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Summary. On each nonreflexive Banach space X there exists a positive continuous con-
vex function f such that 1/f is not a d.c. function (i.e., a difference of two continuous
convex functions). This result together with known ones implies that X is reflexive if and
only if each everywhere defined quotient of two continuous convex functions is a d.c. func-
tion. Our construction also gives a stronger version of Klee’s result concerning renormings
of nonreflexive spaces and non-norm-attaining functionals.

A function on a Banach space X is called a d.c. function if it can be
represented as a difference of two continuous convex functions (all functions
considered in this note are real-valued). Thus the system of all d.c. func-
tions on X is the smallest vector space containing all continuous convex
functions. Moreover, it is well known (see, e.g., |3, II11.2]), and not difficult
to show, that it is also closed with respect to taking products and point-
wise maxima; hence it is even an algebra and a lattice. While an everywhere
defined quotient g/f of two d.c. functions on a finite-dimensional Banach
space is always d.c. (cf. [2, Corollary]), the situation is completely differ-
ent for infinite-dimensional spaces: by |7, Corollary 5.6], on each infinite-
dimensional Banach space there exists a positive d.c. function such that 1/f
is not d.c.
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The following natural question arises:

Is the quotient g/ f of two continuous convex functions on X d.c. if f#07?

Quite surprisingly, the answer is affirmative for all reflexive spaces X; indeed,
it is proved in |7, Remark 3.5(i)| that 1/f (f # 0 continuous and convex)
is d.c. on X whenever X is reflexive. The main aim of this note is to show
that the above question has a negative answer for each nonreflexive Banach
space X.

The following criterion for non-d.c. functions (cf. |7, Lemma 5.1|) suggests
how to construct a counterexample.

LEMMA 1. Let X be a Banach space and h: X — R be a function. If there
exist sets M C X of arbitrarily small diameter such that h is unbounded
on M, then h is not a d.c. function.

If there exists a continuous convex function f on X such that
(1) f > 0, and there exist sets M of arbitrarily small diameters with
inf f(M) =0,

then 1/f is not a d.c. function by Lemma 1. (Of course, such an f cannot
exist if X is reflexive since, in this case, f attains its minimum on any closed
ball.)

To construct f, it might seem natural to proceed by finding an x* € X*
such that

(2)  «* does not attain its norm, and there exist sets M C Bx of arbitrarily

small diameter such that supz*(M) = ||z*||..
Indeed, if we had such an z*, it would be sufficient to put f(z) := ||z| —||z*||«
if 2*(x) = ||z*||«, and to extend f to the whole X so that f is constant on

each line parallel to a fixed vector v € X such that 2*(v) # 0. While it
is not difficult to check that no such x* exists in the classical nonreflexive
spaces c¢g and ¢; (with their canonical norms), it is possible to prove (see
below) that such an z* always exists after a suitable equivalent renorming
of (a nonreflexive) X.

However, we proceed in a different order. First, using James’ sequential
characterization of nonreflexivity, we construct a continuous convex func-
tion f on X, satisfying (1), as a distance function from a certain bounded
convex set in X @R. Using this f, we easily prove our main Theorem 4, which
also gives a modification of the well known characterization of nonreflexive
spaces by monotone sequences of closed convex sets. Then, using the exis-
tence of such f on each hyperplane of X, we show that, if X is nonreflexive,
each nonzero functional * € X* satisfies (2) with respect to a suitable equiv-
alent norm on X. This last assertion is the content of Proposition 5 which
we believe to be of independent interest since it improves the following result
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of Klee [5]: each nonzero bounded linear functional on a nonreflexive Banach
space X is non-norm-attaining for some equivalent norm on X.

Let us start by fixing some notations. We consider only Banach spaces
over the reals. We denote by Bx or B(x .|y the closed unit ball in a Banach
space X endowed with a norm || - ||. By || - ||« we denote the corresponding
dual norm on X* (the topological dual of X).

In what follows, we consider X & R equipped with the maximum norm,
and we identify z € X with (z,0) € X & R (and so X with X x {0}).

LEMMA 2. Let X be a nonreflexive Banach space. Then there exists a
nonempty bounded convex set C' C X @& R such that

(a) ¢(z) := dist(x,C) > 0 for every x € X,
(b) for each € > 0 there is a set M. C X with diam M. < ¢ and
inf (M) = 0.

Proof. Since X is nonreflexive, by [4, Theorem 1] (see, e.g., [1, Theorem
10.3] or [6, Theorem 1.13.4] for simpler proofs) there exist unit vectors {e; }5°,

in X and unit functionals {ef}°; in X* such that
(3) ej(ej) =0 ifi>yj, ej(ej)>1/2 ifi<j.

Set ex = (0,1) € X ® R, and let f; € (X & R)* be the extension of e} for
which fi(ex) = 1. Clearly || fi||« = 2. For 0 < k < n in N, we define

2 1
Tk = 2ep + z en + - €oo-

Clearly

(4) filzgn) >1  for1<i<k,
(5) fi(zrn) > % for k <i<n,
(6) fi(zpn) = % for i > n.

We define

C:=conv{zy,:0<k<n, kneN},  X,:=5pan{e;:je N}

To prove (a), we need to show C'N X = (). Since clearly C N X C X, it
is sufficient to show that C'N Xy = (). So, suppose to the contrary that an
zo € C'N Xy is given. As || fill« = 2 and lim;_,« fi(e;) = 0 for each j € N,
it is easy to check that lim; . fi(x) = 0 for every z € Xy. So, we may find
natural numbers i1 < 79 < i3 such that

© fuleo) <35 infileo) <30 iafulw) <3

Since z¢ € C and fiys fis, fis are continuous, we can find ¢ € C so close to
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xo that

1 , 1 :
(8) file) <3, infi(e) <3, dafis(e) < 3.
3 3 3
Since ¢ € C, we can assign to each (k,n) with 1 <k < n a number oy, > 0
so that ) ay, =1, the set {(k,n) : ai, # 0} is finite, and ¢ = ) o nTh -
Using (4), (5), and (6) in turn, we obtain

(9) fi1 (C) = Zak,nfh (xk,n) > Z Akon oy

k>iy

1

n>k
1 1
(10) i (C) = Zak,nfiz (xk;,n) > Z E Qo = a Z Ok.n s
k<iy k<ii
n>io n>is
1 1
(11) fig (C) = Zak,nfig (ajk,n) > Z E Akon > E . Qn
k<iy k<iy
n<ig n<iz

Using (9), (10), (11) and (8), we easily obtain )y, < 1, which is a con-
tradiction.

To prove (b), consider an arbitrary € > 0. Choose kg € N with 4/ko < ¢
and set M, := {2ey, +(2/ko)en : n > ko}. Then clearly diam M, < 4/ky < e.
The other desired property of M. also holds, since, for each n > kg,

inf p(M,) = dist(M,, C)
< [I(2ex, + (2/ko)en) = (2er, + (2/ko)en + (1/n)eco)|| = 1/n. =

REMARK 3.

(i) To obtain C' with the weaker property inf,cx ¢(z) = 0 instead of (b)
in Lemma 2, it is sufficient to put C' := conv {2ex+(1/k)ex : k € N},
and the proof becomes simpler.

(ii) Set C':= conv{2e;+(2/k)en+(2/n)em+(1/m)es : 0 < k <n < m,
k,n,m € N}. An easy modification of the proof of Lemma 2 gives
the following property which is slightly stronger than (b):

(b?) there erist sets M C X of arbitrarily small diameter such that M
contains sets A of arbitrarily small diameter with inf p(A) =0.

(Analogously, using indices 0 < k1 < - - - < kp1 in the definition of C,
it is possible to obtain the corresponding iterated property (b”).)

Now, we are ready to state the following main result of the present paper.

THEOREM 4. The following properties of a Banach space X are equiva-
lent.
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(a) X is nonreflexive.

(b) There is a continuous convex function f: X — (0, 00) such that 1/f is
not representable as a difference of two continuous convexr functions.

(c) There is a decreasing sequence {Cp}>° , of bounded closed convex
subsets of X such that

ﬂanﬁ), m(Cn—FsBX)#@ for every £ > 0.
n=1 n=1

Proof. If X is nonreflexive, take f := ¢ where ¢ is as in Lemma 2. By
Lemma 1, 1/f is not d.c. on X. On the other hand, if X is reflexive and f
is a positive continuous convex function, then 1/f is d.c. on X by [7, Re-
mark 3.5(i)]. Thus (a) and (b) are equivalent.

Let us show that (a) and (c) are equivalent. If X is nonreflexive, let ¢ be
again the function from Lemma 2. The sets C), := {x € X : ¢(x) < 1/n},
n € N, are nonempty, closed, convex, bounded (since the set C' in Lemma 2
is bounded) and their intersection is empty. Let ¢ > 0. By the properties
of ¢, there exists © € X such that, for each n, there is y € B(x,¢) with
o(y) < 1/n, ie. y € Cp. In other words, z € (o2,(Cy + eBx). Hence
(a) implies (c¢). On the other hand, if X is reflexive, then each decreas-
ing sequence {C),} of nonempty closed bounded convex subsets of X has a
nonempty intersection, since each C, is weakly compact. m

Let us conclude our paper with the promised strengthening of a result
from [5].

PROPOSITION 5. Let Y be a nonreflexive Banach space and 0 # y* € Y*.
Then there exists an equivalent norm |- | on'Y such that

(a) y* does not attain its norm on By, .)),
b) for each € > 0, there is M, C By, such that diam M, < ¢ and
I

sup y*(Me) = [y
Proof. Set X :={y €Y : y*(y) = 0} and choose e € Y with y*(e) = 1.
Up to renorming, we may suppose that the norm on Y satisfies
Iyl = max{[ly — y*()ell, [y"(y)[} forallyeY.

In this way we may identify Y with X @ R so that y*((z,t)) = t for
(z,t) € X xR.

AsY is not reflexive, neither is X. Let ¢ be the function on X given by
Lemma 2. Choose a > ¢(0) and set

A={r e X :p(x) < a}.

By the properties of ¢ the set A is bounded. Therefore we can choose r > 0
such that A C B(0,r). Choose 5 > sup ¢(B(0,r)); this is possible as ¢ is
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1-Lipschitz. Further, define
D ={(z,t) e X xR:2z € B(0,r), t = p(x) — B},
C =conv(D U (—D)).
Then C'is clearly a bounded closed convex symmetric set. Further, 0 € int C,
as0 € Aand Ax (a—pf,5—a) C C. It follows that there exists an equivalent
norm |- | on X x R such that C' is the closed unit ball in this norm. We will
show that this norm has the required properties.
We have
—[y*« = infy*(C) = infy* (DU (D)) = infy* (D)
= inf{p(z) — B:2 € B(0,r)} = —p,
as clearly inf p(B(0,7)) = inf ¢(X) = 0. Thus |y*|. = 5.
Next we show that y* does not attain its norm on C. Suppose it does.
Then there is a point z = (zg, —f) € C (recall that y*((x,t)) = t). Note that

Cc{(z,t) e X xR:z e B(0,r) &t > ¢(x)— [}

The reason is that the set on the right hand side is closed and convex and
it contains both D and —D. It follows that z belongs to the set on the right
hand side, i.e. =3 > ¢(z0) — . So p(z) < 0, a contradiction.

It remains to show (b). Let ¢ > 0 be given. By the properties of ¢ we can
choose a set P. C A such that diam P. < € and inf ¢(P.) = 0. (Note that
¢ > « outside A.) Now set

P ={(x,t) e X xR:z € P., t =p(x) — (}.
Then clearly P’ C C' and

inf y"(2) = =0 =~y
z€PF

As ¢ is 1-Lipschitz with respect to || - ||, we see that || - ||-diam P¥ < e.

Set M. := =P, where K > 0 is such that || < KJ -] on X xR. Then

M. has all required properties and the proof is complete. m
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