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Summary. The paper presents a geometric method of finding periodic solutions of re-
tarded functional differential equations (RFDE) x′(t) = f(t, xt), where f is T -periodic
in t. We construct a pair of subsets of R × Rn called a T -periodic block and compute its
Lefschetz number. If it is nonzero, then there exists a T -periodic solution.

1. Introduction. The geometric method of finding periodic solutions
presented here is a generalization of the method introduced by R. Srzednicki
in [8] and [9]. Its aim is to find periodic solutions of the equation
(∗) x′(t) = f(t, x),
where f is a continuous function, T -periodic in the time variable. The idea is
to construct a pair of sets, called a T -periodic block, which depends on the
equation (∗) and has a simple topological structure, so it is easy to compute
its Lefschetz number, and if it is nonzero, then (∗) has a periodic orbit.

For retarded functional differential equations (RFDE’s), the problem
is that the proper phase space is the space of continuous functions from
some interval to Rn. To overcome the difficulties which arise in the infinite-
dimensional case, we will show that the problem of finding T -periodic solu-
tions of such equations can be translated into a finite-dimensional one. That
will enable us to use the methods of [8].

The concept of blocks and a generalization of the Ważewski Principle
which we apply to RFDE’s was presented by K. Rybakowski in [7]. Con-
dition (ii) in our definition of a T -periodic block follows the definition of a
polyfacial set in [7].
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2. Preliminaries. We start by recalling some basic notations used in
the theory of RFDE’s. For n ≥ 1 and r > 0 let C = C ([−r, 0];Rn) be the
space of all continuous functions from the interval [−r, 0] (r is called a lag)
to Rn, with the supremum norm | · | (i.e. |ϕ| = supθ∈[−r,0] |ϕ(θ)|). With this
norm C is a Banach space.

For a function x: [−r + a, b)→ Rn and t ∈ [a, b) define xt ∈ C by

xt(θ) = x(t+ θ), θ ∈ [−r, 0].

We will consider the equation

x′(t) = f(t, xt),(1)

where f : R× C → Rn is a continuous function.
A continuous function x: [−r+a, b)→ Rn is a solution of (1) if it satisfies

this equation for every t∈ [a, b) and is saturated (i.e. for every y: [−r+ a, c)
→ Rn such that y satisfies (1) and xt = yt, where t ∈ [a,min(b, c)), we have
c ≤ b).

With every solution x of (1) we associate the map [a, b) 3 t 7→ xt ∈ C ,
and call its image the orbit of the solution.

Throughout the paper we will assume that f has the following properties:

1) f is T -periodic in t, i.e.

f(t, ϕ) = f(t+ T, ϕ), t ∈ R, ϕ ∈ C ,

and T > r,
2) given σ ∈ R and ϕ ∈ C there exists a unique function x: [−r+a, b)→
Rn which is a solution of (1) and satisfies xσ = ϕ. It will be denoted
by x(σ, ϕ).

The second condition is not very restrictive. It is satisfied, for example, if
f is Lipschitzian with respect to the second variable on each compact subset
of R× C ([6, Ch. 2, Th. 2.3]).

Let X be a topological space. In what follows, it will be Rn or C .

Definition 1. Let ϕ: R×X × R→ X be a continuous map. Let ϕ(σ,t)
denote the map ϕ(σ, ·, t). The map ϕ is called a (global) process on X if:

(i) ϕ(σ,0) = idX for every σ ∈ R,
(ii) ϕ(σ,s+t) = ϕ(σ+s,t) ◦ ϕ(σ,s) for every σ, s, t ∈ R.

If for some fixed T > 0 we have ϕ(σ+T,t) = ϕ(σ,t) (σ, t ∈ R), then we call
ϕ a T -periodic process.

For A ⊂ R× Rn let

At = {x ∈ Rn : (t, x) ∈ A}.
Definition 2 ([8, Def. 2.2.2]). A pair (A,B) of closed subsets of R×Rn

is called a T -periodic pair if
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(i) At and Bt are compact for all t ∈ R,
(ii) At = At+T , Bt = Bt+T for every t ∈ R (A and B are T -periodic),
(iii) A and B are ANR’s,
(iv) there exists a T -periodic process ω on Rn such that A and B consist

of trajectories of ω, that is, for every (or, equivalently, for some)
σ ∈ R,

A =
⋃

x∈Aσ

⋃

t∈R
(t, ω(σ,t)(x)), B =

⋃

x∈Bσ

⋃

t∈R
(t, ω(σ,t)(x)).

For the definition of an ANR see [1, Ch. IV, Sec. 1].

Remark 3. Condition (iii) in the definition of a T -periodic pair is equiv-
alent to

(iii′) There exists σ ∈ R such that Aσ and Bσ are ANR’s.

Moreover, for each element C ⊂ R × Rn of a T -periodic pair there exists
a T -periodic open subset U ⊂ R × Rn such that C ⊂ U and there exists
a retraction %: U → C such that % is T -periodic in t and invariant with
respect to time sections, i.e. %(t, x) = (t, π ◦ %(t, x)) for every t ∈ R, where
π: R× Rn 3 (t, x) 7→ x ∈ Rn.

Proof. Let ξ: R×Rn 3 (t, x) 7→ ([t], x) ∈ (R/TZ)×Rn, where [t] = t+TZ.
Denote by π1: (R/TZ) × Rn → R/TZ and π2: (R/TZ) × Rn → Rn the
usual projections. If ω is as in the definition of a T -periodic pair, then
ω∗: R × ((R/TZ) × Rn) 3 (t, ([σ], x)) 7→ ([t + σ], ω(σ,t)(x)) ∈ (R/TZ) × Rn
defines a dynamical system on (R/TZ)× Rn.

The set C∗ = ξ(C) is well defined, because C is T -periodic. Furthermore,
C∗ is ω∗-invariant, and is an ANR as the space of a locally trivial bundle
with base a circle and with fiber Ct. Let r∗1: U∗1 → C∗ be a retraction,
where U∗1 is a neighborhood of C∗ in (R/TZ)×Rn. Taking a neighborhood
U∗ ⊂ U∗1 of C∗ small enough, we can assume that for every ([t], x) ∈ U ∗

there exists σ([t],x) ∈ (−T/2, T/2) such that π1◦r∗1([t], x) = [t+σ([t],x)]. Then
the function r∗: U∗ → C∗, r∗([t], x) = ω∗(−σ([t],x), r

∗
1([t], x)), is a retraction,

invariant with respect to time sections.
Let U = ξ−1(U∗) and for (t, x) ∈ U define the retraction %: U → C as

%(t, x) = (t, π2 ◦ r∗ ◦ ξ(t, x)).

The equivalence of (iii) and (iii′) is now clear.

Now we will construct a pair of subsets of R × C using pairs contained
in R× Rn. Let (A,B) be a pair of subsets of R× Rn. Define the functional
extension ex(A) by

(2a) ex(A) = {(t, ϕ) ∈ R× C : (t+ θ, ϕ(θ)) ∈ A for every θ ∈ [−r, 0]},
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and for B ⊂ A,

(2b) exA(B) = {(t, ϕ) ∈ ex(A) : (t, ϕ(0)) ∈ B}.
Similarly, define

ex(A)t = {ϕ ∈ C : (t, ϕ) ∈ ex(A)},
exA(B)t = {ϕ ∈ ex(A)t : ϕ(0) ∈ Bt}.

Lemma 4. If (A,B) is a T -periodic pair , then ex(A), exA(B), ex(A)t
and exA(B)t are closed ANR’s.

Proof. Since A and B are ANR’s, there are T -periodic open subsets U
and V of R × Rn such that A ⊂ U , B ⊂ V and, by Remark 3, there exist
T -periodic retractions %: U → A and %∗: V → B which preserve the time
sections At and Bt.

Denote by %t: Ut → At and %∗t : Vt → Bt the restrictions of % and %∗

to the appropriate t-time sections. To show that ex(A) is an ANR define
%̃: ex(U) → ex(A) by %̃(t, ϕ) = (t, %̃t(ϕ)), where %̃t(ϕ)(θ) = %t(ϕ(θ)). Be-
cause U is open, ex(U) is open in R × C , and the continuity of %̃ follows
from the compactness of the graph of ϕ. Thus ex(U) is an ANR and ex(A)
is its retract, hence also an ANR.

To show that exA(B) is an ANR, we will use the retraction %̃ as well
as %∗. Let (U1, V1) be a pair of T -periodic open subsets of R×Rn such that
A ⊂ U1 ⊂ U1 ⊂ U and B ⊂ V1 ⊂ V 1 ⊂ V . Define %̃∗: exU1(V1) → R × C
by %̃∗(t, ϕ) = (t, %̃∗t (ϕ)), where %̃∗t (ϕ)(θ) = ϕ(θ) + %∗t (ϕ(0)) − ϕ(0). We can
choose U1 and V1 sufficiently small to ensure that %̃∗(exU1(V1)) is contained
in ex(U). Then %̃◦ %̃∗ is the required retraction onto exA(B), and so this last
set is an ANR.

Since At is closed, so is ex(A)t, and the same applies to the other sets
from Lemma 4.

The main result of the paper is based on the concept of a Lefschetz map
f and its Lefschetz number Λ(f). The reader is referred to [2] and [5] for
unexplained definitions and basic facts concerning these concepts.

We make the following definition (see [8, Def. 2.2.3, p. 23]):

Definition 5. The Lefschetz number of a T -periodic pair (A,B) is

LefT (A,B) = Λ(ω(σ,T )) ∈ Z,(3)

where ω(σ,T ): (Aσ, Bσ)→ (Aσ+T , Bσ+T ) = (Aσ, Bσ), and ω is the T -periodic
process from the definition of a T -periodic pair.

This number is well defined, because Aσ and Bσ are compact ANR’s. It
was shown in [8, p. 22] that this definition does not depend on the choice
of ω. Moreover, it does not depend on the choice of the initial time σ.
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For a T -periodic pair (A,B) and σ ∈ R define ω̃: (Aσ, Bσ) → (ex(A)σ,
exA(B)σ) by

ω̃(x)(θ) = ω(σ,θ)(x) for θ ∈ [−r, 0],(4)

where ω is as above.

Proposition 6. If C ⊂ R×Rn is an element of a T -periodic pair , then
for Ωσ,T : ex(C)σ → ex(C)σ+T = ex(C)σ defined by

Ωσ,T (ϕ) = ω̃(ω(σ,T )(ϕ(0))),

the Lefschetz number Λ(Ωσ,T ) is well defined and Λ(Ωσ,T ) = Λ(ω(σ,T )).

Proof. Let %: ex(C)σ 3 ϕ 7→ ϕ(0) ∈ Cσ. Consider the commutative
diagram

Cσ -

6

Cσ -

ex(C)σ
6

ex(C)σ
PP

PP
PP

PP
PP

PP
Pi

ω̃

ω̃

Ωσ,Tω(σ,T )

ω(σ,T ) ◦ %

[5, Lem. 3.1] implies that the Lefschetz number of Ωσ,T is well defined be-
cause it is defined for ω(σ,T ). Moreover, Λ(Ωσ,T ) = Λ(ω(σ,T )). It is obvious
that we can use the same argument for pairs of spaces (see [2]).

For a set W ⊂ R×Rn we introduce the following set, which depends on
the equation (1):

W− = {(t, x) ∈ ∂W : there exists ε > 0 such that for every ϕ ∈ C with
(t, ϕ) ∈ ex(W ) and ϕ(0) = x and for all θ ∈ (0, ε]
we have (t+ θ, x(t, ϕ)(t+ θ)) 6∈W}.

This is a generalization of the exit set from the theory of dynamical systems.

Definition 7. A pair (W,W−) of subsets of R×Rn is a T -periodic block
for the equation (1) if

(i) (W,W−) is a T -periodic pair,
(ii) ∂W \W− = { (t, x) ∈ ∂W : there exists ε > 0 such that for every

ϕ ∈ C with (t, ϕ) ∈ ex(W ) and ϕ(0) = x and for all
θ ∈ (0, ε] we have (t+ θ, x(t, ϕ)(t+ θ)) ∈ intW}.

We recall that according to the definition of a T -periodic pair, both sets
in a T -periodic block have to be closed. This is an essential property, which
will enable us to use the Ważewski Principle.

3. The main theorem

Theorem 8. Let f : R×C → Rn be a T -periodic continuous map which
satisfies the uniqueness condition. Suppose that there exists a T -periodic
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block (W,W−) for the equation (1). Then LefT (W,W−) is well defined and
if LefT (W,W−) 6= 0, then there exists a T -periodic solution of (1).

The rest of this section is devoted to the proof of Theorem 8. The idea
is to reduce the problem from the infinite-dimensional space C to Rn. The
first step will be the change of space and of the solution operator

Φ(0, T ): ex(W )0 3 ϕ 7→ xT (0, ϕ) ∈ C .

If the initial time is 0 and W− is not empty, then there are T -time solutions
xT (0, ϕ), where ϕ ∈ ex(W )0, which are not contained in ex(W )t for some
t ∈ (0, T ]. To avoid the problem with the range of the solution operator, we
will modify the range and domain of Φ(0, T ). But this operation should not
create any additional fixed points of the modified operator, denoted by Θ.
The next aim is to construct the homotopy between Θ and Ω0,T defined in
Proposition 6. The last step is to apply Proposition 6.

To simplify notation we will assume, without loss of generality, that the
initial time is 0. Define

τ : ex(W ) 3 (σ, ϕ) 7→ sup{t ≥ 0 : (s, x(σ, ϕ)(s)) ∈W
for all s ∈ [σ, σ + t]} ∈ [0,∞].

The next lemma is a version of the Ważewski Principle [10] presented in a
modern way by C. Conley [3]. For RFDE’s a generalization of the Ważewski
Principle was given by K. Rybakowski [7].

Lemma 9. The map τ is continuous.

Proof. We consider two cases:
If τ(σ, ϕ) < ∞ then xσ+τ(σ,ϕ)(σ, ϕ) ∈ exW (W−)σ+τ(σ,ϕ). By the defi-

nition of W− we can choose ε > 0 such that x(σ, ϕ)(σ + τ(σ, ϕ) + ε) 6∈
Wσ+τ(σ,ϕ)+ε.

Let U1 be a neighborhood of (σ+ τ(σ, ϕ) + ε, x(σ, ϕ)(σ+ τ(σ, ϕ) + ε)) in
R×Rn such that U1∩W = ∅. Let Û1 be a neighborhood of (σ + τ(σ, ϕ) + ε,

xσ+τ(σ,ϕ)+ε(σ, ϕ)) in R × C with (s, ψ(0)) ∈ U1 for every (s, ψ) ∈ Û1. The
continuous dependence on initial conditions implies that there exists a neigh-
borhood V̂1 of (σ, ϕ) in R×C such that (s+τ(σ, ϕ)+ε, xs+τ(σ,ϕ)+ε(s, ψ)) ∈ Û1

for every (s, ψ) ∈ V̂1. Because the value at 0 of every function from Û1 does
not belong to W , for every (s, ψ) ∈ V̂1 we have τ(s, ψ) < τ(σ, ϕ) + ε.

Let U2 be a neighborhood of (σ+ τ(σ, ϕ)− ε, x(σ, ϕ)(σ+ τ(σ, ϕ)− ε)) in
R×Rn disjoint from W− (we can assume that τ(σ, ϕ) > 0 and ε < τ(σ, ϕ)).
We define Û2 as above. Let U3 be an open neighborhood of {(t, x(σ, ϕ)(t)) :
t ∈ [σ, σ + τ(σ, ϕ)− ε]} in R× Rn such that U3 ∩W− = ∅.

Using the continuous dependence again, we find a neighborhood V̂2 of
(σ, ϕ) such that (s+τ(σ, ϕ)−ε, xs+τ(σ,ϕ)−ε(s, ψ)) ∈ Û2 for every (s, ψ) ∈ V̂2.
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Taking V̂2 small enough, we can assume that (t, x(s, ψ)(t)) is in U3 for all
(s, ψ) ∈ V̂2 and t ∈ [σ, σ + τ(σ, ϕ) − ε]. This gives the opposite inequality
τ(s, ψ) > τ(σ, ϕ)− ε, which proves the continuity in the first case.

We only sketch the proof in the case τ(σ, ϕ) = ∞, because it is similar.
We choose N > σ and construct an open neighborhood U of (N,x(σ, ϕ)(N))
in R×Rn disjoint fromW. Then we choose a neighborhood Û of (N,xN (σ, ϕ))
in R × C and a neighborhood U ′ of the trajectory (t, x(σ, ϕ)(t)) on the
interval [σ,N ], and finally we conclude that for some neighborhood V̂ of
(σ, ϕ) and for every (s, ψ) ∈ V̂ we have τ(s, ψ) > N .

To simplify notation, for ϕ ∈ ex(W )0 we will write τ(ϕ) instead of
τ(0, ϕ).

Let D be the topological quotient space obtained from the union ex(W )0
∪ (exW (W−)0×S1) (S1 is the unit circle in the complex plane), where every
ϕ ∈ exW (W−)0 ⊂ ex(W )0 is identified with (ϕ, 1) ∈ exW (W−)0 × S1.

We now define Θ: D → D . For ϕ ∈ ex(W )0 we set

Θ(ϕ) =





xT (0, ϕ) if τ(ϕ) > T,

(ω̃(ω(τ(ϕ),T−τ(ϕ))(x(0, ϕ)(τ(ϕ)))), e
T−τ(ϕ)

T
πi) if τ(ϕ) ≤ T−r,

(Θ1(ϕ), e
T−τ(ϕ)

T
πi) if τ(ϕ) ∈ (T−r, T ],

where

Θ1(ϕ)(t) =
{
xT (0, ϕ)(t) if T + t ≤ τ(ϕ),

ω̃(ω(τ(ϕ),T−τ(ϕ))(x(0, ϕ)(τ(ϕ))))(t) if T + t > τ(ϕ),

and ω̃ is given by (4). For (ϕ, u) ∈ exW (W−)0 × S1 we define

Θ(ϕ, u) = (ω̃(ω(0,T )(ϕ(0))), ueπi).

Lemma 10. The map Θ is continuous and compact (i.e. there exists a
compact set K ⊂ D such that Θ(D) ⊂K ).

Proof. The continuity of Θ follows from the continuity of τ . From [6,
Ch. 3, Cor. 6.1] we know that the solution map Φ(0, T ): ex(W )0 3 ϕ 7→
xT (0, ϕ) ∈ C is compact. The map ω̃: W0 → ex(W )0 is also compact, be-
cause ω̃(W0) is an equicontinuous and bounded family of functions.

Proof of the main theorem. If ϕ ∈ D is a fixed point of Θ, then it is a
fixed point of the solution map Φ(0, T ): ex(W )0 3 ϕ 7→ xT (0, ϕ) ∈ C . This
implies that FixΘ ⊂ ex(W )0.

The map Θ: D → D satisfies the conditions of [5, Th. 9.5]. The set D
is an ANR, because ex(W )0, exW (W−)0 and exW (W−)0 × S1 are, and D
is the union of ex(W )0 and (exW (W−)0 × S1) with intersection exW (W−)0

(see [1, Th. IV.6.1]).
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If Λ(Θ) 6= 0, then Θ has a fixed point ϕ∗, which is also a fixed point of
Φ(0, T ). Because the solution operator Φ(0, T ) for (1) induces a T -periodic
process on C , we obtain

xt(0, ϕ∗) = xt(T, ϕ∗) = xt(T, xT (0, ϕ∗)) = xt+T (0, ϕ∗).

This ends the proof that x(0, ϕ∗) is a T -periodic solution of (1).
If we know that the Lefschetz number Λ(Θ) is defined, then we can easily

compute it using information about the geometry of (W,W−) only. We will
construct two homotopies to show that Θ is homotopic to Ω: D → D , where

Ω(ϕ) = ω̃(ω(0,T )(ϕ(0))), Ω(ϕ, u) = (ω̃(ω(0,T )(ϕ(0))), u).

Let ϕ ∈ D . Then, roughly speaking, the first homotopy will move Θ(ϕ)
to the function defined by ω̃, without changing the ending point Θ(ϕ)(0).
Define χ: ex(W )0 × [0, 1]→ ex(W )0 by

χ(ϕ, s)(t) =
{
ϕ(t) if t ≥ −r(1− s),
ω̃(ω(−r(1−s),r(1−s))(ϕ(−r(1− s))))(t) if t < −r(1− s).

We define the first homotopy, h1: D×[0, 1]→ D , as follows. On ex(W )0×
[0, 1] and if τ(ϕ) > T , we set

h1(ϕ, s) = χ(xT (0, ϕ), s
)
.

If ϕ ∈ ex(W )0 and τ(ϕ) ∈ (T − r, T ], then

h1(ϕ, s) = (χ(Θ1(ϕ), s), e
T−τ(ϕ)

T
πi
)
.

On the rest of D the map h1 does not depend on the second variable and is
equal to Θ:

h1(ϕ, s) = Θ(ϕ) if ϕ ∈ ex(W )0 and τ(ϕ) ∈ [0, T − r],
h1((ϕ, u), s) = Θ(ϕ, u) if (ϕ, u) ∈ exW (W−)0 × S1.

The second homotopy, denoted by h2: D × [0, 1] → D , is defined as
follows. If ϕ ∈ ex(W )0 and τ(ϕ) ≥ T (1− s), then

h2(ϕ, s) = ω̃(ω(T (1−s),T s)(x(0, ϕ)(T (1− s)))).
If ϕ ∈ ex(W )0 and τ(ϕ) < T (1− s), then

h2(ϕ, s) = (ω̃(ω(τ(ϕ),T−τ(ϕ))(x(0, ϕ)(τ(ϕ)))), e(T−τ(ϕ)
T
−s)πi).

On exW (W−)0 × S1 we set

h2((ϕ, u), s) = (ω̃(ω(0,T )(ϕ(0))), ue(1−s)πi).

Clearly h1(·, 1) = h2(·, 0), and the homotopy H: D × [0, 1] → D de-
fined by

H(ϕ, s) =
{
h1(ϕ, 2s) if s ≤ 1/2,

h2(ϕ, 2s− 1) if s > 1/2,
joins Θ to Ω.



Periodic Solutions of Periodic RFDE’s 361

Now let

Ω1: ex(W )0 3 ϕ 7→ ω̃(ω(0,T )(ϕ(0))) ∈ ex(W )0,

Ω2: exW (W−)0 × S1 3 (ϕ, u) 7→ (ω̃(ω(0,T )(ϕ(0))), u) ∈ exW (W−)0 × S1,

Ω3: exW (W−)0 3 ϕ 7→ ω̃(ω(0,T )(ϕ(0))) ∈ exW (W−)0.

Set ∆ = W0 ∪ (W−0 × S1)/∼, where ∼ identifies x ∈ W−0 with (x, 1) ∈
W−0 × S1. Furthermore, let γ: ∆ → ∆ be defined by γ(x) = ω(0,T )(x) and
γ(x, s) = (ω(0,T )(x), s). The restrictions of γ denoted by γ1: W0 → W0,
γ2: W−0 × S1 → W−0 × S1, γ3: W−0 → W−0 are well defined. Proposition 6
implies that Λ(Ω) = Λ(γ) and Λ(Ωi) = Λ(γi) for i = 1, 2, 3.

The next part of the proof is similar to the proof of the main theorem of
[8, p. 27]. By [2, Prop. 4.1], Λ(γ) = Λ(γ2) + Λ(γ4), where γ4: (∆,W−0 × S1)
→ (∆,W−0 × S1) is determined by γ. The Lefschetz number of γ2 is 0, be-
cause γ2 is homotopic to a map without fixed points, and it follows that
Λ(γ) = Λ(γ4). Since the triad (∆;W−0 × S1,W0) is excisive (see, for ex-
ample, [4, III.8.23 Ex. 1(b)] for details), the relative singular homology
groups (with rational coefficients)H(∆,W−0 ×S1) andH(W0,W

−
0 ) are equal.

Hence Λ(γ4) = LefT (W0,W
−
0 ) and Λ(γ) = LefT (W0,W

−
0 ).

The Lefschetz number is invariant under homotopy, therefore Λ(Θ) =
LefT (W0,W

−
0 ). If LefT (W0,W

−
0 ) 6= 0, then Λ(Θ) 6= 0 and, by [5, Th. 9.5], Θ

has a fixed point ϕ∗. This implies that ϕ∗ is a fixed point of Φ(0, T ), because
it follows from the construction that Θ has no fixed point in exW (W−)0×S1.
We conclude that ϕ∗ ∈ {ϕ ∈ C : (θ, ϕ(θ)) ∈ intW for every θ ∈ [−r, 0]} and
x(σ, ϕ∗) is a periodic solution of (1) contained in intW .

4. Examples. Our first example is a simple delay equation in Rn:

ẋ = |x|x+ x(t− r) + f(t),(5)

where f is a T -periodic continuous function (T > r).
IfBd is a ball with center at the origin and its radius d is sufficiently large,

then for every point of ∂Bd and every ϕ ∈ ex(Bd) such that ϕ(0) ∈ ∂Bd,
solutions of the equation (5) are directed outside the ball. Using the previous
notation, ∂Bd = B−d . We can take (R×Bd,R× ∂Bd) as a T -periodic block.
Since LefT (R×Bd,R× ∂Bd) = 1, there exists a T -periodic orbit of (5).

The next example is an equation on the complex plane C:

ż = z̄q + z(t− r) + p(t),(6)

where q ≥ 2 and p: R→ C is a 2kπ-periodic continuous function (k ∈ Z).
If we omit the term z(t − r), then it was shown in [8, Ex. 6.4.1] that

this (ordinary) differential equation has a 2kπ-periodic solution. For z ∈ C
with |z| large, we can estimate the term with delay, and it does not change
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the structure of a (sufficiently large) 2kπ-periodic block. Therefore (6) has
a 2kπ-periodic solution.

The same reasoning applies to the equation

ż = z̄reit + (z(t− r))q + p(t),(7)

where 2 ≤ q < r and p is a 2kπ-periodic, continuous complex-valued function
(k ∈ Z).

If (W,W−) is an appropriate 2kπ-periodic block for the equation ż =
z̄reit + zq + p(t), then the exit set W− does not change if we replace zq by
(z(t− r))q. Thus (7) has a 2kπ-periodic solution.

To be more specific, consider the equation

ż = z̄2e3it + z(t− r) + eit.(8)

The 2π/3-periodic block (W,W−) for this equation has the form of a skewed
prism with a hexagonal base, and the exit set consists of three stripes wind-
ing around this prism. This was shown in [8] in the case of the ordinary
differential equation which arises from (8) by neglecting the term with de-
lay. For (W,W−) sufficiently large we obtain Lef2π(W,W−) = −2, and so
there exists a 2π-periodic solution of (8).

We can modify these equations to obtain equations like

ż = zq +
0�

−r
e−r/(r+θ)z(t− θ) dθ + p(t),(9)

where p is a T -periodic, continuous complex-valued map and q ≥ 2.
As in the second example, we can choose a T -periodic block for the

equation ż = z̄q + z + p(t), and if it is sufficiently large, then (9) has a
T -periodic solution.
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