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Summary. Material and shape derivatives for solutions to the Dirichlet Laplacian in
a half-space are derived by an application of the speed method. The proposed method
is general and can be used for shape sensitivity analysis in unbounded domains for the
Neumann Laplacian as well as for the elasticity boundary value problems.

1. Introduction. In the paper we combine the recent results on bound-
ary value problems in unbounded domains [1], [3], [2] with the speed method
of shape sensitivity analysis [8], [4], in order to define the material and shape
derivatives of solutions. In the case of bounded domains the related results
can be found in [8]. The case of exterior domains is also already treated in
the habilitation thesis of J.-P. Zolésio (1979). However, to the best of our
knowledge, the case of unbounded domains has not been considered in the
literature on shape optimization.

1.1. Shape sensitivity analysis. There are numerous applications of shape
sensitivity analysis to numerical solution of shape optimization problems,
inverse problems, and topological sensitivity analysis of shape functionals.
We refer the reader, e.g., to [8] for an introduction to the subject in bounded
domains, and to [4] for recent results on evolution of geometrical domains.

From the point of view of shape sensitivity analysis there is a substan-
tial difference between the so-called exterior problems and boundary value
problems (BVP) in unbounded domains. Therefore, we describe in detail the
mathematical framework for a model problem in a half-space, which is used
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to characterize the dependence of solutions to an elliptic equation with re-
spect to boundary variations. As a result, the form of material derivatives,
shape derivatives and shape gradients of integral functionals are given for
the Dirichlet Laplacian in a half-space.

The same method can be used for the Neumann Laplacian, and systems
of equations in unbounded domains.

1.2. Dirichlet Laplacian in variable domains—formal definition. First
we describe the problem of shape sensitivity analysis in a formal way and
after introducing appropriate spaces we present the precise formulation of
the problem.

We consider the shape sensitivity analysis of the model problem

—Au=f in {2,

1.1
(1) u=g on I,

where 2 = RY and I = 92 = RV~L. Following [8] we introduce the map-
ping T; : RN — RY associated with the velocity field V (¢, x) which is com-
pactly supported with respect to the spatial variable x. The mapping is given
by the system of differential equations

d
Sa(t) = V(t,2(1),

z(0) = X,
with the solution denoted by z(t) = z(t,X), t € (=6,9), X € RV, The

variable domain (2; = T;(f2) is defined in the usual way, 2, = {z € R" |
x =x(t,X), X € 2}. Therefore, we can consider the Laplace equation in (2,

—Aut = ft in Qt = E(R-]i\-[)7
Ut = gt on Ft = Tt(RN_l).

(1.2)

(PP)

The solution transported to the fixed domain is denoted by u! = u; o T}, and
formally we can write [8] that it satisfies the following equations:

—div(A(t)Vul) = Ft in 0,
u' =g on 02,

where we use the same notation as in [8]:

A(t) = det(DT) (DT, Y)* DT,
Ft = det(DT})(f; o Th),
fr="fioT, g¢'=goT

7(t) = det(DTy),

and M™ is the transpose of M.

(CO)
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For t € (—4,9) the matrix A(t) stabilizes for |z| — oo to the identity
matrix, since the field V' is compactly supported. We are looking for solutions
to (PP) in weighted Sobolev spaces, with weights which describe the behavior
of functions at infinity.

By an application of the implicit function theorem in weighted spaces, us-
ing the estimates obtained for the model problem, we can prove the existence
of the material and shape derivatives for the solution to (1.1).

The material derivative u is given by the solution of the following prob-
lem:

— At = f+divV [+ div(A(0)Vu) in £,
(1.3) o
u=gq on 09,

where u is the solution of the problem (1.1). Here we define

ut—u

(1.4) uz%g% ;

)

in the norm of the energy space, f , g are defined in the same way, and we
have f =V f-V,§g=Vg-V,since f;, g: are the restrictions of given functions
to Qt-

Since the shape gradients of differentiable shape functionals depend on
the so-called shape derivative

(1.5) u' =1—Vu-V,

we also show the existence of the shape derivative ' which can be charac-
terized as the solution to the Laplace equation

—Au' =0 in £2,
(1.6) ou

u = —a—V-n on 012,
n

withn = (0,...,0,—1)T the exterior normal vector to I, so 3/dn=—0/0x .
Problem (1.6) is obtained from (1.3), taking into account relation (1.5), and
for the extension of ¢ from the boundary to R" which satisfies the condition
dg/on = 0.

Our plan is the following: after introduction of the function spaces and
preliminary lemmas we recall the known results on the Laplace equations
with non-homogeneous Dirichlet conditions in the particular case of f €
W{)’Q(Rf) (resp. g € Wl?’/2’2(RN_1)). Then we show the existence of the
material derivatives of f (resp. ¢) under the assumption that the mapping
t — foTy (resp. t — goTy) is weakly differentiable. Further we are interested
in the solutions of problem (TP) and (PP) and we prove the existence of the
material derivatives for u. Finally, we look for #,u’ as solutions of Laplace
equations and we obtain the shape gradient of the energy functional.
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We introduce a class of weighted spaces and some preliminary lemmas.
From the point of view of shape sensitivity analysis, the main difference with
the classical analysis in bounded domains consists in a slightly different set-
ting for the variational formulation. Thus, we provide a detailed introduction
to the functional setting for such problems.

Problem (P) has been investigated in weighted Sobolev spaces by several
authors, but only in the Hilbert space setting (p = 2) and without critical
cases corresponding to the logarithmic factor (cf. [3], [6]).

Let 2 be an open set in RN, N > 2. Let 2 = (x1,...,zy) be a point in
RN and r = |z| = (22 +--- + xN)1/2 We shall use two basic weights:

o=(1+r)"? and lgo=In(2+r?).
As usual, D(R) denotes the spaces of infinitely differentiable functions with
compact supports and D'(RY) denotes its dual space, called the space of
distributions. For any nonnegative integers n and m, and real numbers p > 1,
« and [, setting
~1 if N/p+ 1,...,m},
m—N/p—a if N/p+ac{l,...,m},
we define the following space:
1.7)  W.3(Q)
= {ueD'(2)| o™ N (g )D€ LP(2) for 0 < |A| < k;
0 "N (1g )P DM € LP(92) for k +1 < [N\ < m}.
In the case 3 = 0, we simply denote the above space by W5 "*(£2). Note that
W(pr (£2) is a reflexive Banach space equipped with its natural norm:

—mA+|A —1pA
lullwrpy = [ D0 o™ +Pg 0)* ' D ull,
0<[AI<k

1/p
— A A
Y e g o) DAl |
k+1<|A|<m

We also define the seminorm
1/p
A
ulwrpie) = (D llo®(go)’Dult, )
[Al=m
and for any integer ¢, we denote by P, the space of polynomials in NV variables
of degree smaller than or equal to ¢, with the convention that P, is reduced

to {0} for negative ¢q. The weights in definition (1.7) are chosen so that the
corresponding space has two properties:

(1.8) D(R—N) is dense in W, ’p(RN)
and a Poincaré-type inequality holds in W oy (]RN ).
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THEOREM 1.1. Let « and 3 be two real numbers and m > 1 an integer
not satisfying simultaneously

(1.9) N/p+aec{l,...,m} and (6—1)p=-1.
Then the seminorm | - |W;’f,bp(Rf) defines on W(:?bp (RY)/Py a norm which

is equivalent to the quotient norm, with ¢' = inf(q,m — 1), where q is the
highest degree of the polynomials contained in Wa "' (RY).

Proof. See [2].

Now, we define the space

)

o ——<lllymp
W (RY) = DRY) et
and the dual space of W;nﬁp (RY) is denoted by W__;T’_%(Rf ), where p’ is the
conjugate of p,i.e. 1/p+1/p' =1.
THEOREM 1.2. Assume that the assumptions of Theorem 1.1 are fullfiled.

. . < m,p N . . .
Then the seminorm |- ‘Wﬁbp(Rf) is a norm on W, »(RY) which is equivalent

to the full norm || - HW’”’B"(Rf)'

1.3. The spaces of traces. In order to define the traces of functions of
W;nbp (RY), we introduce for any o € (0,1) the space

(1.10)  WIP(RN) = {u e D'(RV) ] w™u € LP(RV),

N oo
Z S t~1mor at S lu(z + te;) — u(z)|P de < oo}7
i=1 0 RN
where
_foe if N/p # o,
- le(go)V/e i N/p=o,
and ey, ...,ey is the canonical basis of RY. It is a reflexive Banach space
equipped with its natural norm
w P N oo 1/p
lullwer@ry = ( — +Z S t=1moP gt S \u(x—i—tei)—u(x)]pdm) ,
WillLr@®N) 3210 RN
which is equivalent to the norm
P _ p 1/p
N S E I
W |z — y|N+op
LP(RYN)  pNyRN

If w is a function defined on R_]X , we denote its traces on I" = RV~ by

o’
You(z') = u(@’,0), ..., yjula) = —y(x/, 0), o eRN7L
oxly
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In the same way as in [5], we can prove the following trace lemma:

LEMMA 1.1. For any integer m > 1 and real number «, the mapping
m—1

(L11) v DERY) — [[ DRYY),  w (ot Y1)
7=0

can be extended to a continuous linear mapping, still denoted by -y, from
WoP(RY) onto H;n:_ol WQI_J_I/p’p(RN_l). Moreover
(1.12) Kery = W(T’p(Rf).

Proof. See [2].

1.4. The mapping T;. We consider the general case of constructing the
transformation 7}. Let D be a domain in RY with the boundary 0D piecewise

gk for a given integer k > 0. Let T} be a one-to-one mapping from D onto
D such that

(1.13) T; and T; ! belong to C*(D;RY)
and
(1.14) t Ty(x), Ty Y () € C([0,6))N, Vae D,

thus the function (t,r) — Ti(x) belongs to the space C([0,¢); C*(D;RN))
denoted by C(0,¢; C*(D;RY)). For any X € D and t > 0 the point z(t) =
T;(X) moves along the trajectory x(-) with the velocity

(1.15) H@x(t

[gneo],

and satisfies the system of ordinary differential equatlons

d
(1.16) Em(t) =V(t,x(t)).
It is obvious that the speed vector field V (¢, x) takes the form

(1.17) V(t,r) = <%Tt> o T M (x).
From (1.13) and (1.14) the vector field V (¢), defined as V (t)(x) = V (¢, ),

satisfies the relation
(1.18) V e C(0,e;C*(D;RY)).

If V is a vector field such that (1.18) holds, then the transformation T
depending on V' and such that conditions (1.13) and (1.14) are satisfied, is
defined by (1.2).

THEOREM 1.4. Let D be a bounded domain in RN with piecewise smooth
boundary D, and V € C(0,&;C*(D,RY)) be a given vector field which
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satisfies
(1.19) V(t,z) -n(x) =0 for a.e. x € 0D,
and

(1.20)  if n =n(x) is not defined at a singular point x € 0D, then we set
V(t,xz) =0.

Then there exists an open interval I, 0 € I, and a one-to-one transformation
T;(V) : RV — RN such that Ty(V) maps D onto D. Furthermore Ti(V)
satisfies conditions (1.13), (1.14), (1.2). In particular the vector field V' can
be written in the form

V=0Ty(V)o Ty(V)~".

On the other hand, if Ty is a transformation of D, T, satisfies (1.13), (1.14)
and V is defined by the formula

V =0T} o0 Tt_17

then V € C(0,&;C*(D,RN)) and (1.19) holds for the field V. Given a vector
field V' with the above properties, the transformation Ty(X) = xz(t, X) can be
defined, in an equivalent way, as a local solution to the system of ordinary
differential equations (1.2), that is, Ty = T;(V).

Now, we are interested in the case of a domain D which is not bounded.
Dk(RN ‘RN ) denotes the space of compactly supported vector fields with the
uniform convergence in C¥; we refer the reader to [8] for the details.

DEFINITION 1.1. Let D be a domain in RY whose boundary 0D is piece-
wise C¥, k > 1. Tt is supposed that the outward unit normal field n exists
a.e. on 0D, i.e. except for singular points & of 9D.The following notation is
used:

V(D) ={V e DF@RY;RY) | (V,n)gn = 0 on D except at singular points
z of 9D,V (Z) = 0 for all singular points T}.

Vk(D) is equipped with the topology induced by D*(RM;RY).
So, if V € C(0,&; V¥(D)), then there exists a compact set O in R such

that the support of V(¢) is included in O for all 0 < ¢ < ¢. So, we have the
following theorem:

THEOREM 1.5. Let D be a bounded domain in RN with piecewise smooth
boundary 0D, and V € C(0,e;V*(D)) be a vector field. Then there exists
an interval I =1[0,96), 0 < 6 < €, and a one-to-one transformation T;(V') for
each t € I which maps D onto D and has all the properties of Theorem 1.4.



372 C. Amrouche et al.

1.5. Sobolev spaces and boundary value problems (TP) and (PP) in per-
turbed domains. We already introduced the Sobolev weighted spaces in a
fixed domain. Now, we are interested in the definition of Sobolev spaces with
corresponding weights in a perturbed domain. The most important property
is the existence of traces and the trace theorem.

DEFINITION 1.2. We write u; € W% (82;) iff u! = uz o Ty € W,y *(£2) and
the corresponding norm is defined by

JIVa|?de = [ DT o 7, VP (0)] ~ dy.

2 2
The trace on I} is defined in the following way: u; = 0 on I} iff u! = 0 on I
We set WOI’Q(Qt) = D(Qt)”'”WOM(”) = {u € Wol’2((2t) | uy = 0 on I} with
the corresponding norm

el = { § 10T 0 T - ugPl(t)|~ dy
24

+ § e o TR0 0 T 2(0) ~ dy
2

DEFINITION 1.3. We write g; € Wol/z’Q(Ft) if ggoT; =g' € W01/2’2(F)
with the norm defined by
1 I\ /t2
[ Ll = OF
wi(t) Sy — Syl

1/2

dx’ dy' < oo,

S lg' (") — g' (/)|

I |2
DXD I'xI’ |$ y|

where w(t) = |det(DTy)|||(DT~Y)* - nllgn, =} = Tha', yb = Ty, M(Ty) =
det(DT;)*DT ! is the cofactor matrix of the Jacobian DT}, and S; = thl.
First we are interested in weak differentiability with respect to .
PROPOSITION 1.1. Let f € Wf’z(D) C WJLZ(D). Let V € C(0,¢,
Dk(R_]X;]RN)) be given, k > 1. Then the mapping t — f o T} is weakly
differentiable in the space Wy L2(D).
Proof. Let ¢ € WOM(]RJX) C ng(Rf) be given and define \(t) =
y(#t) " o Tyt = ~(t)~! o S;. We have

%S(foTt_f)SDdx: Sf(A(t)SOOSt—QD)dIE.
D D

| =

Furthermore
LA 0 S~ ) = A1) 7 (90 S~ ) + 1 (A — 1),

and the right hand side converges to —V¢ - V(0) + N (0)p strongly in
ng(Rf) as t — 0. Moreover, it is evident that X' (0) = —div V/(0).
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Since S; is associated with the speed vector field —V;, we have

[S) (fol,— fpdx — —[S)fdiV(QOV(O)) dz = (f - V(0), ¢>W61’2(D)><V=V01’2(D)
as t — 0; this proves the proposition.

| =

We are interested in the differentiability of the mapping ¢ — f o T3,
where f is a measure or a distribution which cannot be represented by any
integrable function.

DEFINITION 1.4. Let hy € Wo_l’2((2t) and ¢ € WOI’Z(Q). Then we define
—1 ~1
<Tht’90>WO_1’2(Q)><W01’2(Q) = <ht,’y (t)gooTt >WO_1’2(Qt)><WOI’2(Qt)'

REMARK 1.1. If h; € L2(£2;), then @ o T, € Wy?(s2,) for all ¢ €
W01’2((2), and we have

(hi,7(t) "o 7}‘1>W5172(Qt)xwg,2(9t) = | hi(z) - v() oo T, () da
24
— {Sth o Ty(X)p(X) dX = (hy 0 T, @) yy—1.2 )it 2 )
where h! = h; o Ty and h;y € L2(§2;).
PROPOSITION 1.2. (i) If hy € Wo_l’2((2t), then
ht:diVFa F:(fla"'va))
with f; € L?(£2),i =0,...,n.
(i) ht = y(t)"tdiv(DT; 'F o Ty).
(iii) In particular if h € Wy *(D), where 2 C D,$; C D, then h' €
W, (D) and

h—h . .
L'~ h  weakly in W, L2(D).

Proof. This follows from the above.

By an application of the transport technique to our problem (1.1) defined
in (2, we get

<Aut, w>W61’2(Qt)><W01’2(Qt) = <diV<A(t)Vut), o Tt)WJI’Q(Q)xWOI’Q(Q)'
Let ¢ = ¢ o Ty € Wy'*(£2). Then
(Qur, @0 T )yt g ity = (AVADVE). D)y it o)

provided that
—Aut = ht in Qt,

whence — div(A(t)Vul) = y(t)h! in £2.
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For problem (PP), —Au; = f; in (2 thus
—div(A(t)Vu) = ~v(@)f*  in 0.
Therefore, problem (PP)
—Auy = fi  in (2,
Uy = gy on I3,
is transported to the fixed domain {2 and problem (TP) becomes
—div(A(t)Vul) =y(t) ! in £,
ut = g on I,

where g' = g; o Tj.

2. Problem (TP). First, we investigate the existence of transported
solutions in the fixed domain {2 satisfying the equations

—div(A(t)Vul) = Ft  in £,
ut = gt on 0f2.
We define a bilinear form by
B(u,v) = | A(t)Vu- Vo.

Q

Since (0) = 1, for sufficiently small § > 0 we have ~(t) > 1/2 for all
t € (—0,0) and the bilinear form B is uniformly elliptic, i.e.,

(2.1) B(u,u) > ¢|Vul3
for some positive constant ¢ > 0.
THEOREM 2.1. Let v(t)f* € Wy "*(RY) and g' € Wy/**(RN-1). Then

problem (TP) admits one and only one solution u' € VVO1 ’Z(Rf ), and there
erists a constant ¢ > 0, independent of t € (—6,0), f! and g, such that

t t t
2D ol < VO g oy + 18yeegy-n):

(TP)

Moreover, if v(t)ft € W$_1’2(Rf) and g' € WnTJrl/z’Q(RN_l) for some

integer m > 1, then u € WZ@”H’Q(RJX), and there ezists a constant ¢ = ¢(m)
such that
(2.3) ||Ut||W&n+1,z(Rf) < C(||7(t)ft|\wg—172(Rf) + H9t||W;ln+1/2,2(R$71))-

Since the non-homogeneous Dirichlet boundary condition ¢ is given by
the composition g; o T}, we can always consider the equivalent problem with
the homogeneous Dirichlet condition. First, we define G as an extension

such that g = G' on I'* and G* € W& 2 (R¥Y). Actually, we have the standard
result.
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PROPOSITION 2.1. The solution u! € W01’2(Rf) of problem (TP) takes
the form u' = w' + G*, where w' € VVO1 ’Q(Rf ) is a unique solution to the
following problem:

(2.4) B(w',¢) = (f' = AG',¢), Vo e Wy (RY).

From the Lax-Milgram lemma it follows that the variational problem

(2.4) admits a unique solution w' € WO1 ’2(R_]¥ ). The bilinear and linear forms

in (2.4) are continuous and the bilinear form is W& )2 (RY)-elliptic. Applying
the Schwartz reflection principle and induction we get the required regularity.

3. Problem (PP). Now, we deal with the perturbed problem

—Auy = f; in = Tt(Rf)v

PP
(FF) U = Gt on I = T,(RN-1).
PROPOSITION 3.1. If f € W*(RY), then

F'—f . ; . ~1,2/ N
—divVf+f weakly in W, “(RY).

Proof. We have

SF = o) = (f - divV £, )

- % (— div(A()Vul) + div Va, @) + (div V f, o)

= S {(A(H) ~ DV, Vi) — 7 (V' —u), Vig) + (div V f, )

— (A(0)Vu, Vo) = (Vii, Vo) + (div V £, ) = (f, ) + (div V £, ).
For f € W*(RY) it follows that f € W, "*(RY) and also

f'=r 12N
" — f—0 weakly in W, "*(RY).

For g € Wf’/z’Q(F) with g € W01/2’2(F) it follows that
9'—g
t

THEOREM 3.1. (i) Let f; € Wo_l’Q(Qt) and g € WOI/Q’Q(B). Then prob-
lem (PP) admits a unique solution u' € W (£2;), and there ezists a
constant ¢, not depending on f; and g, such that

—§—0 weakly in Wy/**(I").

(3.1) a2y < il + lotllyaraz )

ii oreover, if f; € ’ and g; € ' then problem
i) M f fi € W) and g € W) th blem (PP

admits a unique solution u; € Wf(Q), and there exists a constant c,
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not depending on f; and g, such that
(3.2) luellwz (e < elllfellwocey + Igellysp,)-

Proof. First, we use the variational formulation

(ft,¢> 12(_Qt)><W12(_Qt)_< Y(#) fe, v SOOT > o 220 x W2 (12)

= (V) Dup, v O o Ty yyr2 i ()

= (diV(A(t)Vut),¢>W51,2(Q)XW01,2(Q) = <fta‘P>WO*1’2(Q)><V’[/OL2(Q)7

and Theorem 3.1 is a consequence of Theorem 2.1. As before, we apply the
Lax—Milgram lemma. It is sufficient to consider the transported problem. We
set 2! = u' —G". Then we look for the solution z! of the Laplace equation with
the homogeneous Dirichlet condition. Therefore, we have the homogeneous
Dirichlet problem for z, € Wi (£2;) and the estimate (3.1) follows.

4. Material derivative. We want to prove the existence of the strong
limit u® — u € WO1 2 and the weak limit for

ut—u

(4.1) — e Wy (RY).

Defining

t u —u .
w = —Uu

we obtain the following equation:

Aty -1 t— :

—Aw' = div {L Vut — A/(O)VU] + r=r_ f in £,
(4.2) -y ¢

wt = g ek g on I
The weak formulation of (4.2) is the following:

A(t

(4.3) | Vu, - Vo= | [ )t Vul -V — A0 )VquZ)}

RY RY

ff=r £ 1,2/ N
+ | = flo. Vo eVt ®Y).
Ry
The goal of this section is to prove the following convergences:
t
;U —u

w'=— —u—0 ast— 0, weakly in W&’Z(Rf),

t

9 —9

wy = —g—0 ast— 0, weakly in W,
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It is sufficient to prove that

A(t)

-1
(4.5) — Vu' — A'(0)Vu — 0 ast— 0, weakly in L*(RY)Y,

since for the right hand side we have by our assumptions
=
t

—DV — (DV)* +divVI.

(4.6)

—f—0 ast—0, weakly in W, "*(RY),

where A’(0)

Let ¢ = u' — u be a test function in the variational formulation. Then
[ AV = )2 = (@) = )Vu- V(ut —u) = (f' = ful — ).
RY

Since the field V is compactly supported in RY, it follows that

@ | AWV - u)?

N
R+

< § 1(A®) ~ DVu- V(! =]+ 1 = Fllyralla’ — ullyoe

=Y
< eIVl 2@ |V (= 0|2 + (11 = fllyrzllul = ullyre.

From the properties of A(t) = I + O(t), for |t| small enough we have
1
e < (O Vullgz + el f ~ fllyra

Since f € W, 12 and we have shown that ft is strongly continuous with
respect to ¢, i.e. f! — f in Wo_l’2, ¢ — gin Wol/z’2, it follows that u’ —
u in W&’%Rf) provided ¢(t) — 0.

Since V' is compactly supported, i.e. supp V' C B(R) for some R, the first
term on the right hand side of (4.7) takes the form

V(AW - DVu-Ve= | (A®t) - Vu- (Vu' - Vu)
Q B(R)

< e(t)[Vull 2 [V (' — )|y

and it follows, in view of the properties of the mapping 7;(V'), that ¢(¢) — 0,
which implies that (4.5) and (4.6) hold and u* — w in Wy*(RY).
Therefore, we have the following result.
COROLLARY 4.1. If f € W()_I’Z(Rf) and g € WOI/Q’Q(RNA) then the

material derivative 1 € Wol ’Q(Rf ) is given by a unique solution to prob-

lem (1.3).
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5. Existence of material and shape derivatives for the Dirich-
let Laplacian in a half-space. We show the existence and uniqueness of
solutions to the following two problems:

—Ai=div Vf+ f + div(A'(0)Vu),

(5.1) o
u=g,
and
—Au = f/7
(5.2) o
u =g

As a consequence of the general theory for Dirichlet problems we have the
following theorems:

THEOREM 5.1. Let f € WIO’Q(RJJY) and g € Wf’/2’2(RN_1). Then problem
(5.1) admits a unique solution u € WO1 ’Q(Rﬂy ), and there exists a constant
¢ > 0, independent of t € (—9,9), such that

(5'3) HuHWOl’Q(Rf) < c(”f”wloﬂ([[gf) + ”g||W13/2»2(RN71))’

THEOREM 5.2. Let f € W{M(Rf) and g € W13/2’2(]RN_1). Then problem
(5.2) admits a unique solution u' € WJ(RY), and there exists a constant
¢ > 0, independent of t € (—9,9), such that

(5.4) HU,HWIOQ(Ry) < C(Hf”wfg(ﬁgf) + HgHW1:"/2’2(RN—1))'

6. Shape derivatives of functionals. We can use the above results to
establish the shape differentiability of shape functionals. We start with the
energy functional

() = %  IVugl? = | fup = —% | fuo.
N 9] 2

PROPOSITION 6.1. The shape gradient of the energy functional is given
by the expression

(6.1) de(;V) ==\ fu' = { fgv -n.

2 r

N —

Proof. We have

N —

E(() = —% S Jrug = — S flut~(t)
o2 [0

and direct calculations show

dE(2;V) = —> | fug + fu+ fudivV.

n

N | =
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Finally, by an integration by parts, and using the shape derivatives instead
of material derivatives, we arrive at the form of the shape gradient of the
energy functional given by (6.1). We have taken into account that f = 0
and v' =4 —Vu-V.

Let us consider an arbitrary shape functional

(6.2) J(02) = %(S}(ugzydaz.

Here z € W} (RY) is a given function.

PROPOSITION 6.2. The shape gradient of functional (6.2) is given by the
expression

03 an@v) = [ oV nare + 5 §
r

u—z

2
Y 3o ) V-ndl(x),

where p s given by a solution to the problem
(6.4) ~Ap=(u—2)o~? in £,
p=20 on I,

and the data of the problem are sufficiently regular, which means that

Op Ou 1 u—2z\> 1
%% € LlOC(F)7 0 € LlOC(F)'

Proof. The existence of the shape gradient is obtained by using the ma-
terial derivatives. Then with the shape derivatives the following expression
is derived:

dJ(2;V) = (S} (“Q_f)u’dx + % ; (“ ; 2>2V -ndl(z).

By an application of Green’s formula it follows that

S vz u’dm:—SApu'dx:SVp-Vu’d:U—S@u’dF(x)
0? on
Q Q Q r
_ ¢ 9pOou

The above integral exists under the regularity assumption g—ﬁg—z € Ll (I

which is satisfied for u € WZ(RY). Otherwise, for a differentiable shape
functional by an application of the structure theorem [2] the shape gradient
is given by a distribution compactly supported on the boundary I'.
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