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Summary. The main results of this paper are:
1) a proof that a necessary condition for 1 to be an eigenvalue of the S-matrix is real

analyticity of the boundary of the obstacle,
2) a short proof that if 1 is an eigenvalue of the S-matrix, then k2 is an eigenvalue of

the Laplacian of the interior problem, and that in this case there exists a solution to the
interior Dirichlet problem for the Laplacian, which admits an analytic continuation to the
whole space R3 as an entire function.

1. Introduction and statement of the result. We consider the ob-
stacle scattering problem in R3, but the argument and the results remain
valid in Rn, n ≥ 2.

Let the obstacle D ⊂ R3 be a bounded domain with a Lipschitz bound-
ary S. Denote by D′ = R3 \ D the exterior domain and by N , the unit
normal to S, pointing into D′. Let k > 0 be the wave number, and S2 be
the unit sphere in R3. The scattering matrix

S = S(k) = I − k

2πi
A

for the obstacle scattering problem is a unitary operator in L2(S2), I is
the identity operator and A is an integral operator in L2(S2), whose kernel
A(β, α, k) is the scattering amplitude, which is defined in formula (5) below.
The operator S has an eigenvalue 1 if and only if equation Aw = 0 has a
non-trivial solution. The eigenvalues of S have 1 as an accumulation point,
they all have absolute values equal to 1 since S is unitary.
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The followingconjecture (theDoron–Smilansky(DS)conjecture) isknown:

DS Conjecture. A number k2 > 0 is a Dirichlet eigenvalue of the
Laplacian in a bounded domain D if and only if the corresponding S-matrix
for the scattering problem by the obstacle D has an eigenvalue 1.

This conjecture is discussed in [1]–[3], and in [3] a counterexample to
this conjecture is mentioned.

From the definition of the S-matrix it follows that 1 is its eigenvalue if
and only if 0 is an eigenvalue of A, that is, equation (12) (see below) has a
non-trivial solution.

We prove (see Theorem 2) that if equation (12) has a non-trivial solution,
then the boundary S of D is an analytic set. Since generically S is not an
analytic set, it follows that the DS conjecture is incorrect. Our result gives a
necessary condition for 1 to be an eigenvalue of the S-matrix. This condition
is not sufficient (and therefore not sufficient for the DS conjecture to hold
for the domain D).

In [3] it is proved that if D ⊂ R2 is a bounded domain with a sufficiently
smooth boundary S, and if 1 is a Dirichlet eigenvalue of S, then k2 is a
Dirichlet eigenvalue of the Laplacian in D. An open problem, stated in [3],
is to prove such a statement for D ⊂ Rn with n > 2. This is done in our
paper by a method different from the one in [3]. Our proof is short and
simple.

Let S2
j , j = 1, 2, be arbitrary small fixed open subsets of S2, and let

the boundary conditions on S be either the Dirichlet, Neumann, or Robin
conditions.

The following theorem is proved in [5, p. 85]:

Theorem (Ramm). The knowledge of A(β, α, k) for all α ∈ S2
1 and

β ∈ S2
2 , and for a fixed k > 0, determines S and the boundary conditions

on S uniquely.

It follows that the knowledge of the S-matrix S(k) at a fixed k > 0
determines the boundary S of the obstacle and the boundary condition
on S uniquely.

Therefore, the discrete spectrum of the Laplacian in D, corresponding to
this boundary condition, is uniquely determined by the knowledge of S(k)
at a fixed k > 0.

This conclusion establishes a relation between the S-matrix and the spec-
trum of the Laplacian in D.

Let us now formulate the obstacle scattering problem, introduce basic
notions, and formulate our results.
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The scattering solution u(x, α, k) is the solution to the following scatter-
ing problem:

Lu := (∇2 + k2)u = 0 in D′,(1)
u|S = 0,(2)

u = u0 + v, u0 := eikα·x,(3)
∂v

∂r
− ikr = o

(
1
r

)
, r := |x| → ∞.(4)

Here α ∈ S2 is the incident direction, i.e., the direction of the incident
plane wave u0, and v is the scattered field which satisfies the radiation
condition (4). This condition implies that

(5) v := v(x, α, k) = A(β, α, k)
eikr

r
+o
(

1
r

)
, r := |x| → ∞, β :=

x

r
.

The function A := A(β, α, k) is called the scattering amplitude. Let us denote
by A : L2

(
S2
)
→ L2

(
S2
)

the operator

(6) Aw :=
�

S2

A(β, α, k)w(α) dα.

It is well known (see [5]) that problem (1)–(4) has a unique solution u(x, α, k),

(7) A(β, α, k) = − 1
4π

�

S

e−ikβ·suN (s, α, k) ds,

where uN (s, α, k) is the normal derivative of the scattering solution u(x, α, k)
on S, and the following relation holds:

(8) u(x, α, k) = eikα·x −
�

S

g(x, s, k)uN (s, α, k) ds.

Here G, the resolvent kernel of the Dirichlet Laplacian in the exterior do-
main D′, satisfies the following equation:

(9) G(x, y, k) = g(x, y, k)−
�

S

g(x, s, k)GN (s, y, k) ds,

where

(10) g(x, y, k) :=
eik|x−y|

4π|x− y|
.

The function G solves the boundary value problem

(11) LG = −δ(x− y) in D′, G|S = 0,

and satisfies the radiation condition (4).
Let σ denote the set of eigenvalues of the Dirichlet Laplacian in D. This

set is discrete.
It is proved in [5, pp. 52–57] that:
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(a) The function A(β, α, k) admits a meromorphic continuation as a
function of k from the ray (0,∞) to the whole complex k-plane.

(b) The scattering amplitude A(β, α, k) is analytic in the region Im k ≥ 0
(if D ⊂ R2n then k = 0 is a logarithmic branch point).

(c) A(β, α, k) has infinitely many poles on the imaginary axis in the
region Im k < 0.

(d) As a function of α and β, the scattering amplitude A(β, α, k) admits
analytic continuation from S2 × S2 to the set M ×M , where M :=
{Θ ∈ C3 : Θ · Θ = 1}, where Θ · ω :=

∑3
j=1Θj ωj . The set M is a

non-compact algebraic variety in C3.

Let us now state our basic results:

Theorem 1. If S(k) has an eigenvalue 1, that is, the equation

(12) Aw =
�

S2

A(β, α, k)w(α)dα = 0

has a non-trivial solution w, then k2 ∈ σ, and there is a solution to the
problem (∇2 + k2)W = 0 in D, W |S = 0, which can be extended from D to
R3 as a bounded entire function of x.

Theorem 2. If equation (12) has a non-trivial solution, then the bound-
ary S is an analytic set.

An analytic set is a set of zeros of (a finite collection of) analytic func-
tions. One can find the definition and properties of analytic sets in [4, Sec-
tion 1.4]). If S is an analytic set, then S is a piecewise real analytic surface.
Since generically S is not piecewise real analytic surface, it follows from
Theorem 2 that the DS conjecture is incorrect.

In Section 2 Theorems 1 and 2 are proved. In the proofs, the following
result of the author is used:

Lemma 1 ([5, p. 46]). One has

(13) G(x, y, k) =
eik|y|

4π|y|
u(x, α, k)[1 + o(1)], |y| → ∞, y

|y|
= −α,

where u(x, α, k) is the scattering solution, i.e., the solution to (1)–(4).

Lemma 1 yields formula (8) as a consequence of (9), while formula (9)
is obtained by Green’s formula. Formula (7) follows from (8).

2. Proofs

Proof of Theorem 1. Let us prove that if w 6≡ 0 solves (12) then k2 ∈ σ.
Assume that equation (12) has a non-trivial solution w. Multiply (7) by
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w = w(α) and integrate over S2 with respect to α. The result is

(14)
�

S

e−ikβ·sp(s) ds = 0, p(s) :=
�

S2

uN (s, α, k)w(α) dα.

Let us prove that p(s) 6≡ 0. Indeed, if

(15) p(s) =
�

S2

uN (s, α, k)w(α) dα = 0 ∀s ∈ S,

then w(α) ≡ 0 because the set {uN (s, α, k)}α∈S2 is total (dense) in L2(S)
for any fixed k > 0 ([5, p. 162]).

Now equation (14) and Lemma 1 imply that

(16) ν(x) :=
�

S

eik|x−s|

4π|x− s|
p(s) ds

is identically zero in D′. Indeed, this ν solves equation (1), satisfies the
radiation condition (4), and (14) implies

(17) ν(x) = o(1/|x|), |x| → ∞.

Relation (17) and Lemma 1 in [5, p. 25] imply that

(18) ν(x) = 0 in D′.

Therefore, by the jump formula for the normal derivative of the single
layer potential (16) ([5, p. 14]), one gets

(19)
∂ν

∂N+
= p(s) 6≡ 0,

where ∂/∂N+ denotes the limiting value on S of the normal derivative from
inside of D.

This implies that k2 ∈ σ. Indeed, ν(x) solves the equation

(20) (∇2 + k2)ν = 0 in D′,

and satisfies the boundary condition

(21) ν|S = 0,

due to (18) and the continuity of ν across S. Finally, ν 6≡ 0 in D because
of (19).

Now we prove the existence of a solution to problem (20)–(21) which can
be analytically continued to the whole space R3 as an entire function of x.
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The reciprocity relation A(β, α, k) = A(−α,−β, k) (see [5, p. 53] and
equation (12) imply

0 =
�

S2

A(β, α, k)w(α) dα(22)

= − 1
4π

�

S

( �

S2

eikα·sw(α) dα
)
uN (s,−β) ds ∀β ∈ S2.

Since the set {uN (s, α, k)}α∈S2 is total (dense) in L2(S) for any fixed k > 0
([5, p. 162]), relation (22) implies

(23)
�

S2

eikα·sw(α) dα = 0 ∀s ∈ S.

Therefore, the function

(24) W (x) :=
�

S2

eikα·xw(α) dα, x ∈ R3,

satisfies all the requirements mentioned in the last statement of Theorem 1.
Thus, Theorem 1 is proved.

Remark 1. A similar argument yields the following result:

Let σN be the set of eigenvalues of the Neumann Laplacian, andAN (β,α,k)
the scattering amplitude, corresponding to the plane wave scattering by the
obstacle D on the boundary of which the Neumann boundary condition holds.
If equation (12), with AN in place of A, has a non-trivial solution, then
k2 ∈ σN .

Remark 2. If k2 ∈ σ, then any non-trivial solution to (20)–(21) can
be written in the form (16) with p(s) defined in (19), and the boundary
condition (18) holds. Taking |x| → ∞, x/|x| = β, in (16) and using (18),
one obtains

(25)
�

S

e−ikβ·sp(s) ds = 0 ∀β ∈ S2, p(s) 6≡ 0.

Thus, if k2 ∈ σ, then equation (25) has a non-trivial solution p(s).

Proof of Theorem 2. Suppose equation (12) has a solution η ∈ L2(S2),
η 6≡ 0. Then

(26)
�

S

ds uN (s, α)
�

S2

e−ikβ·sη(β) dβ = 0 ∀α ∈ S2.

Since the set {uN (s, α)}α∈S2 is total in L2(S), one concludes from (26) that

(27) ψ(s) = 0 ∀s ∈ S,
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where
ψ(x) :=

�

S2

e−ikβ·xη(β) dβ.

The function ψ(x) is an entire function of x, that is, an analytic function of
x ∈ C3. It vanishes on S, so S is an analytic set. Generically, the boundary
S is not an analytic set.

Thus, Theorem 2 is proved.

Remark 3. If one uses the reciprocity relation A(β, α, k)=A(−α,−β, k),
then one concludes that zero is an eigenvalue of A if either

(28)
�

S

e−ikβ·s
�

S2

uN (s, α, k)w(α) dα = 0 ∀β ∈ S2, w 6≡ 0,

or

(29)
�

S

( �

S2

eikα·sw(α) dα
)
uN (s,−β) ds = 0 ∀β ∈ S2, w 6≡ 0.

The last relation implies equation (28) (with β = −α and η(β) = w(α)).

Set Tkp :=
	
S g(s, t, k)p(t) dt and U := U(x, k) :=

	
S g(x, t, k)p(t) dt, so

U |S = Tkp.

Remark 4. The operator T−1
k has simple poles at the points k2 = k2

j ,
where k2

j ∈ σ.

Remark 4 shows that the knowledge of the set of poles of the operator
T−1
k allows one to find the spectrum of the interior Dirichlet Laplacian in D.

Proof of Remark 4. Consider the equation Tkp = f . Then

U(x) =
�

S

g(x, t, k)p(t) dt

solves the problem

(30) (∇2 + k2)U = 0 in D, U |S = f.

Let
(∇2 + k2)Γ = −δ(x− y) in D, Γ |S = 0.

Then Green’s formula yields the following representation of the solution to
problem (30):

(31) U(x) = −
�

S

f(t)ΓNt(t, x, k) dt, x ∈ D, k2 6= k2
j .

Since Γ (x, y, k) =
∑∞

j=1
φj(x)φj(y)

k2−k2
j

has a simple pole at k2 = k2
j , the claim is

proved. Here φj are the normalized eigenfunctions of the Dirichlet Laplacian
in D.
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