Characterization of Globally Lipschitz Nemytskii Operators Between Spaces of Set-Valued Functions of Bounded φ -Variation in the Sense of Riesz

by

N. MERENTES and J. L. SÁNCHEZ HERNÁNDEZ

Presented by Stanisław KWAPIEŃ

Summary. Let $(X, \|\cdot\|)$ and $(Y, \|\cdot\|)$ be two normed spaces and K be a convex cone in X. Let CC(Y) be the family of all non-empty convex compact subsets of Y. We consider the Nemytskii operators, i.e. the composition operators defined by (Nu)(t) = H(t, u(t)), where H is a given set-valued function. It is shown that if the operator N maps the space $RV_{\varphi_1}([a,b];K)$ into $RW_{\varphi_2}([a,b];CC(Y))$ (both are spaces of functions of bounded φ -variation in the sense of Riesz), and if it is globally Lipschitz, then it has to be of the form H(t,u(t))=A(t)u(t)+B(t), where A(t) is a linear continuous set-valued function and B is a set-valued function of bounded φ_2 -variation in the sense of Riesz. This generalizes results of G. Zawadzka [12], A. Smajdor and W. Smajdor [11], N. Merentes and K. Nikodem [5], and N. Merentes and K. Rivas [7].

1. Introduction. In [11] A. Smajdor and W. Smajdor proved that every globally Lipschitz Nemytskii operator (Nu)(t) = H(t, u(t)) mapping the space Lip([a, b]; CC(Y)) into itself admits the following representation:

$$(Nu)(t) = A(t)u(t) + B(t), \quad u \in \operatorname{Lip}([a, b]; CC(Y)), \ t \in [a, b],$$

where A(t) is a linear continuous set-valued function and B is a set-valued function belonging to the space Lip([a,b];CC(Y)). The first such theorem for single-valued functions was proved by J. Matkowski [3] in the space of Lipschitz functions. A similar characterization of the Nemytskii operator has also been obtained by G. Zawadzka [12] in the space of set-valued functions of bounded variation in the classical Jordan sense. For single-valued functions

²⁰⁰⁰ Mathematics Subject Classification: Primary 47B33; Secondary 26E25.

Key words and phrases: Nemytskii operator, set-valued functions, Jensen equation, composition operator, φ -variation in the sense of Riesz.

This research was partially supported by CDCH-CONICIT.

it was proved by J. Matkowski and J. Miś [4]. N. Merentes and K. Nikodem [5] and N. Merentes and S. Rivas [7] proved an analogous theorem in the space of set-valued functions of bounded p-variation in the sense of Riesz. Also, they proved a similar result in the case that the Nemytskiĭ operator N maps the space of functions of bounded p-variation in the sense of Riesz into the space of set-valued functions of bounded q-variation in the sense of Riesz, where $1 \le q \le p < \infty$, and N is globally Lipschitz.

The aim of this paper is to prove an analogous result in the case that the Nemytskii operator N maps the space $RV_{\varphi_1}([a,b];K)$ of set-valued functions of bounded φ_1 -variation in the sense of Riesz into the space $RW_{\varphi_2}([a,b];CC(Y))$ of set-valued functions of bounded φ_2 -variation in the sense of Riesz and N is globally Lipschitz.

2. Preliminary results. In this section we introduce some definitions and recall known results concerning the Riesz φ -variation.

DEFINITION 2.1. By a φ -function we mean a non-decreasing continuous function $\varphi:[0,\infty]\to[0,\infty]$ such that $\varphi(x)=0$ if and only if x=0, and $\varphi(x)\to\infty$ as $x\to\infty$.

DEFINITION 2.2. Let $(X, \|\cdot\|)$ be a normed space and φ be a φ -function. Given a function $u: [a, b] \to X$ and a partition $\pi: a = t_0 < \cdots < t_n = b$ of the interval [a, b], we define

(2.1)
$$\sigma_{\varphi}(u;\pi) := \sum_{i=1}^{n} \varphi\left(\frac{\|u(t_{i}) - u(t_{i-1})\|}{|t_{i} - t_{i-1}|}\right) |t_{i} - t_{i-1}|.$$

Denote by Π the set of all partitions π of [a,b]. Then the number

(2.2)
$$V_{\varphi}(u) = V_{\varphi}(u, [a, b]; X) := \sup \{ \sigma_{\varphi}(u; \pi) : \pi \in \Pi \},$$

is called the Riesz φ -variation u on [a,b]. The function u is said to be of bounded φ -variation if $V_{\varphi}(u) < \infty$.

Denote by $RV_{\varphi}([a,b])$ the set of all functions $u:[a,b] \to X$ such that $V_{\varphi}(\lambda u) < \infty$ for some $\lambda > 0$. If φ is convex, then $RV_{\varphi}([a,b])$ is a Banach space endowed with the norm

(2.3)
$$||u||_{\varphi} := ||u(a)|| + \inf\{\varepsilon > 0 : V_{\varphi}(u/\varepsilon) \le 1\}.$$

Also, if u(a) = 0 we set

(2.4)
$$||u||_{\omega,0} = \inf\{\varepsilon > 0 : V_{\omega}(u/\varepsilon) \le 1\}.$$

It is known (see [1] or [2]) that convex φ -function φ with $\lim_{t\to\infty} \varphi(t)/t$ = $r < \infty$ the following inequality holds:

$$(2.5) ||u||_{\varphi,0} \le rV_1(u) \le r(\varphi^{-1}(1) + (b-a))||u||_{\varphi,0} \text{for all } u \in RV_{\varphi}[a,b],$$

where $V_1(u) := \sup_{\pi \in \Pi} \sum_{i=1}^n ||u(t_i) - u(t_{i-1})||$. Consequently, $RV_{\varphi}[a, b] = BV[a, b]$, and there exist constants K_1 and K_2 such that

$$||u||_{\varphi} \le K_1 ||u||_{BV[a,b]} \le K_2 ||u||_{\varphi}$$
 for all $u \in RV_{\varphi}[a,b]$.

We need the following definition

DEFINITION 2.3. Let φ be a φ -function. We say that φ satisfies condition ∞_1 if

(2.6)
$$\limsup_{t \to \infty} \frac{\varphi(t)}{t} = \infty.$$

For φ convex, (2.6) is just $\lim_{t\to\infty} \varphi(t)/t = \infty$.

Let CC(X) be the family of all non-empty convex compact subsets of X, and let D be the *Pompeiu–Hausdorff metric* in CC(X), i.e.

$$D(A, B) := \inf\{t > 0 : A \subseteq B + tS, B \subseteq A + tS\},\$$

where $S = \{y \in X : ||y|| \le 1\}$, or equivalently,

$$D(A, B) = \max\{e(A, B), e(B, A) : A, B \in CC(X)\},\$$

where

$$(2.7) \quad e(A,B) = \sup\{d(x,B) : x \in A\}, \quad d(x,B) = \inf\{d(x,y) : y \in B\}.$$

DEFINITION 2.4. Let φ be a φ -function and $F:[a,b] \to CC(X)$. We say that F has bounded φ -variation in the Riesz sense if

$$(2.8) \quad W_{\varphi}^{R}(F;[a,b]) := \sup_{\pi \in \Pi} \sum_{i=1}^{n} \varphi\left(\frac{D(F(t_{i}), F(t_{i-1}))}{|t_{i} - t_{i-1}|}\right) |t_{i} - t_{i-1}| < \infty.$$

Set

$$(2.9) RW_{o}^*[a,b] := \{F : [a,b] \to CC(X) : W_{o}^R(F;[a,b]) < \infty\},\$$

(2.10)
$$RW_{\varphi}[a,b] := \{F : [a,b] \to CC(X) : W_{\varphi}^{R}(\lambda F) < \infty \text{ for some } \lambda > 0\},$$
 both equipped with the metric

(2.11)
$$D_{\varphi}(F_1, F_2) := D(F_1(a), F_2(a)) + \inf\{\varepsilon > 0 : W_{\varphi}(F_1/\varepsilon, F_2/\varepsilon) \le 1\},$$
 where

$$W_{\varphi}(F_1, F_2) := \sup_{\pi \in \Pi} \sum_{i=1}^{n} \varphi \left(\frac{D(F_1(t_i) + F_2(t_{i-1}), F_1(t_{i-1}) + F_2(t_i))}{|t_i - t_{i-1}|} \right) |t_i - t_{i-1}|.$$

Now, let $(X, \|\cdot\|)$, $(Y, \|\cdot\|)$ be two normed spaces and K be a convex cone in X. Given a set-valued function $H: [a, b] \times K \to CC(Y)$ we consider the *Nemytskii operator* $N: K^{[a,b]} \to Y^{[a,b]}$ generated by H, i.e.

$$(2.12) (Nu)(t) := H(t, u(t)), u \in K^{[a,b]}, t \in [a,b].$$

We denote by L(K; CC(Y)) the space of all set-valued linear functions $A: K \to CC(Y)$, i.e. additive and positively homogeneous.

In the proof of the main results of this paper we will use some facts which we list here as lemmas.

LEMMA 2.1 (see [9, Lemma 3]). Let $(X, \|.\|)$ be a normed space and let A, B, C be subsets of X. If A, B are convex and C is non-empty and bounded, then

$$(2.13) D(A+C,B+C) = D(A,B).$$

LEMMA 2.2 (see [8, Th. 5.6]). Let $(X, \|\cdot\|)$, $(Y, \|\cdot\|)$ be normed spaces and K be a convex cone in X. A set-valued function $F: [a,b] \to CC(Y)$ satisfies the Jensen equation

(2.14)
$$F\left(\frac{x+y}{2}\right) = \frac{1}{2}(F(x) + F(y)), \quad x, y \in K,$$

if and only if there exists an additive set-valued function $A: K \to CC(Y)$ and a set $B \in CC(Y)$ such that F(x) = A(x) + B, $x \in K$.

We will extend the result of N. Merentes and K. Nikodem [5] to set-valued functions of φ -bounded variation.

3. Main results

LEMMA 3.1. If φ is a convex φ -function that satisfies condition ∞_1 and $F \in RW_{\varphi}[a,b]$, then $F : [a,b] \to CC(X)$ is continuous.

Proof. Since $F \in RW_{\varphi}[a, b]$, there exists M > 0 such that

(3.15)
$$\sum_{i=1}^{n} \varphi\left(\frac{D(F(t_i), F(t_{i-1}))}{|t_i - t_{i-1}|}\right) |t_i - t_{i-1}| \le M$$

for all partitions of [a, b]; in particular given $t, t_0 \in [a, b]$, we have

(3.16)
$$\varphi\left(\frac{D(F(t), F(t_0))}{|t - t_0|}\right) |t - t_0| \le M.$$

Since φ is a convex φ -function, from the last inequality we get

(3.17)
$$D(F(t), F(t_0)) \le \frac{\varphi^{-1}(\frac{M}{|t-t_0|})}{\frac{1}{|t-t_0|}}.$$

By (2.6),

(3.18)
$$\lim_{t \to t_0} D(F(t), F(t_0)) \le \lim_{t \to t_0} \frac{\varphi^{-1}(\frac{M}{|t - t_0|})}{\frac{1}{|t - t_0|}} = \lim_{t \to \infty} \frac{Mt}{\varphi(t)} = 0.$$

This proves the continuity of F at t_0 . Thus F is continuous on [a, b].

Now, we are ready to formulate the main result of this work.

THEOREM 3.1. Let $(X, \|\cdot\|)$, $(Y, \|\cdot\|)$ be normed spaces, K be a convex cone in X and φ_1 , φ_2 be two convex φ -functions in X, strictly increasing,

satisfying condition ∞_1 and such that there exist constants c and T_0 with $\varphi_2(t) \leq \varphi_1(ct)$ for all $t \geq T_0$. If the Nemytskii operator N generated by a set-valued function $H: [a,b] \times K \to CC(Y)$ maps $RV_{\varphi_1}([a,b];K)$ into $RW_{\varphi_2}([a,b];CC(Y))$ and if it is globally Lipschitz, then the set-valued function H satisfies the following conditions:

(a) For every $t \in [a, b]$ there exists $M(t) \in [0, \infty)$, such that

$$(3.19) D(H(t,x), H(t,y)) \le M(t) ||x-y||, x, y \in K.$$

(b) There are $A:[a,b] \to L(K;CC(Y))$ and $B \in RW_{\varphi_2}([a,b];CC(Y))$ such that

(3.20)
$$H(t,x) = A(t)x + B(t), \quad t \in [a,b], \ x \in K.$$

Proof. (a) Since N is globally Lipschitz, there exists a constant $M \in [0, \infty)$ such that

$$(3.21) D_{\varphi_2}(Nu, Nv) \le M \|u - v\|_{\varphi_1}, u, v \in RV_{\varphi_1}([a, b]; K).$$

Using the definition of N and D_{φ_2} we obtain

(3.22)
$$D(Nu(a), Nv(a)) + \inf \left\{ \varepsilon > 0 : \sup_{\pi} \sum_{i=1}^{n} \varphi_2 \left(\frac{D(h_{t_i, t_{i-1}} N_{u, v}, h_{t_{i-1}, t_i} N_{u, v})}{\varepsilon | t_i - t_{i-1} |} \right) | t_i - t_{i-1} | \le 1 \right\}$$

$$\leq M \|u - v\|_{\varphi_1}, \quad u, v \in RV_{\varphi_1}([a, b]; K),$$

where $h_{s,t}N_{u,v} := (Nu)(s) + (Nv)(t)$. In particular,

$$\inf \left\{ \varepsilon > 0 : \varphi_2 \left(\frac{D(d_{u,v}(H,t,\overline{t}), d_{u,v}(H,\overline{t},t))}{\varepsilon |\overline{t}-t|} \right) |\overline{t}-t| \le 1 \right\} \le M \|u-v\|_{\varphi_1},$$

for all $u, v \in RV_{\varphi}([a, b]; K)$ and $t, \overline{t} \in [a, b], t \neq \overline{t}$, where $d_{u,v}(H, s, t) = H(s, u(s)) + H(t, v(t))$. Since φ_1 and φ_2 satisfy

(3.23)
$$\varphi_i\left(\varphi_i^{-1}\left(\frac{1}{|\overline{t}-t|}\right)\right)|\overline{t}-t|=1, \quad i=1,2,$$

we obtain

$$\inf \left\{ \varepsilon > 0 : \varphi_2 \left(\frac{D(d_{u,v}(H,t,\overline{t}),d_{u,v}(H,\overline{t},t))}{\varepsilon |\overline{t}-t|} \right) |\overline{t}-t| \le 1 \right\}$$

$$= D(d_{u,v}(H,t,\overline{t}),d_{u,v}(H,\overline{t},t)).$$

Therefore

$$(3.24) \quad D(d_{u,v}(H,t,\overline{t}), d_{u,v}(H,\overline{t},t)) \le M \|u-v\|_{\varphi_1} |\overline{t}-t| \varphi_2^{-1} \left(\frac{1}{|\overline{t}-t|}\right).$$

Now, fix $t \in (a, b]$ and consider the function $\alpha : [a, b] \to [0, 1]$ defined by

(3.25)
$$\alpha(s) := \begin{cases} \frac{s-a}{t-a}, & a \le s \le t, \\ 1, & t \le s \le b. \end{cases}$$

Then $\alpha \in RV_{\varphi_1}[a,b]$ and $V_{\varphi_1}(\alpha;[a,b]) = \varphi_1(\frac{1}{|t-a|})|t-a|$.

Fix $x, y \in K$ and define $u, v : [a, b] \to K$ by

$$(3.26) u(s) := x, v(s) := \alpha(s)(y-x) + x, s \in [a,b].$$

Then $u, v \in RV_{\varphi_1}([a, b]; K)$ and

$$(3.27) ||u - v||_{\varphi} = ||u(a) - v(a)||$$

$$+\inf \left\{ \varepsilon > 0 : \sup_{\pi} \sum_{i=1}^{n} \varphi_{1} \left(\frac{\|(u-v)(t_{i}) - (u-v)(t_{i-1})\|}{\varepsilon |t_{i} - t_{i-1}|} \right) |t_{i} - t_{i-1}| \le 1 \right\}.$$

From the definition of u and v we have

$$(3.28) ||u-v||_{\varphi_1} = \inf \left\{ \varepsilon > 0 : \varphi_1 \left(\frac{||x-y||}{\varepsilon |t-a|} \right) |t-a| \le 1 \right\}.$$

From (3.23) we get

$$(3.29) \quad \inf\left\{\varepsilon > 0 : \varphi\left(\frac{\|x - y\|}{\varepsilon |t - a|}\right) |t - a| \le 1\right\} = \frac{\|x - y\|}{|t - a|\varphi_1^{-1}\left(\frac{1}{|t - a|}\right)}.$$

Hence,

$$(3.30) D(d_{u,v}(H,t,\overline{t}),d_{u,v}(H,\overline{t},t)) \le \frac{M|\overline{t}-t|\varphi_2^{-1}(\frac{1}{|\overline{t}-t|})||x-y||}{|t-a|\varphi_1^{-1}(\frac{1}{|t-a|})}.$$

Hence, substituting in (3.24) the particular functions u and v defined above, and taking $\bar{t} = a$ in (3.30), we get

$$(3.31) D(H(t,x) + H(a,x), H(a,x) + H(t,y)) \le M \frac{\varphi_2^{-1}(\frac{1}{|t-a|})}{\varphi_1^{-1}(\frac{1}{|t-a|})} ||x - y||$$

for all $t \in (a, b]$ and $x, y \in K$. By Lemma 2.1 and the above inequality,

(3.32)
$$D(H(t,x), H(t,y)) \le M \frac{\varphi_2^{-1}(\frac{1}{|t-a|})}{\varphi_1^{-1}(\frac{1}{|t-a|})} ||x-y||$$

for all $t \in (a, b]$ and $x, y \in K$.

Now, we have to consider the case t=a. Define $\beta:[a,b]\to[0,1]$ by

(3.33)
$$\beta(s) := \frac{s - a}{b - a}, \quad s \in [a, b].$$

Then $\beta \in RV_{\varphi_1}[a,b]$ and $V_{\varphi_1}(\beta;[a,b]) = \varphi_1(\frac{1}{|b-a|})|b-a|$.

Fix $x, y \in K$ and define $u, v : [a, b] \to K$ by

(3.34)
$$u(s) := x, \quad v(s) := \beta(s)(x - y) + y, \quad s \in [a, b].$$

Then $u, v \in RV_{\varphi_1}([a, b]; K)$ and

$$(3.35) \quad ||u - v||_{\varphi_1} = ||x - y|| + \inf\left\{\varepsilon > 0 : \varphi_1\left(\frac{||x - y||}{\varepsilon |b - a|}\right)|b - a| \le 1\right\}$$

$$= ||x - y|| + \frac{||x - y||}{||b - a||\varphi_1^{-1}\left(\frac{1}{|b - a|}\right)}$$

$$= ||x - y||\left(1 + \frac{1}{|b - a|\varphi_1^{-1}\left(\frac{1}{|b - a|}\right)}\right).$$

Substituting $\overline{t} = a$ and t = b in (3.24), we get

(3.36)
$$D(H(b,x) + H(a,y), H(a,x) + H(b,x)) \le MK(a,b,x,y,\varphi_1^{-1},\varphi_2^{-1})$$
 for all $x, y \in K$, where

$$K(a, b, x, y, \varphi_1^{-1}, \varphi_2^{-1}) = |b - a|\varphi_2^{-1} \left(\frac{1}{|b - a|}\right) ||x - y|| \left(1 + \frac{1}{|b - a|\varphi_1^{-1}\left(\frac{1}{|b - a|}\right)}\right).$$

By Lemma 2.1 and the last inequality we get

(3.37)
$$D(H(a,x), H(a,y)) \le M|b-a|\varphi_2^{-1}\left(\frac{1}{|b-a|}\right)||x-y||\left(1+\frac{1}{|b-a|\varphi_1^{-1}\left(\frac{1}{|b-a|}\right)}\right)$$

for all $x, y \in K$.

Define $M:[a,b]\to\mathbb{R}$ by

$$(3.38) \quad M(t) := \begin{cases} M \frac{\varphi_2^{-1}\left(\frac{1}{|t-a|}\right)}{\varphi_1^{-1}\left(\frac{1}{|t-a|}\right)}, & t \in (a,b], \\ M|b-a|\varphi_2^{-1}\left(\frac{1}{|b-a|}\right)\left(1 + \frac{1}{|b-a|\varphi_1^{-1}\left(\frac{1}{|b-a|}\right)}\right), & t = a. \end{cases}$$

Hence

$$(3.39) D(H(t,x),H(t,y)) \le M(t)||x-y||, x,y \in X, t \in [a,b].$$

Consequently, for every $t \in [a,b]$ the function $H(t,\cdot): K \to CC(Y)$ is continuous.

(b) Fix $t, t_0 \in [a, b]$ such that $t_0 < t$. Since N is globally Lipschitz, there exists a constant M > 0 such that

$$(3.40) D(d_{u,v}(H,t,t_0),d_{u,v}(H,t_0,t)) \le M|t_0-t|\varphi_2^{-1}\left(\frac{1}{|t_0-t|}\right)||u-v||_{\varphi_1},$$

where $d_{u,v}(H,s,t) = H(s,u(s)) + H(t,v(t))$. Define $\gamma: [a,b] \to [0,1]$ by

$$\gamma(s) = \begin{cases} \frac{s-a}{t_0 - a}, & a \le s \le t_0, \\ \frac{t-s}{t - t_0}, & t_0 \le s \le t, \\ 0, & t \le s \le b. \end{cases}$$

Then $\gamma \in RV_{\varphi_1}[a,b]$. Fix $x,y \in K$ and define $u,v:[a,b] \to K$ by

(3.41)
$$u(s) := \frac{\gamma(s)}{2}x + \left(1 - \frac{\gamma(s)}{2}\right)y,$$
$$v(s) := \left(\frac{1 + \gamma(s)}{2}\right)x + \left(\frac{1 - \gamma(s)}{2}\right)y, \quad s \in [a, b].$$

Then $u, v \in RV_{\varphi_1}([a, b]; K)$ and

$$||u - v|| = ||u(a) - v(a)|| = \frac{||x - y||}{2}.$$

Hence, substituting in (3.40) the particular functions u, v defined in (3.41), we obtain

(3.43)
$$D\left(H(t_0, x) + H(t, y), H\left(t_0, \frac{x+y}{2}\right) + H\left(t, \frac{x+y}{2}\right)\right) \leq M|t - t_0|\varphi_2^{-1}\left(\frac{1}{|t - t_0|}\right) \frac{\|x - y\|}{2}.$$

Since N maps $RV_{\varphi_1}([a,b];K)$ into $RW_{\varphi_2}([a,b];CC(Y))$, it follows that $H(\cdot,z)$ is continuous for all $z \in K$. Hence, letting $t_0 \uparrow t$ in (3.43), we obtain

(3.44)
$$D\left(H(t,x) + H(t,y), H\left(t, \frac{x+y}{2}\right) + H\left(t, \frac{x+y}{2}\right)\right) = 0$$

for all $t \in [a, b]$ and $x, y \in K$. Thus

(3.45)
$$H\left(t, \frac{x+y}{2}\right) + H\left(t, \frac{x+y}{2}\right) = H(t,x) + H(t,y).$$

Since the values of H are convex, we have

(3.46)
$$H\left(t, \frac{x+y}{2}\right) = \frac{1}{2}\{H(t,x) + H(t,y)\}\$$

for all $t \in [a,b]$ and $x,y \in K$. Thus for all $t \in [a,b]$, the set-valued function $H(t,\cdot): K \to CC(Y)$ satisfies the Jensen equation (2.14). Now by Lemma 2.2, there exist an additive set-valued function $A(t): K \to CC(Y)$ and a set $B(t) \in CC(Y)$ such that

(3.47)
$$H(t,x) = A(t)(x) + B(t), \quad x \in K, \ t \in [a,b].$$

From (3.47) and (3.39) we deduce that for all $t \in [a, b]$ there exists $M(t) \in [0, \infty)$ such that

(3.48)
$$D(A(t)x, A(t)y) \le M(t)||x - y||, \quad x, y \in K.$$

Consequently, for every $t \in [a, b]$ the set-valued function $A(t) : K \to CC(Y)$ is continuous, and $A(t) \in L(K; CC(Y))$. Since A(t) is additive and $0 \in K$, we have A(t) = 0 for all $t \in [a, b]$ and $H(\cdot, 0) = B(\cdot)$.

The Nemytskii operator N maps $RV_{\varphi_1}([a,b];K)$ into $RW_{\varphi_2}([a,b];CC(Y))$. Therefore $H(\cdot,0)=B(\cdot)\in RW_{\varphi_2}([a,b];K)$. Consequently, the set-valued function H has to be of the form H(t,x)=A(t)x+B(t) for all $t\in[a,b]$ and $x\in K$, where $A(t)\in L(K;CC(Y))$ and $B\in RW_{\varphi_2}([a,b];CC(Y))$.

Theorem 3.2. Let $(X, \|\cdot\|)$, $(Y, \|\cdot\|)$ be normed spaces, K be a convex cone in X and φ_1 , φ_2 be two convex φ -functions in X, strictly increasing, satisfying condition ∞_1 and $\lim_{t\to\infty} \varphi_2^{-1}(\varphi_1(t))/t = \infty$. If the Nemytskii operator N generated by a set-valued function $H: [a,b] \times K \to CC(Y)$ maps $RV_{\varphi_2}([a,b];K)$ into $RW_{\varphi_1}([a,b];CC(Y))$ and is globally Lipschitz, then

$$H(t,x) = H(t,0)$$
 for $t \in [a,b], x \in K$;

i.e. the Nemytskii operator is constant.

Proof. Since N is globally Lipschitz from $RV_{\varphi_2}([a,b];K)$ to $RW_{\varphi_1}([a,b];CC(Y))$, there exists a constant M such that

$$(3.49) D_{\varphi_1}(Nu, Nv) \le M||u - v||_{\varphi_2}, u, v \in RV_{\varphi_2}([a, b]; K).$$

Fix $t, t_0 \in [a, b]$ such that $t_0 < t$. Using the definition of N and D_{φ_1} we obtain

$$(3.50) D(d_{u,v}(H,t,t_0),d_{u,v}(H,t_0,t)) \le M||u-v||_{\varphi_2}|t-t_0|\varphi_1^{-1}\left(\frac{1}{|t-t_0|}\right)$$

for $u, v \in RV_{\varphi_2}([a, b]; K)$.

Define $\alpha:[a,b]\to[0,1]$ by

$$\alpha(s) := \begin{cases} 1, & a \le s \le t_0, \\ -\frac{s-t}{t-t_0}, & t_0 \le s \le t, \\ 0, & t \le s \le b. \end{cases}$$

Then $\alpha \in RV_{\varphi_2}[a,b]$ and $V_{\varphi_2}(\alpha;[a,b]) = |t-t_0|\varphi_2^{-1}(\frac{1}{|t-t_0|})$.

Fix $x \in K$ and define $u, v : [a, b] \to K$ by

(3.51)
$$u(s) := x, \quad v(s) := \alpha(s)x, \quad s \in [a, b].$$

Then $u, v \in RV_{\varphi_2}([a, b]; K)$ and

$$(3.52) ||u - v||_{\varphi_2} = ||u(a) - v(a)|| + \inf \left\{ \varepsilon > 0 : \sup_{\pi} \sum_{i=1}^{n} \varphi_2 \left(\frac{||(u - v)(t_i) - (u - v)(t_{i-1}||}{\varepsilon |t_i - t_{i-1}|} \right) |t_i - t_{i-1}| \le 1 \right\} = \inf \left\{ \varepsilon > 0 : \varphi_2 \left(\frac{||x||}{\varepsilon |t - t_0|} \right) |t - t_0| \le 1 \right\} = \frac{||x||}{|t - t_0|\varphi_2^{-1}(\frac{1}{|t - t_0|})}.$$

Hence, substituting in (3.50) the particular functions u, v defined in (3.51), we obtain

$$(3.53) D(H(t,x) + H(t_0,x), H(t_0,x) + H(t,0))$$

$$\leq M|t - t_0| \frac{\varphi_1^{-1}(\frac{1}{|t - t_0|})}{|t - t_0|\varphi_2^{-1}(\frac{1}{|t - t_0|})} ||x||.$$

Then

$$(3.54) \quad D(H(t,x) + H(t_0,x), H(t_0,x) + H(t,0)) \le M \frac{\varphi_1^{-1}(\frac{1}{|t-t_0|})}{\varphi_2^{-1}(\frac{1}{|t-t_0|})} ||x||.$$

By Lemma 2.1 and the above inequality, we get

(3.55)
$$D(H(t,x),H(t,0)) \le M||x|| \frac{\varphi_1^{-1}(\frac{1}{|t-t_0|})}{\varphi_2^{-1}(\frac{1}{|t-t_0|})}.$$

Since $\lim_{t\to\infty} \varphi_2^{-1}(\varphi_1(t))/t = \infty$, letting $t_0 \uparrow t$ in the last inequality, we have

$$(3.56) D(H(t,x), H(t,0)) = 0.$$

Thus for all $t \in [a, b]$ and for all $x \in K$, we get

(3.57)
$$H(t,x) = H(t,0).$$

Theorem 3.3. Let $(X, \|\cdot\|)$, $(Y, \|\cdot\|)$ be normed spaces, K be a convex cone in X and φ be a convex φ -function in X satisfying condition ∞_1 . If the Nemytskii operator N generated by a set-valued function $H: [a,b] \times K \to CC(Y)$ maps $RV_{\varphi}([a,b];K)$ into BW([a,b];CC(Y)) and is globally Lipschitz, then the left regularization $H^*: [a,b] \times K \to CC(Y)$ of H defined by

$$H^*(t,x) = \begin{cases} H^-(t,x), & t \in (a,b], x \in K, \\ \lim_{s \downarrow a} H(s,x), & t = a, x \in K, \end{cases}$$

satisfies the following conditions:

(a) For every $t \in [a, b]$ there exists $M(t) \in [0, \infty)$ such that

$$(3.58) D_1(H^*(t,x),H^*(t,y)) \le M(t)||x-y||, x,y \in K.$$

(b) There are functions $A:[a,b] \to L(K;CC(Y))$ and $B \in BW([a,b];CC(Y))$ such that

(3.59)
$$H^*(t,x) = A(t)x + B(t), \quad t \in [a,b], \ x \in K.$$

Proof. Fix $t \in [a, b]$ and consider $\alpha : [a, b] \to [0, 1]$ defined by

(3.60)
$$\alpha(s) := \begin{cases} 1, & a \le s \le t, \\ \frac{s-b}{t-b}, & t \le s \le b. \end{cases}$$

Then $\alpha \in RV_{\varphi}[a,b]$ and $V_{\varphi}(\alpha;[a,b]) = \varphi(\frac{1}{|t-b|})|t-b|$.

Fix $x, y \in K$ and define $u, v : [a, b] \to K$ by

(3.61)
$$u(s) := x, \quad v(s) := \alpha(s)(y-x) + x, \quad s \in [a,b].$$

Then $u, v \in RV_{\varphi}([a, b]; K)$ and

$$(3.62) ||u - v||_{\varphi} = ||u(a) - v(a)||$$

$$+\inf \left\{ \varepsilon > 0 : \sup_{\pi} \sum_{i=1}^{n} \varphi \left(\frac{\|(u-v)(t_{i}) - (u-v)(t_{i-1})\|}{\varepsilon |t_{i} - t_{i-1}|} \right) |t_{i} - t_{i-1}| \le 1 \right\}.$$

From the definition of u and v we obtain

(3.63)
$$||u - v||_{\varphi} = ||x - y|| + \left(1 + \frac{1}{|b - t|\varphi^{-1}(\frac{1}{|b - t|})}\right).$$

Since N is globally Lipschitz, there exists a constant M > 0 such that

$$D(H(b, u(b)) + H(t, v(t)), H(t, u(t)) + H(b, v(b))) \le M||u - v||_{\omega}$$

for $u, v \in RV_{\varphi}([a, b]; K)$. Substituting u, v defined by (3.61), we obtain

$$D(H(b,x) + H(t,y), H(b,x) + H(t,x)) \leq M(t) \|x - y\|_{\varphi} \left(1 + \frac{1}{|b - t|\varphi^{-1}\left(\frac{1}{|b - t|}\right)}\right)$$

for all $t \in [a, b)$ and $x, y \in K$. By Lemma 2.1 we get

$$(3.64) \quad D(H(t,x),H(t,y)) \le M(t) \|x-y\|_{\varphi} \left(1 + \frac{1}{|b-t|\varphi^{-1}(\frac{1}{|b-t|})}\right)$$

for all $t \in [a, b)$ and $x, y \in K$.

For t=b, by a similar reasoning, we show that there exists a constant M(b)>0 such that

$$D(H(t,x),H(t,y)) \le M(b)||x-y||_{\varphi} \quad \text{for } x,y \in K.$$

Define the function $M:[a,b]\to\mathbb{R}$ by

(3.65)
$$M(t) := \begin{cases} M \left(1 + \frac{1}{|b - t| \varphi^{-1} \left(\frac{1}{|b - t|} \right)} \right), & a \le t < b, \\ M(b), & t = b. \end{cases}$$

Hence

$$(3.66) \quad D(H(t,x),H(t,y)) \le M(t) \|x-y\|_{\varphi}, \quad t \in [a,b], \ x,y \in K.$$

Passing to the limit in (3.64) and by the inequality (3.66) and the definition of H^* we conclude that for all $t \in [a, b]$ there exists $M(t) \in [0, \infty)$ such that

$$D(H^*(t,x), H^*(t,y)) \le M(t)||x-y||$$
 for $x, y \in K$.

Now we shall prove that

$$H^*(t,x) = A(t)x + B(t), \quad t \in [a,b], x \in K,$$

where A(t) is a linear continuous set-valued function, and $B \in BW([a,b]; CC(Y))$.

Fix $t, t_0 \in [a, b]$ with $t_0 < t$ and $n \in \mathbb{N}$. Define the partition π_n of the interval $[t_0, t]$ by

$$\pi_n : a < t_0 < t_1 < \dots < t_{2n-1} < t_{2n} = t$$
, where $t_i - t_{i-1} = \frac{t - t_0}{2n}$, $i = 1, \dots, 2n$.

Since N is globally Lipschitz from $RV_{\varphi}([a,b];K)$ to BW([a,b];CC(Y)), there exists a constant M>0 such that

$$(3.67) \quad \sum_{i=1}^{n} D\left(d_{u,v}(H, t_{2i}, t_{2i-1}), d_{u,v}(H, t_{2i-1}, t_{2i})\right)\right) \leq M \|u - v\|_{\varphi},$$

where $u, v \in RV_{\varphi}([a, b]; K)$ and $d_{u,v}(H, s, t) = H(s, u(s)) + H(t, v(t))$. Define $\alpha : [a, b] \to [0, 1]$ in the following way:

(3.68)
$$\alpha(s) := \begin{cases} 0, & a \le s \le t_{i-1}, \\ \frac{s - t_{i-1}}{t_i - t_{i-1}}, & t_{i-1} \le s \le t_i, i = 1, 3, \dots, 2n - 1, \\ -\frac{s - t_i}{t_i - t_{i-1}}, & t_{i-1} \le s \le t_i, i = 2, 4, \dots, 2n, \\ 0, & t_i \le s \le b. \end{cases}$$

Then $\alpha \in RV_{\varphi}([a,b];K)$ and $V_{\varphi}(\alpha;[a,b]) = |t - t_0|\varphi(\frac{2n}{|t - t_0|})$.

Fix $x, y \in K$ and define $u, v : [a, b] \to K$ by

(3.69)
$$u(s) := \frac{\alpha(s)}{2} x + \left(1 - \frac{\alpha(s)}{2}\right) y, \quad s \in [a, b].$$
$$v(s) := \frac{1 + \alpha(s)}{2} x + \frac{1 - \alpha(s)}{2} y, \quad s \in [a, b].$$

Then $u, v \in RV_{\varphi}([a, b]; K)$ and $||u - v||_{\varphi} = ||x - y||/2$. Hence, substituting in (3.67) the particular functions u, v defined in (3.69), we obtain

(3.70)
$$\sum_{i=1}^{n} D\left(H(t_{2i}, y) + H(t_{2i-1}, x), H\left(t_{2i}, \frac{x+y}{2}\right) + H\left(t_{2i-1}, \frac{x+y}{2}\right)\right)$$

$$\leq M \frac{\|x-y\|}{2}$$

for all $x, y \in K$. Since N maps $RV_{\varphi}([a, b]; K)$ into BW([a, b]; CC(Y)), it follows that $H(\cdot, z) \in BW([a, b]; CC(Y))$ for all $z \in K$. Hence, letting $t_0 \uparrow t$ in (3.70), we get

(3.71)
$$D\left(H^{*}(t,y) + H^{*}(t,x), H^{*}\left(t, \frac{x+y}{2}\right) + H^{*}\left(t, \frac{x+y}{2}\right)\right) \leq M \frac{\|x-y\|}{2n}$$

for all $x, y \in K$ and $n \in \mathbb{N}$. Passing to the limit as $n \to \infty$ we get

(3.72)
$$H^*\left(t, \frac{x+y}{2}\right) + H^*\left(t, \frac{x+y}{2}\right) = H^*(t,y) + H^*(t,x)$$

for all $x, y \in K$ and $t \in [a, b]$.

Since $H^*(t,x)$ is a convex set, we have

(3.73)
$$H^*\left(t, \frac{x+y}{2}\right) = \frac{1}{2}(H^*(t,y) + H^*(t,x))$$

for all $x, y \in K$ and $t \in [a, b]$.

Thus for every $t \in [a,b]$ the set-valued function $H^*(t,\cdot): K \to CC(Y)$ satisfies the Jensen equation (2.14). By Lemma 2.2, for all $t \in [a,b]$ there exist an additive set-valued function $A(t): K \to CC(Y)$ and a set $B(t) \in CC(Y)$ such that

$$H^*(t,x) = A(t)x + B(t)$$
 for $t \in [a,b]$ and $x \in K$.

Acknowledgements. We would like to express our thanks to the referee for his valuable suggestions improving our paper.

References

- [1] H. Herda, Modular spaces of generalized variation, Studia Math. 30 (1968), 21–42.
- [2] L. Maligranda and W. Orlicz, On some properties of functions of generalized variation, Monatsh. Math. 104 (1987), 53–65.
- [3] J. Matkowski, Functional equations and Nemytskii operators, Funkcial. Ekvac. 25 (1982), 127–132.
- [4] J. Matkowski and J. Miś, On a characterization of Lipschitzian operators of substitution in the space BV[a, b], Math. Nachr. 117 (1984), 155–159.
- [5] N. Merentes and K. Nikodem, On Nemytskii operator and set-valued functions of bounded p-variation, Rad. Mat. 8 (1996), 139–145.
- [6] N. Merentes, K. Nikodem and S. Rivas, Continuity of the superposition of set-valued functions, J. Appl. Anal. 3 (1997), 43–48.

- [7] N. Merentes and S. Rivas, On Nemytskii operator in the space of set-valued functions of bounded p-variation in the sense of Riesz, Publ. Math. Debrecen 47 (1995), 15–27.
- [8] K. Nikodem, K-convex and K-concave set-valued functions, Politech. Łódz., Zeszyty
 Nauk. 559, Rozprawy Naukowe Z 114, Łódź, 1989.
- [9] H. Radström, An embedding theorem for space of convex sets, Proc. Amer. Math. Soc. 3 (1952), 165–169.
- [10] F. Riesz, Untersuchugen über Systeme integrierbarer Funktionen, Math. Ann. 69 (1910), 449–497.
- [11] A. Smajdor and W. Smajdor, Jensen equation and Nemytskij operator for set-valued functions, Rad. Mat. 5 (1989), 311–319.
- [12] G. Zawadzka, On Lipschitzian operators of substitution in the space of set-valued functions of bounded variation, ibid. 6 (1990), 179–193.

Nelson Merentes Departamento de Matemática Universidad Central de Venezuela Caracas 1020A, Venezuela E-mail: merentes@euler.ciens.ucv.ve Jose Luis Sánchez Hernández School of Mathematics Georgia Tech Atlanta, GA 30332-0160, U.S.A. E-mail: sanchez@math.gatech.edu

Received September 23, 2004 (7408)