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Summary. Let (X, -]|) and (Y,| - ||) be two normed spaces and K be a convex cone
in X. Let CC(Y') be the family of all non-empty convex compact subsets of Y. We consider
the Nemytskil operators, i.e. the composition operators defined by (Nu)(t) = H (¢, u(t)),
where H is a given set-valued function. It is shown that if the operator N maps the
space RV, ([a,b]; K) into RW,([a,b]; CC(Y)) (both are spaces of functions of bounded
p-variation in the sense of Riesz), and if it is globally Lipschitz, then it has to be of the form
H(t,u(t)) = A(t)u(t)+ B(t), where A(t) is a linear continuous set-valued function and B is
a set-valued function of bounded @2-variation in the sense of Riesz. This generalizes results
of G. Zawadzka [12], A. Smajdor and W. Smajdor [11], N. Merentes and K. Nikodem [5],
and N. Merentes and S. Rivas [7].

1. Introduction. In [11] A. Smajdor and W. Smajdor proved that every
globally Lipschitz Nemytskii operator (Nu)(t) = H(t,u(t)) mapping the
space Lip([a,b]; CC(Y)) into itself admits the following representation:

(Nu)(t) = A(t)u(t) + B(t), wu € Lip([a,b];CC(Y)), t € [a,b],

where A(t) is a linear continuous set-valued function and B is a set-valued
function belonging to the space Lip([a, b]; CC(Y")). The first such theorem
for single-valued functions was proved by J. Matkowski [3] in the space of
Lipschitz functions. A similar characterization of the Nemytskii operator has
also been obtained by G. Zawadzka [12] in the space of set-valued functions of
bounded variation in the classical Jordan sense. For single-valued functions
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it was proved by J. Matkowski and J. Mis [4]. N. Merentes and K. Nikodem
[5] and N. Merentes and S. Rivas [7] proved an analogous theorem in the
space of set-valued functions of bounded p-variation in the sense of Riesz.
Also, they proved a similar result in the case that the Nemytskii operator
N maps the space of functions of bounded p-variation in the sense of Riesz
into the space of set-valued functions of bounded g-variation in the sense of
Riesz, where 1 < ¢ < p < o0, and N is globally Lipschitz.

The aim of this paper is to prove an analogous result in the case that
the Nemytskii operator N maps the space RV, ([a,b]; K) of set-valued
functions of bounded ¢j-variation in the sense of Riesz into the space
RW,,(la,b]; CC(Y)) of set-valued functions of bounded yo-variation in the
sense of Riesz and N is globally Lipschitz.

2. Preliminary results. In this section we introduce some definitions
and recall known results concerning the Riesz ¢-variation.

DEFINITION 2.1. By a ¢-function we mean a non-decreasing continuous
function ¢ : [0,00] — [0,00] such that ¢(z) = 0 if and only if x = 0, and
o(z) — 00 as T — oo.

DEFINITION 2.2. Let (X, ||-||) be a normed space and ¢ be a ¢-function.
Given a function u : [a,b] — X and a partition 7 : a =tp < --- < t, = b of
the interval [a, b], we define

(2.1) adwww=§jwﬁm@)‘“n1”)m—a4«

— |ti — ti—1]
=1

Denote by II the set of all partitions 7 of [a, b]. Then the number
(2.2) Vio(u) = Vio(u, [a,b]; X) :=sup{o,(u;m) : m € IT},

is called the Riesz @-variation u on [a,b]. The function u is said to be of
bounded @-variation if V,(u) < oo.

Denote by RV,([a,b]) the set of all functions w : [a,b] — X such that
Vo(Au) < oo for some A > 0. If ¢ is convex, then RV, ([a,b]) is a Banach
space endowed with the norm

(23) lully i= (@)l + inf{e > 0: Vi(u/e) < 1),
Also, if u(a) = 0 we set
(2.4) llullp0 = inf{e > 0: V,(u/e) < 1}.

It is known (see [1] or [2]) that convex p-function ¢ with lim; o @(t)/t
= r < oo the following inequality holds:

(25)  Nullgo < rVi(u) <r(p™'(1) + (b —a))l|ullpo  for all u € RV, a,b),
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where Vi(u) := sup,cy > ieq lu(ti) — u(ti—1)||. Consequently, RV,[a,b] =
BV a,b], and there exist constants K; and K2 such that

lullp < Killul|pyay < Kallully  for all u € RV,[a, b].
We need the following definition
DEFINITION 2.3. Let ¢ be a p-function. We say that ¢ satisfies condition
o071 if
(2.6) lim sup %t) = 00

t—oo

For ¢ convex, (2.6) is just lim;_.o (t)/t = 0.
Let CC(X) be the family of all non-empty convex compact subsets of X,
and let D be the Pompeiu—-Hausdorff metric in CC(X), i.e.

D(A,B) :=inf{t >0: AC B+1tS, BC A+1tS},
where S = {y € X : |ly|| < 1}, or equivalently,
D(A,B) =max{e(A,B),e(B,A): A,B € CC(X)},
where
(2.7) e(A,B) =sup{d(z,B) :x € A}, d(x,B)=inf{d(z,y):y € B}.

DEFINITION 2.4. Let ¢ be a ¢-function and F : [a,b] — CC(X). We say
that F' has bounded p-variation in the Riesz sense if

<D(F(ti)v F(ti—1))

[ti — ti—1]

(2.8) Wf(F; [a,b]) := sugz ©
S i=1

>|ti —ti—1] < 0.
Set
(2.9) RWi[a,b] == {F : [a,b] — CC(X) : WI(F;[a,b]) < oo},
(2.10) RWy|a,b] :=={F :[a,b] — CC(X): Wf()xF) < oo for some A\ > 0},
both equipped with the metric
(2.11) Dy (Fy1, Fp) := D(Fi(a), F5(a)) +inf{e > 0: W, (Fi /e, Fa/e) < 1},

where

n
Wy (F1, F2) := sup Zg@
mell ;=

<D<F1(ti) + Fo(ti—1), Fi(ti-1) + F2(ti))> Iti—ti1|
’ti — ti71| % i—1]-

Now, let (X, - ]), (Y,|l - ||) be two normed spaces and K be a convex
cone in X. Given a set-valued function H : [a,b] x K — CC(Y') we consider
the Nemytskii operator N : K®Y — Y1abl generated by H, i.e.

(2.12) (Nu)(t) := H(t,u(t)), uweK® telab]
We denote by L(K;CC(Y)) the space of all set-valued linear functions A :
K — CC(Y), i.e. additive and positively homogeneous.
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In the proof of the main results of this paper we will use some facts which
we list here as lemmas.

LEMMA 2.1 (see [9, Lemma 3]). Let (X, ||.||) be a normed space and let
A, B, C be subsets of X. If A, B are convex and C is non-empty and
bounded, then

(2.13) D(A+C,B+C) = D(A,B).
LEMMA 2.2 (see [8, Th. 5.6]). Let (X,| - ), (Y, - ||) be normed spaces

and K be a conver cone in X. A set-valued function F : [a,b] — CC(Y)
satisfies the Jensen equation

1
(2.14) F(55Y) = 5@+ ). awek,
if and only if there exists an additive set-valued function A : K — CC(Y)
and a set B € CC(Y) such that F(z) = A(z)+ B, x € K.

We will extend the result of N. Merentes and K. Nikodem [5] to set-valued
functions of ¢-bounded variation.

3. Main results

LEMMA 3.1. If ¢ is a conver p-function that satisfies condition oo and
F € RW,la,b], then F : [a,b] — CC(X) is continuous.

Proof. Since F' € RW]a, b], there exists M > 0 such that

n

(3.15) Z © <D(F(ti)’ F<ti1))> ti —tica| <M

— |t — ti—1]

for all partitions of [a, b]; in particular given t,ty € [a, b], we have
D(F(t), F(t
(3.16) ¢<M> 1t — to] < M.
|t — tol
Since ¢ is a convex @-function, from the last inequality we get

80_1(\ = \)
t—t
(3.17) D(F(1), F(to)) < ——=.
[t—tol
By (2.6),
-1 M
o (2 Mt
(3.18)  lim D(F(t), F(to)) < lim o) _ lim — - =
t—to t—to —‘tjto‘ t—o0 gO(t)

This proves the continuity of F' at tg. Thus F' is continuous on [a, b].
Now, we are ready to formulate the main result of this work.

THEOREM 3.1. Let (X, |- ), (Y,] - ||) be normed spaces, K be a convex
cone in X and @1, p2 be two convexr p-functions in X, strictly increasing,
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satisfying condition co1 and such that there exist constants ¢ and Ty with
w2(t) < @i(ct) for all t > Ty. If the Nemytskii operator N generated by
a set-valued function H : [a,b] x K — CC(Y) maps RV, ([a,b]; K) into
RW,,(la,b]; CC(Y)) and if it is globally Lipschitz, then the set-valued func-
tion H satisfies the following conditions:

(a) For everyt € [a,b] there exists M (t) € [0,00), such that
(3.19) D(H(t,z), H(t,y)) < Mt)||z —yll, zyekK.

(b) There are A : [a,b] — L(K;CC(Y)) and B € RW,,([a,b]; CC(Y))
such that

(3.20) H(t,z) = A(t)x + B(t), te€[a,b], z € K.

Proof. (a) Since N is globally Lipschitz, there exists a constant M €
[0, 00) such that

(3.21) Dy, (Nu,Nv) < M|lu =y, u,v€ RV, ([a,b]; K).
Using the definition of N and D, we obtain
(3.22)  D(Nu(a),Nv(a))

D(ht, +.  Nyw, he, ;1. N,
+ inf {6 >0: sung@( ( t“t’_;“'u’_vt' t’1_|1’t’ uv)) [ti —ti—1| < 1}
i=1 1 11—

< Mllu = v|lpy, uﬂveRvﬂol([aab];K)v
where hg Ny := (Nu)(s) + (Nv)(t). In particular,
D(dy(H,t,t),dyo(H,t,1))\ -
inf{s>0:g02< (duo( 5|Z)—t|7 ( ))>|t—t| Sl} < Mlu—vlp,

for all u,v € RV,([a,b]; K) and t,t € [a,b], t # t, where dy,(H,s,t) =
H(s,u(s )) + H(t, v( )). Since 1 and ¢ satisfy

1 _
(3.23) el (g ) Jimd =1 -

we obtain
Ddu’vHat7$7duvH7%7t I
infqe>0: 9 (o _) B ) [t—t| <1
elt —t|
= D(dy(H, t,t), dyn(H, t,t)).
Therefore

. B _ 1
(3.24) D(dum(H,t,t),du,v(H,t,t))SM‘U—va‘t—t‘S@i(‘t )

Now, fix ¢t € (a,b] and consider the function « : [a,b] — [0, 1] defined by
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TTA a<s<t
(3.25) oz(s)::{t—a’ @=5=5
1, t<s<b
Then a € RV, [a,b] and V,, (o; [a,b]) = <p1(|tia‘)]t —al.
Fix z,y € K and define u,v : [a,b] — K by
(3.26) u(s) ==z, w(s):=a(s)ly—z)+z, s€E]lab.

Then u,v € RV, ([a,b]; K) and
(3:27)  [lu = vlly = [lu(a) = v(a)]]

+inf{€>028up2w(”(“_”)( )—<u—v><tz~_1>u>‘ti_ti_l‘ Sl}.

L €‘tl — tz‘_1’

From the definition of v and v we have

. [l = yll
(3.28) lu —vlp zlnf{5>0:g01<€’t_a| [t —al <15.

From (3.23) we get

(3.29) inf{e>0:cp<”x_yH>\t—a]Sl}= | Hxin

elt —al t—aler ! ()

Hence,

_ _ Mt — tloy " (727) llz — o
(3.30)  D(duo(H, %), duo(H,7, 1)) < 2 (_'j t)l
|t — aly; (W)

Hence, substituting in (3.24) the particular functions v and v defined above,
and taking ¢ = a in (3.30), we get

—1 1
P2 (Ta)
(3.31) D(H(t,x) + H(a,z), H(a,2) + H(t,y)) < M =11z —y
¥1 (\t—a|)
for all t € (a,b] and x,y € K. By Lemma 2.1 and the above inequality,
—1 1
QOQ (t a)
(3.32) D(H(t,z), H(t,y)) < M T ') Iz —y]
1 [t—al

for all t € (a,b] and z,y € K.

Now, we have to consider the case t = a. Define (3 : [a,b] — [0, 1] by
(3.33) ﬁgyZZ:Z, s € [a, b].
Then 3 € RV, [a,b] and V,, (B;[a,b]) = (‘b a‘)|b al.

Fix z,y € K and define u,v : [a,b] — K by

(3.34) u(s) ==z, wv(s):=p(s)(x—y)+y, s¢€la,b].
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Then u,v € RV, ([a,b]; K) and

(3.35) |lu—ll; = & — yl| + inf {g >0 gpl(‘g‘ﬁ)—_f!)\b_ al < 1}

Iz = yll
-1
||b - a”@l (|bia|)

1
=Hx—yH<1+ ! )
’b_a’soll(\bicq)

Substituting t = a and ¢ = b in (3.24), we get
(3.36) D(H(b,x)+ H(a,y), H(a,x) + H(b,z)) < MK(a,b,2,y, 01", ¢5")

= [l =yl +

for all z,y € K, where

K(a,b,x,y, 07", 05"

1 1
=|b—a|¢21(—>||x—yu<1+ LA )
b — a b — ale; (\b7a|)

By Lemma 2.1 and the last inequality we get
(3.37)  D(H(a,x), H(a,y))

1 1
< Mlb—alpy' | —— B Lt
= Mib=ale, <rb—a\>”$ y”( \b—ale&fl(wiaﬂ)

for all z,y € K.
Define M : [a,b] — R by

—1/ 1
302 (t—a)
Mﬁll)’ tE(a,b],
(3.38) M(t) := b=l ) )
M — ot () (1+ ) I=a.
b= ales (\b—a!)( 16— aler ! () ’
Hence

(3.39) D(H(t,x),H(t,y)) < M)z —y|, =z,yeX, tecla,b].

Consequently, for every ¢ € [a,b] the function H(t,-) : K — CC(Y) is
continuous.

(b) Fix t,tg € [a,b] such that ¢ty < t. Since N is globally Lipschitz, there
exists a constant M > 0 such that

_ 1
(340) Dldun(H.t,10) ol t0,)) < Mlto ~ e (= )= vl
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where dy,,(H, s,t) = H(s,u(s)) + H(t,v(t)). Define v : [a,b] — [0, 1] by

Ss—a

) QSSStO)
to—a
= t—s
’Y(S) M tO_SSta
t—to
0, t<s<b.

Then v € RV, [a,b]. Fix z,y € K and define u, v : [a,b] — K by

= Wy (120,

o(s) = (%)w (1_77(8)>y s €lab.

Then u,v € RV, ([a,b]; K) and

(3.41)

(3.42) Ju = vl = ufa) ~ ofa) = 1221

Hence, substituting in (3.40) the particular functions u,v defined in (3.41),
we obtain

(3.43) D(H(to, )+ H(t,y), H<t07 ot y) + H<t7 o y>>

VIR T
< ae— ol () 52

Since N maps RV, ([a,b]; K) into RW,,([a,b]; CC(Y)), it follows that
H(-, z) is continuous for all z € K. Hence, letting to 1 ¢t in (3.43), we obtain

(3.44) D<H(t,:c) +H(t,y),H<t, %ﬂf) —|—H<t, x;y» —0

for all t € [a,b] and z,y € K. Thus

(3.45) H(t, x—?) + H<t, QCT“/) — H(t,x) + H(t,y).
Since the values of H are convex, we have

1
(3.46) H<t, ¢ ; y) = S{H(t.2) + H(t,y)}

for all t € [a,b] and z,y € K. Thus for all ¢t € [a,b], the set-valued func-
tion H(t,-) : K — CC(Y) satisfies the Jensen equation (2.14). Now by
Lemma 2.2, there exist an additive set-valued function A(t) : K — CC(Y)
and a set B(t) € CC(Y) such that

(3.47) H(t,z) = A(t)(x) + B(t), z€K, te]la,b].
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From (3.47) and (3.39) we deduce that for all ¢ € [a, b] there exists M(t) €
[0, 00) such that

(3.48) DAz, At)y) < M)z —yl, zyekK.

Consequently, for every ¢ € [a, b] the set-valued function A(t) : K — CC(Y)
is continuous, and A(t) € L(K;CC(Y)). Since A(t) is additive and 0 € K,
we have A(t) =0 for all ¢ € [a,b] and H(-,0) = B(-).

The Nemytskii operator N maps RV, ([a, b]; K) into RW,([a, b];CC(Y)).
Therefore H(-,0) = B(-) € RWy,([a,b]; K). Consequently, the set-valued
function H has to be of the form H (t,x) = A(t)x+ B(t) for all ¢ € [a, b] and
z € K, where A(t) € L(K;CC(Y)) and B € RW,,([a,b]; CC(Y)).

THEOREM 3.2. Let (X, | -1]), (Y, -||) be normed spaces, K be a convex
cone in X and @1, p2 be two convexr p-functions in X, strictly increasing,
satifying condition ooy and limg_, o cp;l(gol(t))/t = oo. If the Nemytskii op-
erator N generated by a set-valued function H : [a,b] x K — CC(Y') maps
RV, ([a,b]; K) into RW,, ([a,b]; CC(Y)) and is globally Lipschitz, then

H(t,x) = H(t,0) forte€la,b], v €K,
i.e. the Nemytskii operator is constant.

Proof. Since N is globally Lipschitz from RV, ([a,b]; K) to RW,, ([a, b];
CC(Y)), there exists a constant M such that

(3:49) Dy, (Nu,Nv) < Mlju—=vllg,, w0 € RV, ([a, b]; K).

Fix t,ty € [a,b] such that ty < t. Using the definition of N and D,, we
obtain

_ 1
(3500 Dldun(H.t010). (. 0,0) < Ml = wlale — ol (2 )

for u,v € RV, ([a,b]; K).
Define « : [a,b] — [0, 1] by

1a a§5§t07

s—1
a(s) = g to < s <t
0, t<s<hb.

Then a € RV,,[a,b] and V,,(c; [a,b]) = |t — tO’S"Q_l(ﬁ)’
Fix z € K and define u,v : [a,b] — K by

(3.51) u(s) ==z, wv(s):=a(s)zr, s€la,bl.
Then u,v € RV,,([a,b]; K) and
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(3.52)  lu—vlp, = [lu(a) —v(a)]
: - [[(w —v)(t:) — (u—v)(ti—1]]
+ inf >0:su |ti—ti_|§1
{5 7Tp ;:1 802( > 1 }

€|ti — ti71|

. ] ]l
:1nf{8>02g02<— [t —to]| <1; = — .
elt — tol [t = tole ! ()

Hence, substituting in (3.50) the particular functions u,v defined in (3.51),
we obtain

(3.53)  D(H(t,x) + H(to, z), H(to, z) + H(t,0))

—1(_1
o1 (=)
< Mlt —to e el
|t —to|y (|t—t0|)
Then
—1(_1
1 (|t—t0|)
(3.54)  D(H(t,z)+ H(to,z), H(to,z) + H(t,0)) < M ——7—— ||z
902 (|t—t0|)
By Lemma 2.1 and the above inequality, we get
—1(_1
¥ -
(3.55) D(H(t,x), H(t,0)) < M||z| M
12 (|t7t0|)
Since limy o0 5 ' (¢1(t))/t = 00, letting to T ¢ in the last inequality, we have
(3.56) D(H(t,z),H(t,0)) = 0.
Thus for all ¢ € [a,b] and for all z € K, we get
(3.57) H(t,x) = H(t,0).

THEOREM 3.3. Let (X, | 1), (Y, -||) be normed spaces, K be a convex
cone in X and ¢ be a convex p-function in X satisfying condition coy. If
the Nemytskii operator N generated by a set-valued function H : [a,b] x
K — CC(Y) maps RVy([a,b]; K) into BW([a,b]; CC(Y)) and is globally
Lipschitz, then the left reqularization H* : [a,b] x K — CC(Y') of H defined
by

H(t,z), t € (ab], x €K,
q(t,z) = lim H(s,x), t=a,z € K,

sla
satisfies the following conditions:

(a) For everyt € [a,b] there exists M(t) € [0,00) such that
(3.58) Dy(H*(t,x), H*(t,y)) < M(t)|lz —y|, =,y€K.
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(b) There are functions A : [a,b] — L(K;CC(Y)) and B € BW([a,b];
CC(Y)) such that

(3.59) H*(t,z) = A(t)x + B(t), t€]ab], z€K.
Proof. Fix t € [a,b] and consider « : [a,b] — [0, 1] defined by
1, a<s<t,
(3.60) a(s) = { i_: P<s<b.

Then a € RV, [a,b] and V(a; [a,b]) = go(ﬁ)hﬁ —b|.
Fix z,y € K and define u,v : [a,b] — K by
(3.61) u(s) =z, v(s):=a(s)ly—z)+z, s¢€la,bl.
Then u,v € RV, ([a,b]; K) and
(3.62)  [lu—vll, = llu(a) = v(a)

+mf{5>o;Sgpiw(nw_v)(ti)—<u_v><tl-1>||>|ti_ti_l| . 1}‘

i1 E|ti _tz'fl’

From the definition of © and v we obtain

(3.63) HU_UHgo: lz —yll + <1+ |b—t|g0i1( 1 )>

o—1|

Since N is globally Lipschitz, there exists a constant M > 0 such that
D(H (b, u(b)) + H(t,v(t)), H(t,u(t)) + H(b,v(b))) < Mu— v,
for u,v € RV, ([a,b]; K). Substituting u, v defined by (3.61), we obtain

D(H(b,z)+H(t,y), H(b,z)+H(t,z)) < M(t)!\x—y\go(lﬂb - t|g;1(L)>
=3

for all t € [a,b) and z,y € K. By Lemma 2.1 we get

(3.64) D(H(t,x),H(t,y)) < M(t)||lz — y”s0<1 oz t‘s[,}l(#))
b—1]

for all ¢ € [a,b) and z,y € K.
For t = b, by a similar reasoning, we show that there exists a constant
M (b) > 0 such that

D(H(t,2), H(t,y)) < M|z —yll, for z,y € K.
Define the function M : [a,b] — R by

1
(3.65) M(t) := M<1+|b_t|901(b+t|)>7 a<t<b,

M(b), t=b.
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Hence
(3.66) D(H(t,x),H(t,y)) < M)z —yll,, t€lab], 2,y € K.

Passing to the limit in (3.64) and by the inequality (3.66) and the definition
of H* we conclude that for all ¢ € [a, b] there exists M (t) € [0, 00) such that
D(H(t,x), H*(t,y)) < M(t)||lz —y|  for z,y € K.

Now we shall prove that

H*(t,x) = A(t)xr+ B(t), te€]a,bl,zeK,

where A(t) is a linear continuous set-valued function, and B € BW ([a, b];
CcC(Y)).

Fix t,t9 € [a,b] with 9 < t and n € N. Define the partition m, of the
interval [tg, t] by
t—to

2n '

Tpia<tyg<tp <---<top_1<ty,=1t, where t;—1t;_ 1=

i=1,...,2n.
Since N is globally Lipschitz from RV, ([a,b]; K) to BW ([a,b]; CC(Y)),
there exists a constant M > 0 such that

(3.67) > D (duw(H, tairtoi 1), duw(H i 1,12:))) < Mllu—v]|,,
i=1
where u,v € RV,([a,b]; K) and dy(H,s,t) = H(s,u(s)) + H(t,v(t)).
Define « : [a,b] — [0,1] in the following way:

0, a<s<t,
S — 1t
2l 4 <s<t,i=1,3,...,2n—1,
ti —ti—1
(3.68) «afs) = st
- ti1<s<t;,i=2,4,...,2n,
t; —ti1
0, t; < s <b.

Then o € RV, ([a,b]; K) and V,(a;[a,b]) = |t — tdgp(%).
Fix z,y € K and define u,v : [a,b] — K by

u(s) = @er (1— @)y, s € la, b].

(3.69) 1 1 2
v(s) == +2a(s) x + _;(s) Yy, S E€Ja,bl.

Then u,v € RV,([a,b]; K) and |lu — v||, = ||z — y||/2. Hence, substituting
in (3.67) the particular functions u,v defined in (3.69), we obtain
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x4+ T+
(370> ZD< t?lv +H(t21 17 )7H<t217 2 y>+H<t2Z 1, 2 y>>

e =yl
- 2
for all z,y € K. Since N maps RV, ([a,b]; K) into BW ([a,b]; CC(Y)), it
follows that H(-,z) € BW ([a,b]; CC(Y)) for all z € K. Hence, letting to T ¢
n (3.70), we get

a) D<H*(t7y>+H*(t7x),H*(t7x;ry> +H(tx;ry>>

=yl
2n
for all x,y € K and n € N. Passing to the limit as n — co we get

3.72)  H* <t,x+y> L H* <t,x+y> = H*(t,y) + H*(t,2)

2 2

for all z,y € K and t € [a,b].
Since H*(t,x) is a convex set, we have

(3.73) H* <t, < ’; y) - %(H*(t, y) + H*(t,2))
for all z,y € K and t € [a,b].

Thus for every ¢ € [a,b] the set-valued function H*(¢,-) : K — CC(Y)
satisfies the Jensen equation (2.14). By Lemma 2.2, for all ¢ € [a, b] there
exist an additive set-valued function A(t) : K — CC(Y) and a set B(t) €
CC(Y) such that

H*(t,z) = A(t)x + B(t) fort e [a,b] and x € K.
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