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GENERAL TOPOLOGY

On Appli
ations of Bing�Krasinkiewi
z�Lelek MapsbyEii
hi MATSUHASHIPresented by Czesªaw BESSAGA
Summary. We 
hara
terize Peano 
ontinua using Bing�Krasinkiewi
z�Lelek maps. Alsowe deal with some topi
s on Whitney preserving maps.1. Introdu
tion. In this note, all spa
es are separable metrizable andmaps are 
ontinuous. We denote the interval [0, 1] by I. A 
ompa
t metri
spa
e is 
alled a 
ompa
tum, and 
ontinuum means a 
onne
ted 
ompa
tum.If X is a 
ontinuum, C(X) denotes the spa
e of all sub
ontinua of X with thetopology generated by the Hausdor� metri
. A 
ontinuum is said to be inde-
omposable if it is not the union of two proper sub
ontinua. A 
ompa
tum issaid to be a Bing 
ompa
tum (or to be hereditarily inde
omposable) if ea
hof its sub
ontinua is inde
omposable. A map between 
ompa
ta is 
alled alight map if ea
h of its �bers is 0-dimensional. A map f : X → Y is 
alled
n-dimensional if dim f−1(y) ≤ n for ea
h y ∈ Y .A map between 
ompa
ta is 
alled a Bing map if ea
h of its �bers is aBing 
ompa
tum (
f. [5℄, [7℄, [10℄, and [16℄).A map f : X → Y between 
ompa
ta is 
alled a Krasinkiewi
z map if any
ontinuum in X either 
ontains a 
omponent of a �ber of f or is 
ontainedin a �ber of f (
f. [8℄, [13℄ and [14℄).Let f : X → Y be a map between 
ompa
ta. For ea
h a > 0, let F (f, a)be the union of the 
omponents A of �bers with diamA ≥ a, and put

F (f) =
∞⋃

i=1

F (f, 1/i).
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De�ne the Lelek dimension of f to be the number dimL f = dim F (f). Forea
h n ≥ 1, f : X → Y is 
alled an n-dimensional Lelek map if dimL f ≤ n(
f. [6℄ and [12℄). In 
ase n ≤ 0, for 
onvenien
e, a map f : X → Y is an
n-dimensional Lelek map if and only if it is a 0-dimensional map. Note thatan n-dimensional Lelek map is an n-dimensional map.A map f : X → Y is 
alled a Bing�Krasinkiewi
z map if f is a Bingmap and a Krasinkiewi
z map. A map g : X → Y is 
alled an n-dimensionalBing�Krasinkiewi
z�Lelek map if g is a Bing map, a Krasinkiewi
z map andan n-dimensional Lelek map.In this paper we prove some theorems using these maps.In Se
tion 2 we 
hara
terize Peano 
ontinua using n-dimensional Bing�Krasinkiewi
z�Lelek maps (Theorem 2.8 and Corollary 2.9), and give ana�rmative answer to Problem 12 of [5℄.In Se
tion 3 we study Whitney preserving maps. If f : X → Y is a mapbetween 
ontinua, then de�ne a map f̂ : C(X) → C(Y ) by f̂(A) = f(A) forea
h A ∈ C(X). A map f : X → Y is said to be Whitney preserving if thereexist Whitney maps (see [4℄) µ : C(X) → I and ν : C(Y ) → I su
h that forea
h s ∈ [0, µ(X)], f̂(µ−1(s)) = ν−1(t) for some t ∈ [0, ν(Y )]. In this 
ase,we say that f is µ, ν-Whitney preserving.The notion of a Whitney preserving map was introdu
ed by Espinoza (
f.[2℄ and [3℄). In Se
tion 3 we generalize a result of Espinoza using Krasinkie-wi
z maps (Theorem 3.5). Also we give an appli
ation using 1-dimensionalBing�Krasinkiewi
z�Lelek maps.2. Bing�Krasinkiewi
z�Lelek maps onto Peano 
ontinua. Firstwe give some notations. Let X and Y be 
ompa
ta. Then C(X, Y ) denotesthe set of all 
ontinuous maps from X to Y endowed with the sup metri
.Let Cs(X, Y ) be the subset of C(X, Y ) whi
h 
onsists of all surje
tive mapsfrom X onto Y . Note that Cs(X, Y ) is a 
losed subset of C(X, Y ).Let

B(X, Y ) = {f ∈ C(X, Y ) | f is a Bing map},
Bs(X, Y ) = {f ∈ C(X, Y ) | f is a surje
tive Bing map},
K(X, Y ) = {f ∈ C(X, Y ) | f is a Krasinkiewi
z map},
Ks(X, Y ) = {f ∈ C(X, Y ) | f is a surje
tive Krasinkiewi
z map},
Ln(X, Y ) = {f ∈ C(X, Y ) | f is an n-dimensional Lelek map},

BK(X, Y ) = B(X, Y ) ∩ K(X, Y ),

BKs(X, Y ) = Bs(X, Y ) ∩ Ks(X, Y ).Lemma 2.1. Let X be a 
ompa
tum. Then BK(X, I) is a dense Gδ-subsetin C(X, I).
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Proof. Sin
e B(X, I) and K(X, I) are dense Gδ-subsets in C(X, I) (
f.[7℄, [10℄, [14℄ and [16℄), BK(X, I) is a dense Gδ-subset in C(X, I).Lemma 2.2 (
f. [6℄, [12℄). Let X be a 
ompa
tum and Z ⊂ X a 0-dimensional Fσ-subset of X. Then {f ∈ C(X, I) | F (f) ∩ Z = ∅} is adense Gδ-subset in C(X, I).Lemma 2.3 (
f. [6℄, [12℄). Let n ≥ 0. Then for ea
h (n + 1)-dimensional
ompa
tum X , Ln(X, I) is a dense Gδ-subset in C(X, I).Let f : X → Y be a map between 
ompa
ta. If g : Y → Z is a light mapbetween 
ompa
ta, it is easy to see that T is a 
omponent of a �ber of f ifand only if T is a 
omponent of a �ber of g ◦ f . This yieldsLemma 2.4. Let X, Y and Z be 
ompa
ta. If f : X → Y is a map and

g : Y → Z is a light map, then(1) F (f) = F (g ◦ f),(2) if f is a Bing�Krasinkiewi
z map, then so is g ◦ f .Lemma 2.5. There exists a map F : I2 → I su
h that for ea
h t ∈ I,
F |I×{t} : I × {t} → I and F |{t}×I : {t} × I → I are surje
tive.Proof. Let A = {(x, x) ∈ I2 | x ∈ I} and B = {(x, x + 1/2) ∈ I2 | 0 ≤
x ≤ 1/2} ∪ {(x, x − 1/2) ∈ I2 | 1/2 ≤ x ≤ 1}. Take a 
ontinuous fun
tion
F : I2 → I su
h that F (A) = 0 and F (B) = 1. Then F is as required.Before stating the next lemma we give some notations. For any natu-ral numbers n and i ≤ n, let N i

n = {{a1, . . . , ai} ⊂ N | 1 ≤ a1 < · · ·
< ai ≤ n} and Nn =

⋃n
i=1 N i

n. Let X1, . . . , Xn be spa
es. Let a ∈ Nn. If
a 6= {1, . . . , n} let p̂a :

∏n
j=1 Xj →

∏
j∈{1,...,n}\a Xj be the proje
tion. If

a = {1, . . . , n} let p̂a :
∏n

j=1 Xj → {0} be the 
onstant map. Note that forea
h a ∈ Nn and x ∈ p̂a(
∏n

j=1 Xj), p̂−1
a (x) is a topologi
al 
opy of ∏

j∈a Xj.Lemma 2.6. Let n ≥ 1 and let X1, . . . , Xn be nondegenerate 
ontinua.Then there exists a map G :
∏n

j=1 Xj → I su
h that for ea
h a ∈ Nn and
x ∈ p̂a(

∏n
j=1 Xj), G|

p̂−1
a (x) : p̂−1

a (x) → I is surje
tive.Proof. We argue by indu
tion on n. For n = 1, any surje
tive map G :
X1 → I has the required property.Assume that the assertion holds when 1 ≤ n ≤ k. Let n = k + 1. Let G :∏k

j=1 Xj → I be as in the statement of the lemma and let s′ : Xk+1 → I besurje
tive. De�ne s′′ :
∏k

j=1 Xj × Xk+1 → I2 by s′′(x1, x2) = (G(x1), s
′(x2))for ea
h (x1, x2) ∈

∏k
j=1 Xj × Xk+1. Let F : I2 → I be as in Lemma 2.5and set G′ = F ◦ s′′ :
∏k+1

j=1 Xj → I. Then it is easy to see that G′ is asrequired.
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Lemma 2.7. Let n≥1 and let X1, . . . , Xn be nondegenerate 
ontinua su
hthat dimXj ≤ mj for ea
h j = 1, . . . , n. Then there exists a 0-dimensional

Fσ-subset Z ⊂
∏n

j=1 Xj su
h that for ea
h a ∈ Nn and x ∈ p̂a(
∏n

j=1 Xj),
dim(p̂−1

a (x) \ Z) ≤
∑

j∈a mj − 1.Proof. Note that for ea
h a ∈ Nn and x ∈ p̂a(
∏n

j=1 Xj), dim p̂a(
∏n

j=1 Xj)

< ∞ and dim p̂−1
a (x) = dim

∏
j∈a Xj ≤

∑
j∈a mj. Hen
e by Proposition 2of [17℄ for ea
h a ∈ Nn there exists a 0-dimensional Fσ-subset Za of ∏n

j=1 Xjsu
h that dim(p̂−1
a (x) \ Za) ≤

∑
j∈a mj − 1 for ea
h x ∈ p̂a(

∏n
j=1 Xj).Letting Z =

⋃
a∈Nn

Za 
ompletes the proof.It is known that every nondegenerate Peano 
ontinuum is a light imageof I (
f. [15, Corollary 13.4℄).Theorem 2.8. Let A be a nondegenerate 
ontinuum. Then the following
onditions are equivalent.(1) A is a Peano 
ontinuum.(2) Let n ≥ 1 and let X1, . . . , Xn be nondegenerate 
ontinua. Then forea
h 0-dimensional Fσ-subset Z ⊂
∏n

j=1 Xj there exists a Bing�Krasinkiewi
z map H :
∏n

j=1 Xj → A su
h that(a) for ea
h a ∈ Nn and x ∈ p̂a(
∏n

j=1 Xj), H|
p̂−1

a (x) : p̂−1
a (x) → A issurje
tive,(b) F (H) ∩ Z = ∅.(3) Let n ≥ 1 and let X1, . . . , Xn be nondegenerate 
ontinua su
h that

dim Xj ≤ mj for ea
h j = 1, . . . , n. Then there exists a Bing�Krasinkiewi
z map H :
∏n

j=1 Xj → A su
h that(a) for ea
h a ∈ Nn and x ∈ p̂a(
∏n

j=1 Xj), H|
p̂−1

a (x) : p̂−1
a (x) → A issurje
tive,(b) dimL H|

p̂−1
a (x) ≤

∑
j∈a mj − 1 (hen
e H|

p̂−1
a (x) : p̂−1

a (x) → A is a
(
∑

j∈a mj − 1)-dimensional Lelek map).Proof. (1)⇒(2). By Lemmas 2.1, 2.2 and 2.6 there exists a Bing�Kra-sinkiewi
z map G1 :
∏n

j=1 Xj → I su
h that
(a′) for ea
h a ∈ Nn and x ∈ p̂a(

∏n
j=1 Xj), [1/4, 3/4] ⊂ G1(p̂

−1
a (x)),

(b′) F (G1) ∩ Z = ∅.Sin
e A is a Peano 
ontinuum, there exists a light map ℓ : I → A su
hthat ℓ([1/4, 3/4]) = A. Let H = ℓ ◦ G1 :
∏n

j=1 Xj → A. Sin
e G1 is aBing�Krasinkiewi
z map and ℓ is a light map, by Lemma 2.4, H is a Bing�Krasinkiewi
z map. Sin
e ℓ([1/4, 3/4]) = A, by (a′), H satis�es (a). Sin
e ℓis a light map, by (b′) and Lemma 2.4, H satis�es (b).



Bing�Krasinkiewi
z�Lelek Maps 223
(2)⇒(3). Let Z⊂

∏n
j=1 Xj be a 0-dimensional Fσ-subset as in Lemma 2.7.By assumption there exists a Bing�Krasinkiewi
z map H :

∏n
j=1 Xj → Asu
h that(a) for ea
h a ∈ Nn and x ∈ p̂a(

∏n
j=1 Xj), H|

p̂−1
a (x) : p̂−1

a (x) → A issurje
tive,(b) F (H) ∩ Z = ∅.Now we prove that for ea
h a ∈ Nn and x ∈ p̂a(
∏n

j=1 Xj), dimL H|
p̂−1

a (x)

≤
∑

j∈a mj − 1. Note that F (H|
p̂−1

a (x)) ⊂ F (H) ∩ p̂−1
a (x). By (b) we have

dim(F (H)∩ p̂−1
a (x)) ≤ dim(p̂−1

a (x)\Z). As dim(p̂−1
a (x)\Z) ≤

∑
j∈a mj −1,we have dim(F (H)∩ p̂−1

a (x)) ≤
∑

j∈a mj −1. This means dimF (H|
p̂−1

a (x)) ≤∑
j∈a mj − 1. Hen
e dimL H|

p̂−1
a (x) ≤

∑
j∈a mj − 1.(3)⇒(1). To prove this, 
onsider the 
ase when X1 = I. Then A is a 
on-tinuous image of I, whi
h means that A is a Peano 
ontinuum (
f. Theorem8.18 of [15℄). This 
ompletes the proof.Note that if f : X → Y is a Bing�Krasinkiewi
z map between 
ompa
taand A is a 
losed subset of X, then f |A : A → Y is a Bing�Krasinkiewi
zmap. So as a 
orollary of Theorem 2.8, we have the following result.Corollary 2.9. Let Y be a nondegenerate 
ontinuum. Then the follow-ing 
onditions are equivalent.(1) Y is a Peano 
ontinuum.(2) For ea
h nondegenerate 
ontinuum X there exists a surje
tive Bing�Krasinkiewi
z map from X onto Y .(3) For ea
h n ≥ 0 and (n + 1)-dimensional 
ontinuum X there existsa surje
tive n-dimensional Bing�Krasinkiewi
z�Lelek map from Xonto Y .In [5℄, Kato and the author posed the following problem.Problem 2.10 (Problem 12 of [5℄). For ea
h nondegenerate 
ontinuum

X and ea
h nondegenerate Peano 
ontinuum Y , does there exist an uppersemi
ontinuous de
omposition D of X su
h that ea
h element D ∈ D is aBing 
ompa
tum and the quotient spa
e X/D is homeomorphi
 to Y ?Corollary 2.9 gives an a�rmative answer to Problem 2.10. In fa
t if Xis a nondegenerate 
ontinuum, Y is a nondegenerate Peano 
ontinuum and
f : X → Y is a surje
tive Bing map, let D = {f−1(y) | y ∈ Y }. Then it iseasy to see that D is the required upper semi
ontinuous de
omposition of X.
Remark. If X is a nondegenerate 
ontinuum and Y is a 1-dimensionalPeano 
ontinuum, then BK(X, Y ) and BKs(X, Y ) are dense Gδ-subsetsof C(X, Y ) and Cs(X, Y ) respe
tively (
f. [5℄, [14℄ and [16℄). But for ea
h

n ≥ 2 there exists a nondegenerate 
ontinuum X and an n-dimensional
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Peano 
ontinuum Y su
h that B(X, Y ) and Bs(X, Y ) are not dense subsetsof C(X, Y ) and Cs(X, Y ) respe
tively (
f. [16℄).3. Whitney preserving maps. A sub
ontinuum A ⊂ X is terminal in
X if whenever B ∈ C(X) satis�es A ∩ B 6= ∅, then either A ⊂ B or B ⊂ A.In [2℄ Espinoza proved that every Whitney preserving map from a 
on-tinuum 
ontaining a dense ar
 
omponent onto I is a homeomorphism. Also,in [3℄ he proved the following result.Theorem 3.1 (
f. Theorem 2.5 and Corollary 2.7 of [3℄). Let f :X →Ybe a monotone open map su
h that f−1(y) is a nondegenerate terminal 
on-tinuum in X for ea
h y ∈ Y . Then f is Whitney preserving.In [3℄, as an appli
ation of Theorem 3.1, Espinoza proved that for ea
h1-dimensional 
ontinuum M there exists a 1-dimensional 
ontinuum M ′,di�erent from M , su
h that there exists a Whitney preserving map from M ′onto M . Hen
e there exist a lot of Whitney preserving maps whi
h are nothomeomorphisms.In this se
tion we generalize Theorem 3.1 using Krasinkiewi
z maps.If f : X → Y is a map, let Af = {f−1(y) | y ∈ Y } and A′

f = {C | C is a
omponent of a �ber of f}.Let f : X → Y be a Whitney preserving map. Then Af need not be a
ontinuous de
omposition of X. For example let f : [0, π] → S1 be de�nedby f(t) = e4ti. Then f is Whitney preserving (
f. Example 2 of [2℄). But fis not an open map.Proposition 3.2. Let f : X → Y be a µ, ν-Whitney preserving map.Then A′
f is a 
ontinuous de
omposition of X and ea
h element of A′

f isterminal in X.Proof. Let s0 = max {s ∈ I | f(µ−1(s)) = ν−1(0)}. Now we show that
(∗) A′

f = µ−1(s0).Let A′ ∈ A′
f . Sin
e f is µ, ν-Whitney preserving and A′ is a 
omponentof a �ber of f , it is easy to see that µ(A′) ≤ s0. If s0 = 0, then A′ ∈ µ−1(s0).If s0 > 0 and µ(A′) < s0, then we 
an take a sub
ontinuum B′ ⊂ X su
hthat(1) A′ ⊂ B′, A′ 6= B′,(2) µ(B′) < s0.Sin
e A′ is a 
omponent of a �ber of f , by (1), f(B′) is a nondegenerate
ontinuum. This is a 
ontradi
tion by (2) and the assumption that f isWhitney preserving. So µ(A′) = s0. This means A′

f ⊂ µ−1(s0). To prove the
onverse, let A′′ ∈ µ−1(s0). Then f(A′′) is a one-point set. So there exists
A⋆ ∈ A′

f su
h that A′′ ⊂ A⋆. If A′′ 6= A⋆, then µ(A⋆) > s0. Sin
e f(A⋆) is
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a one-point set and f is µ, ν-Whitney preserving, this is a 
ontradi
tion. So
A′′ = A⋆ ∈ A′

f . This means µ−1(s0) ⊂ A′
f . So we have proved (∗).By Theorem 2.3 of [3℄ and (∗), A′

f is 
ontinuous de
omposition of X andea
h element of A′
f is terminal in X. This 
ompletes the proof.Corollary 3.3. Let f : X → Y be a monotone Whitney preservingmap. Then f is an open map and ea
h �ber of f is terminal in X.The next proposition is inspired by an idea of Lemma 2.4 of [3℄.Proposition 3.4. Let f : X → Y be a map su
h that A′

f does not
ontain a one-point set. Then the following 
onditions are equivalent.(1) A′
f is a 
ontinuous de
omposition of X and ea
h element of A′

f isterminal in X.(2) A′
f is a 
ontinuous de
omposition of X and f is a Krasinkiewi
z map.Proof. (1)⇒(2) is obvious, so we only prove (2)⇒(1). To do this we provethat ea
h element of A′

f is terminal in X. Let 0 < t < 1 and let m : A′
f → Ibe the 
onstant fun
tion su
h that m(A) = t for ea
h A ∈ A′

f . Sin
e A′
f is
losed in C(X), by Theorem 16.10 of [4℄, m 
an be extended to a Whitneymap µ : C(X) → I. Now we show that

(∗∗) A′
f = µ−1(t).

A′
f ⊂ µ−1(t) is obvious, so we only prove µ−1(t) ⊂ A′

f . Let A ∈ µ−1(t).Sin
e f is a Krasinkiewi
z map, A 
ontains an element of A′
f or is 
ontainedin an element of A′

f . Assume A 
ontains B ∈ A′
f . Sin
e µ(A) = µ(B) = t,

A = B. Assume A is 
ontained in C ∈ A′
f . Sin
e µ(A) = µ(C) = t, A = C.In both 
ases, A ∈ A′

f . So (∗∗) holds.By Theorem 2.3 of [3℄, ea
h element of A′
f is terminal in X. This 
om-pletes the proof.Theorem 3.5. Let X, Y be 
ompa
ta and let f : X → Y be a monotonemap su
h that f−1(y) is a nondegenerate 
ontinuum in X for ea
h y ∈ Y .Then the following 
onditions are equivalent :

(1) f is an open map and ea
h �ber of f is terminal in X.
(2) f is an open Krasinkiewi
z map.
(3) f is a Whitney preserving map.Proof. (1)⇒(2) and (2)⇒(1) hold by Proposition 3.4; (1)⇒(3) by Theo-rem 3.1; and (3)⇒(1) by Corollary 3.3.Definition 3.6. A map f : X → Y is 
alled dimension raising if

dimX < dim f(X).
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It is 
lear that a dimension raising Whitney preserving map is not ahomeomorphism. There does not always exist a dimension raising Whitneypreserving map on ea
h 
ontinuum X by Proposition 3.8.A 
ontinuum X is 
onne
ted im kleinen at p ∈ X, written 
ik at p,provided that every neighborhood of p 
ontains a 
onne
ted neighborhoodof p. A 
ontinuum X is said to be 
ontinuumwise a

essible if for every propersub
ontinuum A ⊂ X there exist a nondegenerate sub
ontinuum B ⊂ X anda point x ∈ A su
h that A ∩ B = {x} (
f. De�nition 4 of [2℄).The next lemma is an immediate 
onsequen
e of Corollary 6 of [2℄. Theproof is left to the reader.Lemma 3.7. Let X be a 
ontinuum su
h that X is 
ik at some point orX is 
ontinuumwise a

essible. If f : X → Y is Whitney preserving , then fis a light map.Proposition 3.8. Let X be a nondegenerate 
ontinuum su
h that
(1) X is 
ik at some point or X is 
ontinuumwise a

essible,
(2) ea
h nondegenerate sub
ontinuum of X 
ontains an ar
.If f : X → f(X) is a Whitney preserving map, then dim f(X) = 1.Proof. Assume that dim f(X) ≥ 2. By Theorem 5 of [1℄ there exists anondegenerate hereditarily inde
omposable 
ontinuum Y ⊂ f(X). By Theo-rem 2 of [2℄, f is weakly 
on�uent. So there exists a nondegenerate sub
ontin-uum A ⊂ X su
h that f(A) = Y . By (1) and Lemma 3.7, f is a light map.By (2), A 
ontains an ar
. Hen
e by Theorem 8.18 of [15℄, f(A) 
ontainsa nondegenerate Peano 
ontinuum. Sin
e Y is hereditarily inde
omposable,this is a 
ontradi
tion. This 
ompletes the proof.For example, if X is an ar
 (or a 
ir
le, or a sin(1/x)-
urve, et
.) and

f : X → f(X) is a Whitney preserving map, then dim f(X) = 1 by Propo-sition 3.8.Now, as an appli
ation of Theorem 3.5 we prove Theorem 3.9. The proof,obtained by slightly modifying the proof of Theorem 3.1 of [12℄, uses 1-dimensional Bing�Krasinkiewi
z�Lelek maps e�e
tively.Theorem 3.9. For ea
h n ≥ 2 and a 
ontinuum X with dimX = n thereexists a 1-dimensional sub
ontinuum T and a monotone Whitney preservingmap q : T → q(T ) su
h that dim q(T ) ≥ n.Proof. First we 
onsider the 
ase when n ≥ 3. By Theorem 5 of [1℄,there exists a hereditarily inde
omposable sub
ontinuum Y ⊂ X su
h that
dimY ≥ 2. By Theorem 1.2 of [11℄, we 
an see that there exist a 1-dimen-sional 
ontinuum T ⊂ Y and a monotone open map q : T → q(T ) withnontrivial su�
iently small �bers su
h that dim q(T ) = ∞. It is easy tosee that ea
h sub
ontinuum in a hereditarily inde
omposable 
ontinuum is
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terminal. Hen
e by Theorem 3.1, the assertion of Theorem 3.9 holds when
n ≥ 3.Now we handle the 
ase when n = 2. Let w : C(X) → I be a Whitneymap for X. By Lemmas 2.1 and 2.3, there exists a 1-dimensional Bing�Krasinkiewi
z�Lelek map f : X → I. Let f = h ◦ g be the monotone-lightde
omposition of f with g monotone and h light. Then g is a 1-dimensionalBing�Krasinkiewi
z�Lelek map to the 1-dimensional 
ompa
tum Z = g(X).Sin
e g is a Bing map, for ea
h a > 0 we 
an de�ne a de
omposition Aof X by
A = {g−1(z) | w(g−1(z)) < a}

∪ {A∈C(X) | w(A)=a and there exists z∈Z su
h that A⊂ g−1(z)}.Let q : X → q(X) be the quotient map asso
iated with A and F =⋃
{g−1(z) | w(g−1(z)) ≥ a}. Note that for ea
h su�
iently small a > 0, F is1-dimensional sin
e g is a 1-dimensional Lelek map.By arguments in the proof of Theorem 3.1 in [12℄,(1) A is upper semi
ontinuous,(2) the restri
tion q|F : F → q(F ) is an open map.Choose a > 0 su�
iently small su
h that dim q(X) ≥ dimX = 2 (
f.Corollary 9, p. 111 of [9℄). As q 
oin
ides with g on X\F , we have dim q(X\F )

= dim g(X \ F ) ≤ dimZ = 1. Sin
e F is 
losed in X, q(F ) is 
losed in
q(X). By the inequality 2 ≤ dim q(X) = max{dim q(F ), dim q(X \ F )},
dim q(F ) ≥ 2.Pi
k a sub
ontinuum K of q(F ) with dimK ≥ 2 and de�ne T = q−1(K).Sin
e q is monotone, T is a 
ontinuum. Sin
e T ⊂ F , we have dimT = 1.The restri
tion q|T : T → K is an open map by (2). It is easy to see that
q|T is a Bing map su
h that q−1

T (y) is a nondegenerate 
ontinuum for ea
h
y ∈ K.Now we show that q|T is a Krasinkiewi
z map. Let C ⊂ T . We 
onsidertwo 
ases.(A) If C ⊂ g−1(z) for some z ∈ Z, then there exists A ∈ A su
h that
A ⊂ g−1(z) and A ∩ C 6= ∅. Note that A is a �ber of q|T . Sin
e g is a Bingmap, A ⊂ C or C ⊂ A. So C 
ontains a �ber of q|T or is 
ontained in su
ha �ber.(B) If C is not 
ontained in a �ber of g, then there exists z ∈ Z su
h that
g−1(z) ⊂ C, be
ause g is a monotone Krasinkiewi
z map. Sin
e g−1(z) ⊂ F ,
g−1(z) 
ontains an element A of A. Hen
e A ⊂ C. Note that A is a �berof q|T . So C 
ontains a �ber of q|T .By (A) and (B), q|T is a Krasinkiewi
z map. Hen
e by Theorem 3.5, q|Tis a Whitney preserving map. This 
ompletes the proof.
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