
BULLETIN OF THE POLISH

ACADEMY OF SCIENCES

MATHEMATICS

Vol. 55, No. 3, 2007

FUNCTIONAL ANALYSIS

Quotients of Continuous Convex Fun
tionson Nonre�exive Bana
h Spa
esbyP. HOLICKÝ, O. F. K. KALENDA,L. VESELÝ and L. ZAJÍ�EKPresented by Aleksander PE�CZY�SKI
Summary. On ea
h nonre�exive Bana
h spa
e X there exists a positive 
ontinuous 
on-vex fun
tion f su
h that 1/f is not a d.
. fun
tion (i.e., a di�eren
e of two 
ontinuous
onvex fun
tions). This result together with known ones implies that X is re�exive if andonly if ea
h everywhere de�ned quotient of two 
ontinuous 
onvex fun
tions is a d.
. fun
-tion. Our 
onstru
tion also gives a stronger version of Klee's result 
on
erning renormingsof nonre�exive spa
es and non-norm-attaining fun
tionals.A fun
tion on a Bana
h spa
e X is 
alled a d.
. fun
tion if it 
an berepresented as a di�eren
e of two 
ontinuous 
onvex fun
tions (all fun
tions
onsidered in this note are real-valued). Thus the system of all d.
. fun
-tions on X is the smallest ve
tor spa
e 
ontaining all 
ontinuous 
onvexfun
tions. Moreover, it is well known (see, e.g., [3, III.2℄), and not di�
ultto show, that it is also 
losed with respe
t to taking produ
ts and point-wise maxima; hen
e it is even an algebra and a latti
e. While an everywherede�ned quotient g/f of two d.
. fun
tions on a �nite-dimensional Bana
hspa
e is always d.
. (
f. [2, Corollary℄), the situation is 
ompletely di�er-ent for in�nite-dimensional spa
es: by [7, Corollary 5.6℄, on ea
h in�nite-dimensional Bana
h spa
e there exists a positive d.
. fun
tion su
h that 1/fis not d.
.2000 Mathemati
s Subje
t Classi�
ation: 46B10, 46B03.Key words and phrases: re�exivity, d.
. fun
tions, non-norm-attaining fun
tionals,renormings.The third author was supported in part by the Ministero dell'Università e della Ri
er
aof Italy. The other authors were supported by MSM 0021620839 �nan
ed by MSMT ofCze
h Republi
, by GA�R 201/06/0198 and GA�R 201/06/0018.[211℄ 
© Instytut Matematy
zny PAN, 2007



212 P. Holi
ký et al.
The following natural question arises:Is the quotient g/f of two 
ontinuous 
onvex fun
tions on X d.
. if f 6= 0 ?Quite surprisingly, the answer is a�rmative for all re�exive spa
es X; indeed,it is proved in [7, Remark 3.5(i)℄ that 1/f (f 6= 0 
ontinuous and 
onvex)is d.
. on X whenever X is re�exive. The main aim of this note is to showthat the above question has a negative answer for ea
h nonre�exive Bana
hspa
e X.The following 
riterion for non-d.
. fun
tions (
f. [7, Lemma 5.1℄) suggestshow to 
onstru
t a 
ounterexample.Lemma 1. Let X be a Bana
h spa
e and h: X → R be a fun
tion. If thereexist sets M ⊂ X of arbitrarily small diameter su
h that h is unboundedon M , then h is not a d.
. fun
tion.If there exists a 
ontinuous 
onvex fun
tion f on X su
h that(1) f > 0, and there exist sets M of arbitrarily small diameters with

inf f(M) = 0 ,then 1/f is not a d.
. fun
tion by Lemma 1. (Of 
ourse, su
h an f 
annotexist if X is re�exive sin
e, in this 
ase, f attains its minimum on any 
losedball.)To 
onstru
t f , it might seem natural to pro
eed by �nding an x∗ ∈ X∗su
h that(2) x∗ does not attain its norm, and there exist sets M ⊂ BX of arbitrarilysmall diameter su
h that supx∗(M) = ‖x∗‖∗.Indeed, if we had su
h an x∗, it would be su�
ient to put f(x) := ‖x‖−‖x∗‖∗if x∗(x) = ‖x∗‖∗, and to extend f to the whole X so that f is 
onstant onea
h line parallel to a �xed ve
tor v ∈ X su
h that x∗(v) 6= 0. While itis not di�
ult to 
he
k that no su
h x∗ exists in the 
lassi
al nonre�exivespa
es c0 and ℓ1 (with their 
anoni
al norms), it is possible to prove (seebelow) that su
h an x∗ always exists after a suitable equivalent renormingof (a nonre�exive) X.However, we pro
eed in a di�erent order. First, using James' sequential
hara
terization of nonre�exivity, we 
onstru
t a 
ontinuous 
onvex fun
-tion f on X, satisfying (1), as a distan
e fun
tion from a 
ertain bounded
onvex set in X⊕R. Using this f , we easily prove our main Theorem 4, whi
halso gives a modi�
ation of the well known 
hara
terization of nonre�exivespa
es by monotone sequen
es of 
losed 
onvex sets. Then, using the exis-ten
e of su
h f on ea
h hyperplane of X, we show that, if X is nonre�exive,ea
h nonzero fun
tional x∗ ∈ X∗ satis�es (2) with respe
t to a suitable equiv-alent norm on X. This last assertion is the 
ontent of Proposition 5 whi
hwe believe to be of independent interest sin
e it improves the following result
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of Klee [5℄: ea
h nonzero bounded linear fun
tional on a nonre�exive Bana
hspa
e X is non-norm-attaining for some equivalent norm on X.Let us start by �xing some notations. We 
onsider only Bana
h spa
esover the reals. We denote by BX or B(X,‖·‖) the 
losed unit ball in a Bana
hspa
e X endowed with a norm ‖ · ‖. By ‖ · ‖∗ we denote the 
orrespondingdual norm on X∗ (the topologi
al dual of X).In what follows, we 
onsider X ⊕ R equipped with the maximum norm,and we identify x ∈ X with (x, 0) ∈ X ⊕ R (and so X with X × {0}).Lemma 2. Let X be a nonre�exive Bana
h spa
e. Then there exists anonempty bounded 
onvex set C ⊂ X ⊕ R su
h that(a) ϕ(x) := dist(x, C) > 0 for every x ∈ X,(b) for ea
h ε > 0 there is a set Mε ⊂ X with diam Mε < ε and

inf ϕ(Mε) = 0.Proof. Sin
e X is nonre�exive, by [4, Theorem 1℄ (see, e.g., [1, Theorem10.3℄ or [6, Theorem 1.13.4℄ for simpler proofs) there exist unit ve
tors {ei}
∞
i=1in X and unit fun
tionals {e∗i }∞i=1 in X∗ su
h that

e∗i (ej) = 0 if i > j, e∗i (ej) > 1/2 if i ≤ j.(3)Set e∞ := (0, 1) ∈ X ⊕ R, and let fi ∈ (X ⊕ R)∗ be the extension of e∗i forwhi
h fi(e∞) = 1. Clearly ‖fi‖∗ = 2. For 0 < k < n in N, we de�ne
xk,n := 2ek +

2

k
en +

1

n
e∞.Clearly

fi(xk,n) ≥ 1 for 1 ≤ i ≤ k,(4)

fi(xk,n) ≥
1

k
for k < i ≤ n,(5)

fi(xk,n) =
1

n
for i > n.(6)We de�ne

C := conv {xk,n : 0 < k < n, k, n ∈ N}, X0 := span{ej : j ∈ N}.To prove (a), we need to show C ∩ X = ∅. Sin
e 
learly C ∩ X ⊂ X0, itis su�
ient to show that C ∩ X0 = ∅. So, suppose to the 
ontrary that an
x0 ∈ C ∩ X0 is given. As ‖fi‖∗ = 2 and limi→∞ fi(ej) = 0 for ea
h j ∈ N,it is easy to 
he
k that limi→∞ fi(x) = 0 for every x ∈ X0. So, we may �ndnatural numbers i1 < i2 < i3 su
h that

fi1(x0) <
1

3
, i1fi2(x0) <

1

3
, i2fi3(x0) <

1

3
.(7)Sin
e x0 ∈ C and fi1 , fi2 , fi3 are 
ontinuous, we 
an �nd c ∈ C so 
lose to
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x0 that

fi1(c) <
1

3
, i1fi2(c) <

1

3
, i2fi3(c) <

1

3
.(8)Sin
e c ∈ C, we 
an assign to ea
h (k, n) with 1 ≤ k < n a number αk,n ≥ 0so that ∑

αk,n = 1, the set {(k, n) : αk,n 6= 0} is �nite, and c =
∑

αk,nxk,n.Using (4), (5), and (6) in turn, we obtain
fi1(c) =

∑
αk,nfi1(xk,n) ≥

∑

k≥i1
n>k

αk,n ,(9)

fi2(c) =
∑

αk,nfi2(xk,n) ≥
∑

k<i1
n≥i2

1

k
αk,n ≥

1

i1

∑

k<i1
n≥i2

αk,n ,(10)

fi3(c) =
∑

αk,nfi3(xk,n) ≥
∑

k<i1
n<i2

1

n
αk,n ≥

1

i2

∑

k<i1
n<i2

αk,n .(11)

Using (9), (10), (11) and (8), we easily obtain ∑
αk,n < 1, whi
h is a 
on-tradi
tion.To prove (b), 
onsider an arbitrary ε > 0. Choose k0 ∈ N with 4/k0 < εand set Mε := {2ek0

+(2/k0)en : n > k0}. Then 
learly diam Mε ≤ 4/k0 < ε.The other desired property of Mε also holds, sin
e, for ea
h n > k0,
inf ϕ(Mε) = dist(Mε, C)

≤ ‖(2ek0
+ (2/k0)en) − (2ek0

+ (2/k0)en + (1/n)e∞)‖ = 1/n.Remark 3.(i) To obtain C with the weaker property infx∈X ϕ(x) = 0 instead of (b)in Lemma 2, it is su�
ient to put C := conv {2ek+(1/k)e∞ : k ∈ N},and the proof be
omes simpler.(ii) Set C := conv {2ek+(2/k)en+(2/n)em+(1/m)e∞ : 0 < k < n < m,
k, n, m ∈ N}. An easy modi�
ation of the proof of Lemma 2 givesthe following property whi
h is slightly stronger than (b):
(b2) there exist sets M⊂X of arbitrarily small diameter su
h that M
ontains sets A of arbitrarily small diameter with inf ϕ(A) = 0.(Analogously, using indi
es 0 < k1 < · · ·< kp+1 in the de�nition of C,it is possible to obtain the 
orresponding iterated property (bp).)Now, we are ready to state the following main result of the present paper.Theorem 4. The following properties of a Bana
h spa
e X are equiva-lent.
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(a) X is nonre�exive.(b) There is a 
ontinuous 
onvex fun
tion f : X → (0,∞) su
h that 1/f isnot representable as a di�eren
e of two 
ontinuous 
onvex fun
tions.(
) There is a de
reasing sequen
e {Cn}

∞
n=1 of bounded 
losed 
onvexsubsets of X su
h that

∞⋂

n=1

Cn = ∅,
∞⋂

n=1

(Cn + εBX) 6= ∅ for every ε > 0.Proof. If X is nonre�exive, take f := ϕ where ϕ is as in Lemma 2. ByLemma 1, 1/f is not d.
. on X. On the other hand, if X is re�exive and fis a positive 
ontinuous 
onvex fun
tion, then 1/f is d.
. on X by [7, Re-mark 3.5(i)℄. Thus (a) and (b) are equivalent.Let us show that (a) and (
) are equivalent. If X is nonre�exive, let ϕ beagain the fun
tion from Lemma 2. The sets Cn := {x ∈ X : ϕ(x) ≤ 1/n},
n ∈ N, are nonempty, 
losed, 
onvex, bounded (sin
e the set C in Lemma 2is bounded) and their interse
tion is empty. Let ε > 0. By the propertiesof ϕ, there exists x ∈ X su
h that, for ea
h n, there is y ∈ B(x, ε) with
ϕ(y) ≤ 1/n, i.e. y ∈ Cn. In other words, x ∈

⋂∞
n=1(Cn + εBX). Hen
e(a) implies (
). On the other hand, if X is re�exive, then ea
h de
reas-ing sequen
e {Cn} of nonempty 
losed bounded 
onvex subsets of X has anonempty interse
tion, sin
e ea
h Cn is weakly 
ompa
t.Let us 
on
lude our paper with the promised strengthening of a resultfrom [5℄.Proposition 5. Let Y be a nonre�exive Bana
h spa
e and 0 6= y∗ ∈ Y ∗.Then there exists an equivalent norm | · | on Y su
h that(a) y∗ does not attain its norm on B(Y,|·|),(b) for ea
h ε > 0, there is Mε ⊂ B(Y,|·|) su
h that diamMε < ε and

sup y∗(Mε) = |y∗|∗.Proof. Set X := {y ∈ Y : y∗(y) = 0} and 
hoose e ∈ Y with y∗(e) = 1.Up to renorming, we may suppose that the norm on Y satis�es
‖y‖ = max{‖y − y∗(y)e‖, |y∗(y)|} for all y ∈ Y .In this way we may identify Y with X ⊕∞ R so that y∗((x, t)) = t for

(x, t) ∈ X × R.As Y is not re�exive, neither is X. Let ϕ be the fun
tion on X given byLemma 2. Choose α > ϕ(0) and set
A = {x ∈ X : ϕ(x) < α}.By the properties of ϕ the set A is bounded. Therefore we 
an 
hoose r > 0su
h that A ⊂ B(0, r). Choose β > supϕ(B(0, r)); this is possible as ϕ is
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1-Lips
hitz. Further, de�ne

D = {(x, t) ∈ X × R : x ∈ B(0, r), t = ϕ(x) − β},

C = conv(D ∪ (−D)).Then C is 
learly a bounded 
losed 
onvex symmetri
 set. Further, 0 ∈ intC,as 0 ∈ A and A×(α−β, β−α) ⊂ C. It follows that there exists an equivalentnorm | · | on X ×R su
h that C is the 
losed unit ball in this norm. We willshow that this norm has the required properties.We have
−|y∗|∗ = inf y∗(C) = inf y∗(D ∪ (−D)) = inf y∗(D)

= inf{ϕ(x) − β : x ∈ B(0, r)} = −β,as 
learly inf ϕ(B(0, r)) = inf ϕ(X) = 0. Thus |y∗|∗ = β.Next we show that y∗ does not attain its norm on C. Suppose it does.Then there is a point z = (x0,−β) ∈ C (re
all that y∗((x, t)) = t). Note that
C ⊂ {(x, t) ∈ X × R : x ∈ B(0, r) & t ≥ ϕ(x) − β}.The reason is that the set on the right hand side is 
losed and 
onvex andit 
ontains both D and −D. It follows that z belongs to the set on the righthand side, i.e. −β ≥ ϕ(x0) − β. So ϕ(x0) ≤ 0, a 
ontradi
tion.It remains to show (b). Let ε > 0 be given. By the properties of ϕ we 
an
hoose a set Pε ⊂ A su
h that diamPε < ε and inf ϕ(Pε) = 0. (Note that

ϕ ≥ α outside A.) Now set
P ∗

ε := {(x, t) ∈ X × R : x ∈ Pε, t = ϕ(x) − β}.Then 
learly P ∗
ε ⊂ C and

inf
z∈P ∗

ε

y∗(z) = −β = −|y∗|∗.As ϕ is 1-Lips
hitz with respe
t to ‖ · ‖, we see that ‖ · ‖-diamP ∗
ε < ε.Set Mε := −P ∗

ε/K , where K > 0 is su
h that | · | ≤ K‖ · ‖ on X × R. Then
Mε has all required properties and the proof is 
omplete.
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