊂ D[(BA)∗] is essentially weaker
than the hyponormality of BA (which in turn is essentially weaker than
the subnormality of BA).

Proof of Proposition 3.1. (1) We wish to adapt the proof of Kaplansky’s
theorem [10] (with U unitary and A = U |A| = |A|U) to the context of
unbounded operators. However, there is a delicate moment: we have to know
that |A|2B ⊂ B|A|2 implies |A|B ⊂ B|A|. But this follows from Lemma 2.1
in [9]. Then we get C ⊂ BA, where C = U∗ABU is normal. Since AB is
densely defined, so is BA. Clearly BA is closed. Taking adjoints, we see that
(BA)∗ is densely defined and (BA)∗ ⊂ C∗. Since C∗ is normal, (BA)∗ is
formally normal.

(2) Apply (1).

Corollary 3.1. Let B be a closed operator and let A be a bounded op-
erator such that both AB and A are normal. If BA is normal, then A∗AB ⊂
BA∗A.

If BA is hyponormal and A∗AB ⊂ BA∗A, then BA is normal.

Proof. We only prove the first assertion of the corollary. The proof in
this case is a direct adaptation of the Kaplansky theorem. Since AB and
BA are normal, the equality

A(BA) = (AB)A
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implies that
A(BA)∗ = (AB)∗A

by the Fuglede–Putnam theorem (see e.g. [3]). Hence

AA∗B∗ ⊂ B∗A∗A or A∗AB ⊂ BA∗A.
Imposing another commutativity condition allows us to generalize The-

orem 1.1 to unbounded normal operators by bypassing hyponormality and
subnormality:

Theorem 3.1. Let B be an unbounded operator and let A be a bounded
one such that both A and B are normal. If A∗AB ⊂ BA∗A, AB∗B ⊂ B∗BA
and BA is densely defined, then BA is normal.

The proof is partly based on the following interesting result on maximal-
ity of self-adjoint operators:

Proposition 3.2 (Devinatz–Nussbaum–von Neumann [5]). Let A, B
and C be self-adjoint operators. Then

A ⊆ BC ⇒ A = BC.

Proof of Theorem 3.1. First, BA is closed as A is bounded and B is
closed. So BA(BA)∗ (and (BA)∗BA) is self-adjoint. Then we have

A∗ABB∗ ⊂ BA∗AB∗ = BAA∗B∗ ⊂ BA(BA)∗

and hence
BA(BA)∗ ⊂ (A∗ABB∗)∗ = BB∗A∗A,

so that Proposition 3.2 gives us

BA(BA)∗ = BB∗A∗A,

for both BB∗ and A∗A are self-adjoint since B is closed and A is bounded
respectively.

Similarly
A∗AB∗B ⊂ A∗B∗BA ⊂ (BA)∗BA.

Adjointing the above “inclusion” and applying again Proposition 3.2 yields

(BA)∗BA = B∗BA∗A = BB∗A∗A,

establishing the normality of BA.
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