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Summary. For a prime p and an absolutely irreducible modulo p polynomial f(U,V) €
Z|U,V] we obtain an asymptotic formula for the number of solutions to the congruence
f(z,y) = a (modp) in positive integers z < X, y < Y, with the additional condition
ged(z, y) = 1. Such solutions have a natural interpretation as solutions which are visible
from the origin. These formulas are derived on average over a for a fixed prime p, and also
on average over p for a fixed integer a.

1. Introduction. Let p be a prime and let f(U,V) € Z[U,V] be a
bivariate polynomial with integer coeflicients.

For real X and Y with 1 < X,Y < p and an integer a we consider the
set

Fpa(X,Y) ={(z,y) € [1, X] x [1,Y]: f(z,y) = a (modp)}

which is the set of points on level curves of f(U, V) modulo p.

If f(x,y) — a is a nonconstant absolutely irreducible polynomial modulo
p of degree at least 2, then one can easily derive from the Bombieri bound [2]
that

XY

(1) #Fpa(X.Y) = ==+ O(p'*(logp)?),
where the implied constant depends only on deg f (see, e.g., [3, 4, 9, 11]).

In this paper we consider an apparently new question of studying the
cardinality of the set

vaa(X7Y) = #{(x,y) S ,G(X7Y) : ng(x7y) = 1}'

These points have a natural geometric interpretation as points on F, ,(X,Y)
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which are “visible” from the origin (see [1, 6, 7, 10] and references therein for
several other aspects of distribution of visible points in various regions).

We show that on average over a = 0, ...,p—1, the cardinality N, ,(X,Y)
is close to its expected value 6 XY /7?p whenever

for any fixed € > 0 and sufficiently large p.

We then consider the dual situation, when a is fixed (in particular we
take a = 0) but p varies through all primes up to 7.

Our approach is based on a rather straightforward application of the
inclusion-exclusion formula involving the Mébius function. We apply (1) to
the lower terms of this formula which leads to the main term. However, the
main difficulty is in getting a nontrivial estimate for the tail terms. This is
exactly where we need to introduce some averaging in order to get such a
nontrivial bound.

We recall A < B and A = O(B) both mean that |A| < ¢B holds with

some constant ¢ > 0, which may depend on some specified set of parameters.

2. Absolute irreducibility of level curves. We start with the follow-
ing statement which could be of independent interest.

LEMMA 1. If F(U,V) € K[U, V] is absolutely irreducible of degree n over
a field K, then F(U,V') — a is absolutely irreducible for all but at most C(n)
elements a € K, where C(n) depends only on n.

Proof. The set of polynomials of degree n is parametrized by a projective
space P*(") of dimension s(n) = (n + 1)(n + 2)/2 over K, coordinatized by
the coefficients. The subset X of P*(") consisting of reducible polynomials is
a Zariski closed subset because it is the union of the images of the maps

ps(k) o psin—k) _, IP’S("), k<n/2,

given by multiplying a polynomial of degree k with a polynomial of degree
n—k. The map t — F(U, V)—t describes a line in P*(") and by the assumption
of absolute irreducibility of F', this line is not contained in X. So, by the
Bézout theorem, it meets X in at most C'(n) points, where C(n) is the degree
of X. Hence for all but at most C'(n) values of a, F(U,V) — a is absolutely
irreducible. =

3. Visible points on almost all level curves. Throughout this sec-
tion, the implied constants in the notations A < B and A = O(B) may
depend on the degree n = deg f.

THEOREM 2. Let f be a polynomial with integer coefficients which is
absolutely irreducible and of degree greater than one modulo the prime p.
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Then for real X and Y with 1 < X,Y < p we have

p—1

D

a=0

Proof. Let A, consist of a € {0,...,p — 1} for which f(U,V) — a is
absolutely irreducible modulo p.

Npo(X,Y) — < X112y 123/ 00 p.

2

6 XY
p

For an integer d, we define
Mpo(d; X,Y) = #{(2,y) € Fpa(X,Y) | ged(z,y) = 0 (mod d)}.
Let p(d) denote the Mobius function. We recall that u(1) =1, u(d) =0
if d > 2 is not square-free and u(d) = (—1)*(¥) otherwise, where w(d) is the

number of distinct prime divisors of d. By the inclusion-exclusion principle,
we write

(3) =D nld)Mya(d; X, Y).
d=1

Writing
r=ds and y=dt,
we have
M, o(d; X,Y) = #{(s,t) € [1,X/d] x [1,Y/d] | f(ds,dt) = a (modp)}.

Thus M, ,(d; X,Y) is the number of points on a curve in a given box. If
a€ A, and 1 < d < p then f(dU,dV) — a remains absolutely irreducible
modulo p. Accordingly, we have an analogue of (1) which asserts that

XY
(4) Mpa(d: X,Y) = 5o+ O(p'*(l0g p)°).

We fix some positive parameter D < p and substitute the bound (4) in (3)
for d < D, getting

Npo(X,Y)
= Z ( O(pl/Q(logp)2)> - O( Z Mp.a(d; X, Y))
d<D d>D
_ XY C(l;i) +O(Dp1/2(1°gp + Z M,.q(d; X, Y))
p d<D d>D

for every a € A,.
Furthermore
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where the product is taken over all prime numbers [. Recalling that

M(i-3)-co'=5

l
(see |5, Equation (17.2.2) and Theorem 280]), we obtain

6 XY| XY o ) .
(5) | Npa(X.Y) ~ —- . < =+ Dp'?(logp)* + > Mya(d; X, Y)

Dp
d>D

for every a € A,.
We also remark that

p—1 p—1
S Mpyo(d; X,Y) =YY Mya(d; X,Y)

a=0d>D d>D a=0
X
=y {dH J XYZ < XY/D.
d>D d>D

Therefore, using the bounds (5) and (6), we obtain

6 XY
(7) > — - 7’ < XY/D + Dp*?(logp)?.
acAp

For a ¢ A, we estimate N ,(X,Y) trivially as
N,o(X,Y) < min{X,Y}deg f < VXY.
Thus by Lemma 1,
(8) ‘Npa (X,Y) — : );Y‘ < max{VXY,XY/p} < VXY.
ag A,

Combining (7) and (8) and taking D = X/2Y1/2p=3/4(log p)~! we conclude
the proof. =

Npo(X,)Y) —

COROLLARY 3. Let f be a polynomial with integer coefficients which is
absolutely irreducible and of degree greater than one modulo the prime p. If
XY > p3/2(logp)?te for some fized € > 0, then

NpalX,Y) = (% " o(l)) -

for all but o(p) values of a =10,...,p— 1.

4. Visible points on almost all reductions. Throughout this section,
the implied constants in the notations A < B and A = O(B) may depend
on the coefficients of f.

To simplify notation we put

Fp(X,Y) = Fpo(X,Y) and Ny(X,Y) = N,o(X,Y).
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We only consider polynomials f with integer coefficients such that the
equation f(z,y) = 0 has only finitely many integer solutions. We recall that
the Siegel theorem guarantees this for a very general class of polynomials.

THEOREM 4. Let f be a polynomial with integer coefficients which is
absolutely irreducible and of degree greater than one such that the equation
f(x,y) =0 has only finitely many integer solutions. Then for real T, X and
Y such that T > 2max(X,Y) and XY > T3/?log T we have

> NEXY) - % : %‘ < X2y 10g T))3/?
T/2<p<T

as T'— oo, where the sum is taken over all primes p with T/2 <p <T.

Proof. 1t is enough to consider T large enough so that f remains abso-
lutely irreducible and of degree greater than one for all p, T/2 < p < T. As
before we have

6 XY| XY
(9) ’Np(x, Y) - 2 < Dy + Dp*?(log p)? + Z M,(d; X,Y)

d>D
where
My(d; X,Y) = #{(2,y) € Fp(X,Y) | ged(w,5) = 0 (modd)}.
We also remark that

(10) oY MEGXY)=) Y M(dX,Y)

T/2<p<T d>D d>D T/2<p<T

=2 > > > L

d>D 1<s<X/d1<t<Y/d T/2<p<T
plf(ds,dt)

Let Z be the set of integer zeros (x,y) of f(x,y) = 0. We assume that D
is large enough so that

(11) F(ds, dt) # 0
for d > D and s,t > 1.

As before, we denote by w(k) the number of prime divisors of a positive
integer k and note that w(k) < logk. Thus for (u,v) ¢ Z we can estimate
the inner sum over p in (10) as w(|f(ds, dt)|) < log(XY) < logT. Therefore

oY MEx )<Y > Y1

T/2<p<T d>D d>D 1<s<X/d p|f(ds,dt)
1<t<Y/d

§Z Z logT < XYD tlogT.

d>D 1<s<X/d
1<t<Y/d

We also note that by the prime number theorem,
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1 2 1
Z _S? Z 1<<1ogT'

T/2<p<T b T/2<p<T

We now put everything together getting

6 XY XY
> NXY) - = < + DT3%(log T)? +
s 14 DlogT
T/2<p<T

XY logT
D

XY logT
-
We now take D = ¢X'/2Y1/27=3/4(log T)~'/2 for a sufficiently large con-
stant ¢ depending only on f (to guarantee that we have (11) for d > D and
s,t > 1), which yields the result. =

COROLLARY 5. Let f be a polynomial with integer coefficients which is
absolutely irreducible and of degree greater than one such that the equation
f(x,y) = 0 has only finitely many integer solutions. If T > 2max(X,Y) and
XY > T3/2%¢ for some fized € > 0, then

Ny(X,Y) = (% + 0(1)> XY

for all but o(T/logT) primes p € [T/2,T].

< DT3?(log T)? +

5. Remarks. Certainly it is interesting to obtain an asymptotic formula
for N, o(X,Y) which holds for every a. Even the case of X =Y = p is of
interest. We remark that for the polynomial f(U,V) = UV such an asymp-
totic formula is given in [8] and is nontrivial provided XY > p3/2t¢ for some
fixed € > 0. However, the technique of [8] does not seem to apply to more
general polynomials.

We remark that studying such special cases as visible points on the curves
of the shape f(U,V) =V — g(U) (corresponding to points on the graph of
a univariate polynomial) and f(U,V) = V? — X3 — rX — s (corresponding
to points on an elliptic curve) is also of interest and may be more accessible
than the general case.
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