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Summary. We study possible Borel classes of sets of Fréchet subdifferentiability of con-
tinuous functions on reflexive spaces.

1. Introduction and main result. Our terminology follows |2, 6]. We
recall the most important definitions and notation in Sections 1 and 2. In
this paper, all normed linear spaces are supposed to be real.

Let X be a normed linear space and f be a real function on X. For
x € X, we define the Fréchet subdifferential of f at x by

of(z) = {u € X" : liminf fy) = J(@) = uly = ) > O}.

y—e ly — ||

Any element of 0f(z) is called a Fréchet subgradient of f at x. We say that
x is a point of Fréchet subdifferentiability of f if Of(x) # (). The set of all
points of Fréchet subdifferentiability of f is denoted by S(f).

First, we recall a known result in this area.

THEOREM 1.1 (Holicky, Laczkovich). Let f be a lower semicontinuous
function on a normed linear space X with reflexive completion. Then S(f)
is a X2 set.

The proof of this theorem can be found in [3]. Note that the set of Fréchet
subdifferentiability of a continuous function on a normed linear space X may
not be Borel if the completion of X is not reflexive (see [3, Theorem 1.3]).

The main result of the paper follows. It says that the result of Holicky
and Laczkovich is “best possible”.
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THEOREM 1.2. Let X be a normed linear space with dim X > 3. Then
there is a continuous real function f on X such that S(f) is £9-complete.

This theorem will be proved in Section 3.

REMARK 1.3. 1) If f is a continuous function on R, then S(f) is a I13
set by the classical result that the Dini derivatives of f are of Baire class 2
(see, e.g., [1]). On the other hand, by a result of Zahorski (see, e.g., [5]),
there is a Lipschitz function f on R such that the set D(f) of all points of
differentiability of f is II3-complete. Since D(f) = S(f) N S(—f), at least
one of the sets S(f), S(—f) is II3-complete.

If f:R? — R is lower semicontinuous, then S(f) is ¥ (by Theorem
1.1) and can be II$-complete (by the result of Zahorski). We do not know
anything more about the situation in R2.

2) The set of Fréchet subdifferentiability of a Lipschitz function f on
a space with reflexive completion is a Hg set. This follows from the proof
of Theorem 1.2 in [3| and from the observation that the norms of Fréchet
subgradients of f are uniformly bounded by the Lipschitz constant (and
thus S(f) = M1 Upny ..ng)enve AE . for some K € N, where AL =

yees N
Ujuj<xe Nizi{z € X : ly—2ll < 1/ni = f(y)—f(x) > u(y—z)—i " y—z|}).
Together with the above-mentioned result of Zahorski, this says that Hg is
the smallest Borel class which contains the set of Fréchet subdifferentiability
of each Lipschitz function on a reflexive space.

3) Let g : X — [—00,00) be a lower semicontinuous function, where X is
a space with reflexive completion. Then the set G = {z € X : g(z) > —o0}
is open, and S(g) C G can be defined in the same way as S(f) for finite f.
By the method of Holicky and Laczkovich, S(g) € 9.

4) Let X be a space with reflexive completion and f : X — R be Zg—
measurable (i.e., f~1(U) € XY whenever U C R is open). One may ask
whether S(f) is Borel, or even of which Borel class it is. By an observation
of Smidek (see [4]), S(f) = S(g) N{x € X : f(x) = g(z)}, where g is the
greatest lower semicontinuous minorant of f. So S(f) is the intersection of
a Y set and a I1Y set.

2. Some elements of descriptive set theory. Let us recall some
definitions and notation. A topological space is called Polish if it is separable
and completely metrizable.

Given a topological space M, we use X0 (M) and IIY (M), where o < wy,
for the Borel classes (see [2]). What is most important for us is that X9 is
F s, and Hg is F,5 in the classical notation. We say that A ¢ M is X0 -hard
(resp. I1Y -hard) if, for every zero-dimensional Polish space P and B € X9 (P)
(resp. B € TI%(P)), there exists a continuous mapping f : P — M such that
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“1(A) = B. We say that A is X0-complete (resp. IIO-complete) if A is
(03 (63
¥V hard and A € X0 (M) (resp. I1%-hard and A € 119 (M)).

Let P be a Polish space. It is known that being 3% -complete in P amounts
to being an element of X9 (P) \ T12(P) (and similarly for X9 and 1Y inter-
changed). For example, a subset of R? is ¥.0-complete if and only if it is F, 4,
but not Ggss.

By V*° we mean “for all but finitely many”.
LEMMA 2.1 (cf. |2, Exercise 23.3]). The set
D = {v e {0,1}"NN vk e NVm e NvV®l € Nv(k,l,m) =0}
is ¥.9-hard in {0, 1}>¥NxN,
Proof. By [2, 23.A], the set
E={0e{0,1}""N:vme NV®l e No(l,m)=0}

is Hg—complete in {0, 1}'"*N. Let P be a zero-dimensional Polish space and
B € $9(P). Then B = |Ji2, By, for some Bi, Bs,... € II(P). Since the
class Hg is closed under finite unions, we may suppose that By C By C ---.
For every k € N, there exists a continuous mapping fi : P — {0, 1}NXN such
that f, '(E) = By. We define

fp)(k,l,m) = fr(p)(l,m), peP, kilmeN.

It is easy to check that f : P — {0, 1}"*N*N ig continuous and that
f~1(D) = B, which proves the lemma. =

3. Proof of Theorem 1.2. In this section, by c¢-Lipschitz we mean
Lipschitz with constant c.

LEMMA 3.1. There are continuous functions xx; : R — [0,1], k,l € N,
such that

(a) Xki(2) = Xpt1,(2) for every k,1 €N, z € R,
(b) Xk, is I-Lipschitz for every k,l € N,

(c) the set
U {zeR: llir)()ﬂoxkl(:v) =0}
k=1

18 Eg-hard in R.

Proof. We define functions ny; : {0, 1}N>NxN" . N and Okl Pl
{0, 1}NNXN 10 1] for k,1 € N by
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Nk (v) =min({m € N: v(k,l,m) =1} U {l}),

1
) =)
0, k>1,
!
Pk = Zzij%‘,lv k<L
j=k

For k € N and v € {0, 1}N*™N | we verify the following two equivalences:
llim opi(v) =0 & llim ng(v) =00 & Vm e NVl e N:v(k,l,m)=0.
—00 — 00

The first equivalence is obvious; let us prove the other one. Assume that
lim; oo () = oco. For given m € N, we have to find p € N such that
v(k,l,m) = 0 for every [ > p. We choose p € N such that ny;(v) > m for
every | > p. By the definition of ny;,v(k,l,j) =0 for 1 < j <m and [ > p,
which gives the implication “=". Now, suppose

Vm e NV*l e N:v(k,l,m)=0.

For given m, we have to find p € N such that ng;(v) > m for every I > p.
If [ > m, then by the definition of nj; we have ny;(v) > m whenever
v(k,l,i) = 0 for 1 <i < m. So it is enough to choose p € N such that p > m
and v(k,l,i) = 0 for [ > p and for 1 < i < m. This proves the implication
“«=" and the second equivalence is also proved.

Now, we are going to prove that

U {v e {0, 1}IA llim ¢ry(v)=0} =D
k=1 >

for the set D from Lemma 2.1. Indeed, for v € {0, 1}'"*™*N " we have
veD < FkyeNVE>koVme NVl eN:v(k,l,m)=0
< dkg e NVE > ky - llim Sok,l(l/) =0

o0
< dk i I, =
0 €N: lim Z 277 u(v) =0
j=ko
& Jko € N: lim ¢y (v) = 0.
l—0o0
Let 7 : N X N x N — N be a bijection. We define a homeomorphism h
between {0, 1} and {0, 1}"N*N by
h: (an)neN € {O’ 1}N = (aw(k,l,m))(k,l,m)ENXNXN'
Consider the following metric on {0, 1}:
o(v, V') = max({3~" s v(n) £ ()} UL, vv' € {0, 1},
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Let us check that
(1) WIeN3L, >0Vk €N: g, ohis Li-Lipschitz on ({0, 1}Y, o).

It is enough to prove that there exists Lj; > 0 such that ¢, 0 h is Ly -

Lipschitz for every k,l € N because then we can take L; = Zé‘:1 277L;;. We
put
Lk,l = max{BTr(k’l’m) 1 <m< l}, k,l € N.

Let v,v/ € {0, 1}N. If o(v,v') > 1/Ly, then |(pg, 0 h) (V) — (g o h) (V)]
1 < Lygowv,v). If o(v,v)) < 1/Ly; (ie., o(v,v) < 377Rbm) for 1
m < 1), then, by the definition of o, v(7(k,l,m)) = v'(x(k,l,m)) (i.e.,
h(v)(k,l,m) = h(V')(k,1,m)) for 1 < m <, and, by the definitions of nj
and @1, ng 1 (h(v)) = ng(R(V')) and ¢ 1 (R(v)) = @ri(h(V')). So the choice
of Ly works, and (1) is proved.

Now, define g : {0,1} — R by

[e'e) 1 k
g(v) = 22 <§) v(k), ve{o,1}N
k=1
One can easily check that

Llg) — 9)] < o) < o)~ g, v € 0,1}

Set C = g({0,1}). We see that g is a homeomorphism of {0, 1} onto C.
Consequently, the set

<
<

UflzeC: lim(graohog™)(a) =0} = g(h™}(D))
k=1

is ¥9-hard in C by Lemma 2.1.
Since ¢~ ! is 1-Lipschitz, the function ¢piohog”
k,l € N. We can extend these functions from C to R by

X;c,l = sup{u :R — [0,1] : wis L;-Lipschitz, u < ¢p,0hog™! on C}.

L'is L;-Lipschitz for

We now prove that the following conditions hold:
(@) Xpi() = Xy (2) for every k1 €N, z €R,
(b') X}, is Li-Lipschitz for every k,1 € N,

(¢/) the set

U {zeR: llil(l)loxﬁf’l(x) =0}
k=1

is ¥9-hard in R.

Let k,1 € N. Obviously, ¢x; > ¢p11, on {0, 1NN Thus, ¢y 0hog?
> ¢pr1,0hog ! on C. Hence Xkt = Xji1, Dy the definitions of x} ; and
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X 1 So (a’) holds. Since the supremum of any non-empty system of c-
Lipschitz functions with a uniform upper bound at one point is ¢-Lipschitz,
(b') holds. Finally, since g(h~1(D)) = CNUpe {z € R : limy_ X1 () = 0}
is ©0-hard in C, (c/) holds.

We choose an increasing sequence of natural numbers 1 < s < s9 < ---
such that s; > L; for ¢ € N. For k,l € N, we define

1, 1< < sy,
kil — .
Xk, X;g’iv s5i <1< Si41, 1 € Na

which completes the proof. m

Proof of Theorem 1.2. 1t is enough to construct a function f with the
required properties on R3 (in the general case, X can be expressed as the
topological sum R? @ Y for some closed subspace Y of X, and if we define
F(x +y) = f(x) for x € R3 and y € Y, then S(F) = S(f) +Y would
also be XJ-complete). In the proof, we use | - | for the Euclidean norm on
R*" n=2,3.

Let xx; : R — [0,1], k,1 € N, be as in Lemma 3.1. We define functions
f,fi:R* =R, l€N, by

fl(xvy? Z) = max{(k‘ - 1)y - Xk,l(x)|(yvz)’ 1 < k < l}? (I’,y,Z) € R3)
0, y=z=0,

(+1)72—[(y,2)]
I+1)2-(1+2)2
flx,y,2) = [(y,2)| — (1+2)

fl-‘rl(xvya Z)
—2

T UED (422 fiw.y, z),
+2)72 <y, 2) < (1 +1)72
kfl(x7yaz)’ 1/4§|(y,z)|

Obviously, the functions f;, I € N, are continuous and the function f is
continuous on {(z,y,2) € R®: (1 +2)72 < |(y,2)| < (1+1)72}, l € N, and
on {(z,y,2) € R3 : 1/4 < |(y,2)|}. To prove that f is continuous on the
union of these sets (i.e., on {(z,y,2) € R? : |(y,2)| > 0}), we have to check
that for [ € N and (z9, 0, 2z0) € R® with |(yo, 20)| = (1 +1)72,

lim f(xayv Z) = f(m07y07Z0)'
(z,9,2)—(w0,50,20)
(1+2)72<|(y,2)[<(1+1) 2
This holds because both sides of the equality are equal to f;(xo, Yo, 20). The
proof of the continuity of f will be completed if we verify that

[f(z.y.2)] < VI(y.2)|  for (z,y,2) € R? with |(y, 2)| < 1/4

(and thus that f is continuous at each (z,0,0) for # € R). Let (x,y, z) € R?
and |(y, z)| < 1/4. We may suppose that |(y, z)| > 0. Let | € N be such that
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(1+2)72 < |(y,2)] < (I+1)72. Since f(z,y,2) is a convex combination of
fi(z,y,z) and fiiq1(x,y, 2), it is enough to check that

()| <372 = |filey.2)| < VI 2)|

for j €N (and thus |fl(x7y7 Z)| < |(y’ Z)| and |fl+1($7y7 Z)| < V |(y’ Z)|)
Let j € N be such that |(y,2)| < j 2. Using the definition of f; (and the fact

that the ranges of xy ; are subsets of [0,1]), we get |f;(x,y,2)| < jl(y, 2)]|-
We have

|fi@,y,2) < 41y, 2)] < |y, 2) 721, 2)] = V1w, 2)],

and the continuity of f is proved.

Let us proceed to the investigation of S(f). By Theorem 1.1, S(f) is
¥9. By the property (c) of the system {xj;}rien, to prove that S(f) is
Y9-complete, it is sufficient to prove that, for a € R,

(a,0,0) € S(f) & FkeN: llim Xk, (a) = 0.

Let us prove the implication “=". Suppose limsup,_, . xx,(a) > 0 for every
k € Nand let u € (R®)*. We have to check that u is not a Fréchet subgradient
of f at (a,0,0). Suppose the opposite, i.e., u € df(a,0,0). Let A € R. By the
definition of f;, I € N, we have fj(a,0,A) < 0. Consequently, f(a,0,\) < 0.
We have
LN f(CL,O,)\) —U(0,0,)\) I —U(0,0,)\)
0< hg\n_}(r)lf 0.0 < hg\n_}élfT = —|u(0,0,1)|.

So u(0,0,1) = 0 and

u(O,y, Z) =cy, Y,z¢€ R,

where ¢ = u(0,1,0). We choose n € N such that n > ¢ + 1. There exists
€ > 0 such that (¢ + 1)e < limsup;_ o, Xni(a). If we define

p=(1+1)7%0,-,V1-¢2), l€N,

and use the property (a), we have

f((a,0,0) +p) —ulp) _ fi((@,0,0) +p) — u(pr)

1] 1|
= ﬁ (max{(1 —k)(I + 1)*25 — Xki(a)(l + 1)72 tk<I})+ece
<sup{(l —k)e — xxu(a) : k € N} +ce

< max{max{(l — k)e — xxi(a) : 1 <k <n}+ce, —ne+ce}

< max{ce — xpn,(a), —€}.
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By the choice of ¢, for every Iy € N, there exists | > Iy such that x,;(a) >
(c+1)e, ie., ce — xpn (a) < —e. Consequently,
1
w(f((a,(),o) +m) — U(pl)) < -—¢
for such [. Since p; — (0,0, 0),
1
liminf ——(f(z,y,2)— —a,y,2 —£,
(2,9,2)—(a,0,0) |(z — a,y,z)!( ( )~ ul ) <

which contradicts the fact that w is a Fréchet subgradient of f at (a,0,0).
So the implication “=" is proved.

Now, let us prove “<”. We have to find a Fréchet subgradient of f at
(a,0,0) assuming that there exists k € N such that lim;_,o x%,(a) = 0. Let
us fix such a k. We claim that

u(w,y,z) = (k= 1)y, (z,y,2) €R’,
is the required Fréchet subgradient. Let € > 0 be given. We can choose [y € N
such that xj;(a) < /2 for every I > ly. We choose § > 0 such that

§<1/4, 0V2<e Y9 <e/2, S<(lo+1)7% S<(k+1)72
Let (7,y,2) € R® and 0 < |(z — a,y, 2)| < 6. We now check that
flz,y,2) —u(x —a,y,z
[(z —a,y,2)|

Clearly, this holds if (y,z) = 0. So we may suppose that |(y,z)| > 0. For
[ > k, by the definition of fj,

S, y,2) = (k= 1)y = —xka(2)[(y, 2)]-
Since 0 < |(y, 2)| < § < 1/4, we have (1+2)72 < |(y, )| < (I+1)~2 for some
1 € N. Since (I +2)72 < |(y,2)] <6 < (k+1)72, it follows that [ > k. Since
f(z,y,2) is a convex combination of fij(z,y,z) and fi11(z,y,2), it follows
that

2)  f@y,2) —ule —a,y,2) > —max{xx1(2)|(y; 2)|; xe141(2) (Y, 2)[}-
If |(y, 2)| < |z — a|*/?, using (2), we have

f(xvyaz)_u(x_avyvz) > |(yaz)’ Z—‘$—a’1/22—51/22
|(x—a,y,z)] |(CC—CL,y,Z)|
In the other case (i.e., if |(y,2)| > |z — a|*/?), by (b) and by the fact that
I>10 (1+2)72< ](y 2)| <6 < (Ip +1)72), using (2) again, we have
f@,y,2) —ue —ay,z)  max{xsi(@)(y, 2)], a1 (@) (Y, 2) [}
|(:E—a,y,z)| N |(x—a,y,z)]

> —max{xk, (), Xk, +1(T)}

)

—¢&.
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Y

Xkir1(a)} = (L4 1)z — af
721y, 2) P

—max{xx,(a
_5/2 - |(ya
> /266> —

So, for given £ > 0, we have found ¢ > 0 such that

0<\(x—a,y,z)]§(5 = f(a:,y,z)—u(x—a,y,z) > .
[(z —a,y,2)|

This means that u is a Fréchet subgradient of f at (a,0,0), and the impli-
cation “<=" is proved. =u

);
2)

V
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remarks.
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