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Summary. For a prime p and an absolutely irredu
ible modulo p polynomial f(U, V ) ∈
Z[U, V ] we obtain an asymptoti
 formula for the number of solutions to the 
ongruen
e
f(x, y) ≡ a (mod p) in positive integers x ≤ X, y ≤ Y , with the additional 
ondition
gcd(x, y) = 1. Su
h solutions have a natural interpretation as solutions whi
h are visiblefrom the origin. These formulas are derived on average over a for a �xed prime p, and alsoon average over p for a �xed integer a.1. Introdu
tion. Let p be a prime and let f(U, V ) ∈ Z[U, V ] be abivariate polynomial with integer 
oe�
ients.For real X and Y with 1 ≤ X, Y ≤ p and an integer a we 
onsider theset

Fp,a(X, Y ) = {(x, y) ∈ [1, X] × [1, Y ] : f(x, y) ≡ a (modp)}whi
h is the set of points on level 
urves of f(U, V ) modulo p.If f(x, y)− a is a non
onstant absolutely irredu
ible polynomial modulo
p of degree at least 2, then one 
an easily derive from the Bombieri bound [2℄that(1) #Fp,a(X, Y ) =

XY

p
+ O(p1/2(log p)2),where the implied 
onstant depends only on deg f (see, e.g., [3, 4, 9, 11℄).In this paper we 
onsider an apparently new question of studying the
ardinality of the set

Np,a(X, Y ) = #{(x, y) ∈ Fp,a(X, Y ) : gcd(x, y) = 1}.These points have a natural geometri
 interpretation as points on Fp,a(X, Y )2000 Mathemati
s Subje
t Classi�
ation: 11A07, 11K38, 11L40.Key words and phrases: points visible from the origin, absolutely irredu
ible polyno-mial. [193℄ 
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whi
h are �visible� from the origin (see [1, 6, 7, 10℄ and referen
es therein forseveral other aspe
ts of distribution of visible points in various regions).We show that on average over a = 0, . . . , p−1, the 
ardinality Np,a(X, Y )is 
lose to its expe
ted value 6XY/π2p whenever(2) XY ≥ p3/2+εfor any �xed ε > 0 and su�
iently large p.We then 
onsider the dual situation, when a is �xed (in parti
ular wetake a = 0) but p varies through all primes up to T .Our approa
h is based on a rather straightforward appli
ation of thein
lusion-ex
lusion formula involving the Möbius fun
tion. We apply (1) tothe lower terms of this formula whi
h leads to the main term. However, themain di�
ulty is in getting a nontrivial estimate for the tail terms. This isexa
tly where we need to introdu
e some averaging in order to get su
h anontrivial bound.We re
all A ≪ B and A = O(B) both mean that |A| ≤ cB holds withsome 
onstant c > 0, whi
h may depend on some spe
i�ed set of parameters.2. Absolute irredu
ibility of level 
urves. We start with the follow-ing statement whi
h 
ould be of independent interest.Lemma 1. If F (U, V ) ∈ K[U, V ] is absolutely irredu
ible of degree n overa �eld K, then F (U, V )− a is absolutely irredu
ible for all but at most C(n)elements a ∈ K, where C(n) depends only on n.Proof. The set of polynomials of degree n is parametrized by a proje
tivespa
e P

s(n) of dimension s(n) = (n + 1)(n + 2)/2 over K, 
oordinatized bythe 
oe�
ients. The subset X of P
k(n) 
onsisting of redu
ible polynomials isa Zariski 
losed subset be
ause it is the union of the images of the maps

P
s(k) × P

s(n−k) → P
s(n), k ≤ n/2,given by multiplying a polynomial of degree k with a polynomial of degree

n−k. The map t 7→ F (U, V )−t des
ribes a line in P
s(n) and by the assumptionof absolute irredu
ibility of F , this line is not 
ontained in X. So, by theBézout theorem, it meets X in at most C(n) points, where C(n) is the degreeof X. Hen
e for all but at most C(n) values of a, F (U, V ) − a is absolutelyirredu
ible.3. Visible points on almost all level 
urves. Throughout this se
-tion, the implied 
onstants in the notations A ≪ B and A = O(B) maydepend on the degree n = deg f .Theorem 2. Let f be a polynomial with integer 
oe�
ients whi
h isabsolutely irredu
ible and of degree greater than one modulo the prime p.
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Then for real X and Y with 1 ≤ X, Y ≤ p we have

p−1
∑

a=0

∣

∣

∣

∣

Np,a(X, Y ) − 6

π2
· XY

p

∣

∣

∣

∣

≪ X1/2Y 1/2p3/4 log p.

Proof. Let Ap 
onsist of a ∈ {0, . . . , p − 1} for whi
h f(U, V ) − a isabsolutely irredu
ible modulo p.For an integer d, we de�ne
Mp,a(d; X, Y ) = #{(x, y) ∈ Fp,a(X, Y ) | gcd(x, y) ≡ 0 (modd)}.Let µ(d) denote the Möbius fun
tion. We re
all that µ(1) = 1, µ(d) = 0if d ≥ 2 is not square-free and µ(d) = (−1)ω(d) otherwise, where ω(d) is thenumber of distin
t prime divisors of d. By the in
lusion-ex
lusion prin
iple,we write(3) Np,a(X, Y ) =

∞
∑

d=1

µ(d)Mp,a(d; X, Y ).Writing
x = ds and y = dt,we have

Mp,a(d; X, Y ) = #{(s, t) ∈ [1, X/d] × [1, Y/d] | f(ds, dt) ≡ a (mod p)}.Thus Mp,a(d; X, Y ) is the number of points on a 
urve in a given box. If
a ∈ Ap and 1 ≤ d < p then f(dU, dV ) − a remains absolutely irredu
iblemodulo p. A

ordingly, we have an analogue of (1) whi
h asserts that(4) Mp,a(d; X, Y ) =

XY

d2p
+ O(p1/2(log p)2).We �x some positive parameter D < p and substitute the bound (4) in (3)for d ≤ D, getting

Np,a(X, Y )

=
∑

d≤D

(

µ(d)XY

d2p
+ O(p1/2(log p)2)

)

+ O
(

∑

d>D

Mp,a(d; X, Y )
)

=
XY

p

∑

d≤D

µ(d)

d2
+ O

(

Dp1/2(log p)2 +
∑

d>D

Mp,a(d; X, Y )
)

for every a ∈ Ap.Furthermore
∑

d≤D

µ(d)

d2
=

∞
∑

d=1

µ(d)

d2
+ O(D−1) =

∏

l

(

1 − 1

l2

)

+ O(D−1),
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where the produ
t is taken over all prime numbers l. Re
alling that

∏

l

(

1 − 1

l2

)

= ζ(2)−1 =
6

π2(see [5, Equation (17.2.2) and Theorem 280℄), we obtain
(5)

∣

∣

∣

∣

Np,a(X, Y ) − 6

π2
· XY

p

∣

∣

∣

∣

≪ XY

Dp
+ Dp1/2(log p)2 +

∑

d>D

Mp,a(d; X, Y )for every a ∈ Ap.We also remark that
p−1
∑

a=0

∑

d>D

Mp,a(d; X, Y ) =
∑

d>D

p−1
∑

a=0

Mp,a(d; X, Y )(6)
=

∑

d>D

⌊

X

d

⌋⌊

Y

d

⌋

≤ XY
∑

d>D

1

d2
≪ XY/D.Therefore, using the bounds (5) and (6), we obtain(7) ∑

a∈Ap

∣

∣

∣

∣

Np,a(X, Y ) − 6

π2
· XY

p

∣

∣

∣

∣

≪ XY/D + Dp3/2(log p)2.

For a 6∈ Ap we estimate Np,a(X, Y ) trivially as
Np,a(X, Y ) ≤ min{X, Y }deg f ≪

√
XY .Thus by Lemma 1,(8) ∑

a 6∈Ap

∣

∣

∣

∣

Np,a(X, Y ) − 6

π2
· XY

p

∣

∣

∣

∣

≪ max{
√

XY , XY/p} ≪
√

XY .

Combining (7) and (8) and taking D = X1/2Y 1/2p−3/4(log p)−1 we 
on
ludethe proof.Corollary 3. Let f be a polynomial with integer 
oe�
ients whi
h isabsolutely irredu
ible and of degree greater than one modulo the prime p. If
XY ≥ p3/2(log p)2+ε for some �xed ε > 0, then

Np,a(X, Y ) =

(

6

π2
+ o(1)

)

XY

pfor all but o(p) values of a = 0, . . . , p − 1.4. Visible points on almost all redu
tions. Throughout this se
tion,the implied 
onstants in the notations A ≪ B and A = O(B) may dependon the 
oe�
ients of f .To simplify notation we put
Fp(X, Y ) = Fp,0(X, Y ) and Np(X, Y ) = Np,0(X, Y ).
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We only 
onsider polynomials f with integer 
oe�
ients su
h that theequation f(x, y) = 0 has only �nitely many integer solutions. We re
all thatthe Siegel theorem guarantees this for a very general 
lass of polynomials.Theorem 4. Let f be a polynomial with integer 
oe�
ients whi
h isabsolutely irredu
ible and of degree greater than one su
h that the equation

f(x, y) = 0 has only �nitely many integer solutions. Then for real T , X and
Y su
h that T ≥ 2max(X, Y ) and XY ≥ T 3/2 log T we have

∑

T/2≤p≤T

∣

∣

∣

∣

Np(X, Y ) − 6

π2
· XY

p

∣

∣

∣

∣

≪ X1/2Y 1/2T 3/4(log T )3/2

as T → ∞, where the sum is taken over all primes p with T/2 ≤ p ≤ T .Proof. It is enough to 
onsider T large enough so that f remains abso-lutely irredu
ible and of degree greater than one for all p, T/2 ≤ p ≤ T . Asbefore we have(9) ∣

∣

∣

∣

Np(X, Y ) − 6

π2
· XY

p

∣

∣

∣

∣

≪ XY

Dp
+ Dp1/2(log p)2 +

∑

d>D

Mp(d; X, Y )where
Mp(d; X, Y ) = #{(x, y) ∈ Fp(X, Y ) | gcd(x, y) ≡ 0 (modd)}.We also remark that

∑

T/2≤p≤T

∑

d>D

Mp(d; X, Y ) =
∑

d>D

∑

T/2≤p≤T

Mp(d; X, Y )(10)
=

∑

d>D

∑

1≤s≤X/d

∑

1≤t≤Y/d

∑

T/2≤p≤T
p|f(ds,dt)

1.

Let Z be the set of integer zeros (x, y) of f(x, y) = 0. We assume that Dis large enough so that(11) f(ds, dt) 6= 0for d > D and s, t ≥ 1.As before, we denote by ω(k) the number of prime divisors of a positiveinteger k and note that ω(k) ≪ log k. Thus for (u, v) 6∈ Z we 
an estimatethe inner sum over p in (10) as ω(|f(ds, dt)|) ≪ log(XY ) ≪ log T . Therefore
∑

T/2≤p≤T

∑

d>D

Mp(d; X, Y ) ≤
∑

d>D

∑

1≤s≤X/d
1≤t≤Y/d

∑

p|f(ds,dt)

1

≤
∑

d>D

∑

1≤s≤X/d
1≤t≤Y/d

log T ≪ XY D−1 log T.

We also note that by the prime number theorem,
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∑

T/2≤p≤T

1

p
≤ 2

T

∑

T/2≤p≤T

1 ≪ 1

log T
.We now put everything together getting

∑

T/2≤p≤T

∣

∣

∣

∣

Np(X, Y ) − 6

π2
· XY

p

∣

∣

∣

∣

≪ XY

D log T
+ DT 3/2(log T )2 +

XY log T

D

≪ DT 3/2(log T )2 +
XY log T

D
.We now take D = cX1/2Y 1/2T−3/4(log T )−1/2 for a su�
iently large 
on-stant c depending only on f (to guarantee that we have (11) for d > D and

s, t ≥ 1), whi
h yields the result.Corollary 5. Let f be a polynomial with integer 
oe�
ients whi
h isabsolutely irredu
ible and of degree greater than one su
h that the equation
f(x, y) = 0 has only �nitely many integer solutions. If T ≥ 2max(X, Y ) and
XY ≥ T 3/2+ε for some �xed ε > 0, then

Np(X, Y ) =

(

6

π2
+ o(1)

)

XY

pfor all but o(T/log T ) primes p ∈ [T/2, T ].5. Remarks. Certainly it is interesting to obtain an asymptoti
 formulafor Np,a(X, Y ) whi
h holds for every a. Even the 
ase of X = Y = p is ofinterest. We remark that for the polynomial f(U, V ) = UV su
h an asymp-toti
 formula is given in [8℄ and is nontrivial provided XY ≥ p3/2+ε for some�xed ε > 0. However, the te
hnique of [8℄ does not seem to apply to moregeneral polynomials.We remark that studying su
h spe
ial 
ases as visible points on the 
urvesof the shape f(U, V ) = V − g(U) (
orresponding to points on the graph ofa univariate polynomial) and f(U, V ) = V 2 − X3 − rX − s (
orrespondingto points on an ellipti
 
urve) is also of interest and may be more a

essiblethan the general 
ase.A
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