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Summary. The main results of this paper are:

1) a proof that a necessary condition for 1 to be an eigenvalue of the S-matrix is real
analyticity of the boundary of the obstacle,

2) a short proof that if 1 is an eigenvalue of the S-matrix, then k2 is an eigenvalue of
the Laplacian of the interior problem, and that in this case there exists a solution to the
interior Dirichlet problem for the Laplacian, which admits an analytic continuation to the
whole space R® as an entire function.

1. Introduction and statement of the result. We consider the ob-
stacle scattering problem in R3, but the argument and the results remain
valid in R™, n > 2.

Let the obstacle D C R3 be a bounded domain with a Lipschitz bound-
ary S. Denote by D’ = R3\ D the exterior domain and by N, the unit
normal to S, pointing into D’. Let k& > 0 be the wave number, and S? be
the unit sphere in R3. The scattering matrix

k
S=S8k)=1 57 A
for the obstacle scattering problem is a unitary operator in L?(S?), I is
the identity operator and A is an integral operator in L?(S?), whose kernel
A(B, a, k) is the scattering amplitude, which is defined in formula (5) below.
The operator S has an eigenvalue 1 if and only if equation Aw = 0 has a
non-trivial solution. The eigenvalues of S have 1 as an accumulation point,
they all have absolute values equal to 1 since § is unitary.
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The following conjecture (the Doron-Smilansky (DS) conjecture) is known:

DS CONJECTURE. A number k* > 0 is a Dirichlet eigenvalue of the
Laplacian in a bounded domain D if and only if the corresponding S-matrix
for the scattering problem by the obstacle D has an eigenvalue 1.

This conjecture is discussed in [1]-[3], and in [3] a counterexample to
this conjecture is mentioned.

From the definition of the S-matrix it follows that 1 is its eigenvalue if
and only if 0 is an eigenvalue of A, that is, equation (12) (see below) has a
non-trivial solution.

We prove (see Theorem 2) that if equation (12) has a non-trivial solution,
then the boundary S of D is an analytic set. Since generically S is not an
analytic set, it follows that the DS conjecture is incorrect. Our result gives a
necessary condition for 1 to be an eigenvalue of the S-matrix. This condition
is not sufficient (and therefore not sufficient for the DS conjecture to hold
for the domain D).

In [3] it is proved that if D C R? is a bounded domain with a sufficiently
smooth boundary S, and if 1 is a Dirichlet eigenvalue of S, then k? is a
Dirichlet eigenvalue of the Laplacian in D. An open problem, stated in [3],
is to prove such a statement for D C R” with n > 2. This is done in our
paper by a method different from the one in [3]. Our proof is short and
simple.

Let SJZ, j = 1,2, be arbitrary small fixed open subsets of S?, and let
the boundary conditions on S be either the Dirichlet, Neumann, or Robin
conditions.

The following theorem is proved in [5, p. 85]:

THEOREM (Ramm). The knowledge of A(B,c, k) for all o € S? and
B € S3, and for a fived k > 0, determines S and the boundary conditions
on S uniquely.

It follows that the knowledge of the S-matrix S(k) at a fixed & > 0
determines the boundary S of the obstacle and the boundary condition
on S uniquely.

Therefore, the discrete spectrum of the Laplacian in D, corresponding to
this boundary condition, is uniquely determined by the knowledge of S(k)
at a fixed k > 0.

This conclusion establishes a relation between the S-matrix and the spec-
trum of the Laplacian in D.

Let us now formulate the obstacle scattering problem, introduce basic
notions, and formulate our results.
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The scattering solution u(x, c, k) is the solution to the following scatter-
ing problem:

(1) Lu:=(V*+ k) u=0 in D/,
(2) U‘S =0,
(3) w=uy+v, ug:=ekvT
1
(4) gi_ikT:()(r)’ r:=|z| — oo.

Here o € S? is the incident direction, i.e., the direction of the incident
plane wave ug, and v is the scattered field which satisfies the radiation
condition (4). This condition implies that

ikr
) vim o) = AGaR) ro(1), rmld -, i

The function A := A(S, «, k) is called the scattering amplitude. Let us denote
by A: L? (5’2)—> L? (52) the operator

(6) Aw = S A(B, o, k)w(a) da.
S2
It is well known (see [5]) that problem (1)—(4) has a unique solution u(x, o, k),
1 .
(7) AB k) = ——— | e up (s, a, k) ds,
4 5

where upn (s, a, k) is the normal derivative of the scattering solution u(z, o, k)
on S, and the following relation holds:

(8) u(z, a, k) = ek Sg(x, s, k)un(s,a, k) ds.
S

Here G, the resolvent kernel of the Dirichlet Laplacian in the exterior do-
main D', satisfies the following equation:

9) G(z,y,k) = g(x,y, k) — | g(2, 5, k)Gn (s, y, k) ds,
S
where
etklz—yl
(10) g(x,y, k) = m
The function G solves the boundary value problem
(11) LG=-6(x—y) inD', G|s=0,

and satisfies the radiation condition (4).

Let o denote the set of eigenvalues of the Dirichlet Laplacian in D. This
set is discrete.

It is proved in [5, pp. 52-57] that:
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(a) The function A(S,a,k) admits a meromorphic continuation as a
function of k from the ray (0,00) to the whole complex k-plane.

(b) The scattering amplitude A(f3, «, k) is analytic in the region Imk > 0
(if D C R?" then k = 0 is a logarithmic branch point).

(¢) A(B,a, k) has infinitely many poles on the imaginary axis in the
region Im k < 0.

(d) As a function of o and 3, the scattering amplitude A(S3, «, k) admits
analytic continuation from $2 x S? to the set M x M, where M :=
{6eC?:0-0 =1}, where O -w := Z;’:l@j w;. The set M is a
non-compact algebraic variety in C3.

Let us now state our basic results:

THEOREM 1. If S(k) has an eigenvalue 1, that is, the equation

(12) Aw = S A(B, o, k)w(a)da =0

SZ
has a non-trivial solution w, then k* € o, and there is a solution to the
problem (V2 + k)W =0 in D, W|s = 0, which can be extended from D to
R3 as a bounded entire function of x.

THEOREM 2. If equation (12) has a non-trivial solution, then the bound-
ary S is an analytic set.

An analytic set is a set of zeros of (a finite collection of) analytic func-
tions. One can find the definition and properties of analytic sets in [4, Sec-
tion 1.4]). If S is an analytic set, then S is a piecewise real analytic surface.
Since generically S is not piecewise real analytic surface, it follows from
Theorem 2 that the DS conjecture is incorrect.

In Section 2 Theorems 1 and 2 are proved. In the proofs, the following
result of the author is used:

LEMMA 1 ([5, p. 46]). One has
etklyl
=—u
)= iy

where u(x, a, k) is the scattering solution, i.e., the solution to (1)—(4).

(13)  G(x,y,k (z,a,k)[14+0(1)], |y| — oo, |—Zy/| = —q,

Lemma 1 yields formula (8) as a consequence of (9), while formula (9)
is obtained by Green’s formula. Formula (7) follows from (8).
2. Proofs

Proof of Theorem 1. Let us prove that if w # 0 solves (12) then k* € o.
Assume that equation (12) has a non-trivial solution w. Multiply (7) by
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w = w(a) and integrate over S? with respect to .. The result is

(14) S e HFsp(s)ds =0,  p(s) = S un (s, o, k)w(a) da.
S S2

Let us prove that p(s) # 0. Indeed, if
(15) p(s) = S un (s, o, k)w(a)da=0 VseS,
S2

then w(a) = 0 because the set {uy(s,a, k)},eg2 is total (dense) in L?(.S)
for any fixed k > 0 ([5, p. 162]).

Now equation (14) and Lemma 1 imply that
etklz—s|

(16) v(x) = S mp(s) ds
S

is identically zero in D’. Indeed, this v solves equation (1), satisfies the
radiation condition (4), and (14) implies

(17) v(z) =o(l/|z]), |z| — oc.

Relation (17) and Lemma 1 in [5, p. 25] imply that

(18) v(z)=0 inD'.

Therefore, by the jump formula for the normal derivative of the single
layer potential (16) ([5, p. 14]), one gets

ov

(19) o = Pls) £ 0.

where 0/0N, denotes the limiting value on S of the normal derivative from
inside of D.

This implies that k* € o. Indeed, v(z) solves the equation
(20) (V24 EHy =0 in D/,
and satisfies the boundary condition
(21) vls =0,

due to (18) and the continuity of v across S. Finally, v # 0 in D because
of (19).

Now we prove the existence of a solution to problem (20)—(21) which can
be analytically continued to the whole space R? as an entire function of .
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The reciprocity relation A(S,a,k) = A(—a,—f3,k) (see [5, p. 53] and
equation (12) imply

(22) 0= | A(B,a,k)w(a)da

— _78 ( S eika'sw(a) da)uN(s, —B)ds VB € S2.

Since the set {un (s, a, k)}qacg2 is total (dense) in L2(S) for any fixed k > 0
([5, p. 162]), relation (22) implies
(23) S ekvsy(a)da =0 Vs e S.
SQ
Therefore, the function
(24) W(x) := S ek (a)da, 1z € RS,
SQ

satisfies all the requirements mentioned in the last statement of Theorem 1.

Thus, Theorem 1 is proved. =

REMARK 1. A similar argument yields the following result:

Let o be the set of eigenvalues of the Neumann Laplacian, and Ax (3, a, k)
the scattering amplitude, corresponding to the plane wave scattering by the
obstacle D on the boundary of which the Neumann boundary condition holds.
If equation (12), with Apnr in place of A, has a non-trivial solution, then
k2 c oy

REMARK 2. If k? € o, then any non-trivial solution to (20)-(21) can
be written in the form (16) with p(s) defined in (19), and the boundary
condition (18) holds. Taking |z| — oo, z/|z| = f, in (16) and using (18),
one obtains
(25) S e ep(s)ds =0 VB e S  p(s)Z0.

S

Thus, if k? € o, then equation (25) has a non-trivial solution p(s).

Proof of Theorem 2. Suppose equation (12) has a solution n € L?(S5?),
1n # 0. Then

(26) S dsun(s,a) S e kPsp(BYdf =0 Yae 52
S S2
Since the set {un(s,@)}acg2 is total in L2(S), one concludes from (26) that

(27) P(s)=0 Vses,
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where
U(z) = | e () dp.
S2
The function ¥ (x) is an entire function of z, that is, an analytic function of
x € C3. It vanishes on S, so S is an analytic set. Generically, the boundary
S is not an analytic set.
Thus, Theorem 2 is proved. =

REMARK 3. If one uses the reciprocity relation A(3, a, k)= A(—a, —f, k),
then one concludes that zero is an eigenvalue of A if either

(28) Seiikﬁ's S un(s,a,k)w(a)da =0 VB€S? w0,

S S2

or

(29) S ( S ey (a) da)uN(s, ~B)ds=0 VBecS?* w#0.
S 52

The last relation implies equation (28) (with f = —a and 7(8) = w(a)).

Set Typ := {4 g(s,t,k)p(t)dt and U := U(z, k) := {4 g(x,t, k)p(t) dt, so
Uls = Tip.

REMARK 4. The operator T} ! has simple poles at the points k2 = k‘jz,
where kJQ €o.

Remark 4 shows that the knowledge of the set of poles of the operator
T, ! allows one to find the spectrum of the interior Dirichlet Laplacian in D.

Proof of Remark 4. Consider the equation Tip = f. Then
Ulx) = | gl t, k)p(t) dt
S
solves the problem

(30) (V2+EHU =0 inD, Uls="f
Let
(V24 ) =—-6(x—y) inD, I|s=0.

Then Green’s formula yields the following representation of the solution to
problem (30):

(31) U(x) ==\ f®)In,(t, 2, k)dt, xeD, K £k
S

Since I'(z,y,k) = > 72, % has a simple pole at k? = kJQ-, the claim is
J

proved. Here ¢; are the normalized eigenfunctions of the Dirichlet Laplacian
in D.
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