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GENERAL TOPOLOGY

On Applications of Bing—Krasinkiewicz—Lelek Maps
by
Eiichi MATSUHASHI

Presented by Czestaw BESSAGA

Summary. We characterize Peano continua using Bing—Krasinkiewicz—Lelek maps. Also
we deal with some topics on Whitney preserving maps.

1. Introduction. In this note, all spaces are separable metrizable and
maps are continuous. We denote the interval [0,1] by I. A compact metric
space is called a compactum, and continuum means a connected compactum.
If X is a continuum, C'(X) denotes the space of all subcontinua of X with the
topology generated by the Hausdorff metric. A continuum is said to be inde-
composable if it is not the union of two proper subcontinua. A compactum is
said to be a Bing compactum (or to be hereditarily indecomposable) if each
of its subcontinua is indecomposable. A map between compacta is called a
light map if each of its fibers is 0-dimensional. A map f : X — Y is called
n-dimensional if dim f~!(y) < n for each y € Y.

A map between compacta is called a Bing map if each of its fibers is a
Bing compactum (cf. [5], [7], [10], and [16]).

A map f: X — Y between compacta is called a Krasinkiewicz map if any
continuum in X either contains a component of a fiber of f or is contained
in a fiber of f (cf. [8], [13] and [14]).

Let f: X — Y be a map between compacta. For each a > 0, let F(f,a)
be the union of the components A of fibers with diam A > a, and put

F(f)y=JF(f,1/d).
i=1
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Define the Lelek dimension of f to be the number dimy, f = dim F(f). For
eachn > 1, f: X — Y is called an n-dimensional Lelek map if dimg, f < n
(cf. [6] and [12]). In case n < 0, for convenience, a map f : X — Y is an
n-dimensional Lelek map if and only if it is a O-dimensional map. Note that
an n-dimensional Lelek map is an n-dimensional map.

A map f: X — Y is called a Bing—Krasinkiewicz map if f is a Bing
map and a Krasinkiewicz map. A map g : X — Y is called an n-dimensional
Bing—Krasinkiewicz—Lelek map if g is a Bing map, a Krasinkiewicz map and
an n-dimensional Lelek map.

In this paper we prove some theorems using these maps.

In Section 2 we characterize Peano continua using n-dimensional Bing—
Krasinkiewicz—Lelek maps (Theorem 2.8 and Corollary 2.9), and give an
affirmative answer to Problem 12 of [5].

In Section 3 we study Whitney preserving maps. If f : X — Y is a map
between continua, then define a map f: C(X) — C(Y) by f(A) = f(A) for
each A € C(X). Amap f: X — Y is said to be Whitney preserving if there
exist Whitney maps (see [4]) p: C(X) — I and v : C(Y) — I such that for
each s € [0, u(X)], Fu='(s)) = v=1(t) for some t € [0,2(Y)]. In this case,
we say that f is p, v- Whitney preserving.

The notion of a Whitney preserving map was introduced by Espinoza (cf.
[2] and [3]). In Section 3 we generalize a result of Espinoza using Krasinkie-
wicz maps (Theorem 3.5). Also we give an application using 1-dimensional
Bing—Krasinkiewicz—Lelek maps.

2. Bing—Krasinkiewicz—Lelek maps onto Peano continua. First
we give some notations. Let X and Y be compacta. Then C(X,Y’) denotes
the set of all continuous maps from X to Y endowed with the sup metric.
Let C5(X,Y) be the subset of C(X,Y") which consists of all surjective maps
from X onto Y. Note that Cs5(X,Y) is a closed subset of C(X,Y).

Let

(X,Y) | f is a Bing map},

(X,Y) | f is a surjective Bing map},
={feC(X,Y)| f is a Krasinkiewicz map},

(X,Y) | f is a surjective Krasinkiewicz map},

(X,Y) | f is an n-dimensional Lelek map},
=B(X,)Y)NK(X,Y),
= Bs(X,Y)N K(X,Y).

LEMMA 2.1. Let X be a compactum. Then BK (X, 1) is a dense Gs-subset
in C(X,I).
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Proof. Since B(X,I) and K(X,I) are dense Gs-subsets in C(X,I) (cf.
[7], [10], [14] and [16]), BK(X,I) is a dense Gs-subset in C'(X,I). =

LEMMA 2.2 (cf. [6], [12]). Let X be a compactum and Z C X a O-
dimensional Fy-subset of X. Then {f € C(X,I) | F(f)yNnZ = 0} is a
dense Gg-subset in C'(X,I).

LEMMA 2.3 (cf. [6], [12]). Let n > 0. Then for each (n + 1)-dimensional
compactum X, L, (X,I) is a dense Gs-subset in C(X, ).

Let f: X — Y be a map between compacta. If g : Y — Z is a light map
between compacta, it is easy to see that 71" is a component of a fiber of f if
and only if T" is a component of a fiber of g o f. This yields

LEMMA 2.4. Let X, Y and Z be compacta. If f : X — Y is a map and
g:Y — Z is a light map, then

(1) F(f)=F(go f),
(2) if f is a Bing-Krasinkiewicz map, then so is go f.

LEMMA 2.5. There exists a map F : 1> — I such that for each t € I,
Flrwgey : I x{t} — I and Flyyxr: {t} x I — I are surjective.

Proof. Let A = {(x,z) € I? |z € I} and B = {(z,z +1/2) € I? | 0 <
r<1/2yU{(z,r —1/2) € I* | 1/2 < 2 < 1}. Take a continuous function
F :I? — I such that F(A) =0 and F(B) = 1. Then F is as required. m

Before stating the next lemma we give some notations. For any natu-
ral numbers n and i < n, let N} = {{a1,...,a;,} C N |1 < a < ---
< a; <n}and N, = J;_; N}. Let X1,..., X, be spaces. Let a € N,. If
a#{1,...,n} let po : I[71 Xj — [ljeqr,..npaXj be the projection. If
a={1,...,n} let py : [[j_; X; — {0} be the constant map. Note that for
each a € N,, and = € po([]i—; X;), po () is a topological copy of [Tica X5

LEMMA 2.6. Letn > 1 and let Xq,..., X, be nondegenerate continua.
Then there exists a map G : H?:l X; — I such that for each a € N,, and
z € pa([[j=1 X5), G’p\;l(x) Py Y(w) — I is surjective.

Proof. We argue by induction on n. For n = 1, any surjective map G :
X1 — I has the required property.

Assume that the assertion holds when 1 <n <k.Let n=k+ 1. Let G :
H?Zl X; — I be as in the statement of the lemma and let s’ : Xj1; — I be
surjective. Define s” : H§:1 X; X Xjp1 — I? by 8" (x1,22) = (G(21), §'(22))
for each (x1,x9) € H§:1 X; X Xjy1. Let F: I? — I be as in Lemma 2.5
and set G' = Fos" : Hfi% X; — I. Then it is easy to see that G’ is as
required. =
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LEMMA 2.7. Letn>1 andlet X1,...,X,, be nondegenerate continua such
that dim X; < mj for each j = 1,...,n. Then there exists a 0-dimensional
F,-subset Z C H?:1 X, such that for each a € N, and x € ﬁa(ngl X;),
dim(p, ' (2) \ Z) < 3jeamy — 1.

Proof. Note that for each a € N, and z € po([[j_; X;), dimpa(I[j—; X;)
< oo and dimp, !(r) = dim [T Xi < Xjeamy Hence by Proposition 2
of [17] for each a € N,, there exists a 0-dimensional F-subset Z, of []_; X
such that dim(p, *(z) \ Z,) < > jeamj — 1 for each @ € pa(I[j-; Xj).
Letting Z = UaeN Z, completes the proof. m

It is known that every nondegenerate Peano continuum is a light image
of I (cf. [15, Corollary 13.4]).

THEOREM 2.8. Let A be a nondegenerate continuum. Then the following
conditions are equivalent.

(1) A is a Peano continuum.

(2) Let n > 1 and let Xy,..., X, be nondegenerate continua. Then for
each 0-dimensional Fy-subset Z C H?Zl X there exists a Bing—
Krasinkiewicz map H : Hﬂ_ X; — A such that
(a) for each a € Ny, and x € po([[j=; X;), Hl|s1 1P poi(x) — A s

surjective,
(b) F(H)NZ =10.

(3) Let n > 1 and let Xy,..., X, be nondegenerate continua such that
dim X; < m; for each j = 1,...,n. Then there exists a Bing-
Krasinkiewicz map H : H?:1 X; — A such that
(a) for each a € Ny and x € pa([]}—; X; )s Hlgo1(p)  Pa Yz) — A is

surjective,
(b) dimyr, H|ﬁ;1(m) < > jea™j — 1 (hence H’ﬁ;l(x) P, (w) — Adsa
(2_jeqa mj — 1)-dimensional Lelek map).

Proof. (1)=-(2). By Lemmas 2.1, 2.2 and 2.6 there exists a Bing-Kra-
sinkiewicz map G : H?—1 X — I such that

(a') for each a € Ny, and z € pa([[j=; X;), [1/4,3/4] C G1(p, L)),

(b)) F(G1)NZ = 0.

Since A is a Peano continuum, there exists a light map ¢ : I — A such
that (([1/4,3/4]) = A. Let H = Lo Gy : [[;_; X; — A. Since G; is a
Bing—Krasinkiewicz map and ¢ is a light map, by Lemma 2.4, H is a Bing—
Krasinkiewicz map. Since £([1/4,3/4]) = A, by (a), H satisfies (a). Since £
is a light map, by (b') and Lemma 2.4, H satisfies (b).
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(2)=(3). Let ZC [}, X; be a 0-dimensional F,-subset as in Lemma 2.7.
By assumption there exists a Bing—Krasinkiewicz map H : H?Zl X; — A
such that

(a) for each a € Ny, and z € pu([]j—; Xj), H|;5;1(x) s () — Ads

surjective,

(b) F(H)NZ = 0.

Now we prove that for each a € N,, and = € po([[}—; X;), dimy, Hlso1
< > jea™; — 1. Note that F(H|ﬁ;1(z)) C F(H) N p,(z). By (b) we have
dim(F(H)Np, Y(z)) < dim(p, ! (z)\ Z). As dim(p, ' (z)\ Z) < >ica™ji— 1,
we have dim(F(H)Np, () < > jea™j — 1. This means dim F(H’ﬁfl(x)) <
>_jea™j — 1. Hence dimy, H|ﬁ;1(:c) <Xjeamj— L.

(3)=(1). To prove this, consider the case when X; = I. Then A is a con-
tinuous image of I, which means that A is a Peano continuum (cf. Theorem
8.18 of [15]). This completes the proof. m

Note that if f: X — Y is a Bing—Krasinkiewicz map between compacta
and A is a closed subset of X, then f|4 : A — Y is a Bing—Krasinkiewicz
map. So as a corollary of Theorem 2.8, we have the following result.

COROLLARY 2.9. LetY be a nondegenerate continuum. Then the follow-
ing conditions are equivalent.

(1) Y is a Peano continuum.

(2) For each nondegenerate continuum X there exists a surjective Bing—
Krasinkiewicz map from X onto Y.

(3) For each n > 0 and (n + 1)-dimensional continuum X there exists
a surjective n-dimensional Bing—Krasinkiewicz—Lelek map from X
onto Y.

In [5], Kato and the author posed the following problem.

PROBLEM 2.10 (Problem 12 of [5]). For each nondegenerate continuum
X and each nondegenerate Peano continuum Y, does there exist an upper
semicontinuous decomposition D of X such that each element D € D is a
Bing compactum and the quotient space X /D is homeomorphic to 'Y ?

Corollary 2.9 gives an affirmative answer to Problem 2.10. In fact if X
is a nondegenerate continuum, Y is a nondegenerate Peano continuum and
f: X — Y is a surjective Bing map, let D = {f~(y) | y € Y}. Then it is
easy to see that D is the required upper semicontinuous decomposition of X.

REMARK. If X is a nondegenerate continuum and Y is a 1-dimensional
Peano continuum, then BK(X,Y) and BK(X,Y) are dense Gs-subsets
of C(X,Y) and Cs(X,Y) respectively (cf. [5], [14] and [16]). But for each

n > 2 there exists a nondegenerate continuum X and an n-dimensional
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Peano continuum Y such that B(X,Y’) and By(X,Y) are not dense subsets
of C(X,Y) and Cs(X,Y) respectively (cf. [16]).

3. Whitney preserving maps. A subcontinuum A C X is terminal in
X if whenever B € C(X) satisfies AN B # (), then either A C B or B C A.

In [2] Espinoza proved that every Whitney preserving map from a con-
tinuum containing a dense arc component onto I is a homeomorphism. Also,
in [3] he proved the following result.

THEOREM 3.1 (cf. Theorem 2.5 and Corollary 2.7 of [3]). Let f: X =Y
be a monotone open map such that f=(y) is a nondegenerate terminal con-
tinuum wn X for each y € Y. Then fis Whitney preserving.

In [3], as an application of Theorem 3.1, Espinoza proved that for each
1-dimensional continuum M there exists a 1-dimensional continuum M’,
different from M, such that there exists a Whitney preserving map from M’
onto M. Hence there exist a lot of Whitney preserving maps which are not
homeomorphisms.

In this section we generalize Theorem 3.1 using Krasinkiewicz maps.

If f: X —Yisamap,let Ay ={f"!(y) |yeY}and A, ={C |Cisa
component of a fiber of f}.

Let f: X — Y be a Whitney preserving map. Then Ay need not be a
continuous decomposition of X. For example let f : [0,7] — S* be defined
by f(t) = e**. Then f is Whitney preserving (cf. Example 2 of [2]). But f
is not an open map.

PRrROPOSITION 3.2. Let f : X — Y be a u,v-Whitney preserving map.
Then A’f 15 a continuous decomposition of X and each element of A’f 1S
terminal in X.

Proof. Let so = max {s € I | f(u"'(s)) = v~(0)}. Now we show that

(%) Ap = 1 (s0)-

Let A’ € A’f. Since f is u, v-Whitney preserving and A’ is a component
of a fiber of f, it is easy to see that u(A’) < so. If sp = 0, then A’ € u=1(sp).
If sp > 0 and p(A’) < so, then we can take a subcontinuum B’ C X such
that

(1) A cB,A +DB,

(2) u(B') < so.

Since A’ is a component of a fiber of f, by (1), f(B’) is a nondegenerate
continuum. This is a contradiction by (2) and the assumption that f is
Whitney preserving. So y1(A’) = so. This means A’ C p1(s0). To prove the

converse, let A” € p~*(sg). Then f(A”) is a one-point set. So there exists
A, € A such that A” C A,. If A" # A, then u(Ay) > so. Since f(A) is
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a one-point set and f is u, v-Whitney preserving, this is a contradiction. So
A" = A, € A). This means w(s) C A’ So we have proved ().

By Theorem 2.3 of [3] and (), A’ is continuous decomposition of X and
each element of A’f is terminal in X. This completes the proof. m

COROLLARY 3.3. Let f : X — Y be a monotone Whitney preserving
map. Then fis an open map and each fiber of f is terminal in X.

The next proposition is inspired by an idea of Lemma 2.4 of [3].

PROPOSITION 3.4. Let f : X — Y be a map such that A'f does not
contain a one-point set. Then the following conditions are equivalent.

1 ' is a continuous decomposition of X and each element of A’, is
f f
terminal in X.
(2) A} 18 a continuous decomposition of X and f is a Krasinkiewicz map.

Proof. (1)=-(2) is obvious, so we only prove (2)=(1). To do this we prove
that each element of A’ is terminal in X. Let 0 < ¢ < 1 and let m : A} — I
be the constant function such that m(A) =t for each A € A’. Since A’ is
closed in C(X), by Theorem 16.10 of [4], m can be extended to a Whitney
map u: C(X) — I. Now we show that

(s4) =),

Ay C p~1(t) is obvious, so we only prove p~1(t) C A% Let A€ pL(t).
Since f is a Krasinkiewicz map, A contains an element of .A'f or is contained
in an element of A’. Assume A contains B € A’. Since u(A) = u(B) = t,
A = B. Assume A is contained in C' € A Since u(A) = u(C) =t, A=C.
In both cases, A € A}. So (#x) holds.

By Theorem 2.3 of [3], each element of A’ is terminal in X. This com-
pletes the proof. =

THEOREM 3.5. Let X,Y be compacta and let f : X — Y be a monotone
map such that f~1(y) is a nondegenerate continuum in X for each y € Y.
Then the following conditions are equivalent:

(1) f is an open map and each fiber of f is terminal in X.
(2) fis an open Krasinkiewicz map.
(3) fis a Whitney preserving map.

Proof. (1)=-(2) and (2)=-(1) hold by Proposition 3.4; (1)=-(3) by Theo-
rem 3.1; and (3)=(1) by Corollary 3.3. m

DEFINITION 3.6. A map f : X — Y is called dimension raising if
dim X < dim f(X).
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It is clear that a dimension raising Whitney preserving map is not a
homeomorphism. There does not always exist a dimension raising Whitney
preserving map on each continuum X by Proposition 3.8.

A continuum X is connected im kleinen at p € X, written cik at p,
provided that every neighborhood of p contains a connected neighborhood
of p. A continuum X is said to be continuumuwise accessible if for every proper
subcontinuum A C X there exist a nondegenerate subcontinuum B C X and
a point = € A such that AN B = {z} (cf. Definition 4 of [2]).

The next lemma is an immediate consequence of Corollary 6 of [2]. The
proof is left to the reader.

LEMMA 3.7. Let X be a continuum such that X is ctk at some point or
X is continuumwise accessible. If f : X — Y is Whitney preserving, then f
s a light map.

PROPOSITION 3.8. Let X be a nondegenerate continuum such that

(1) X is cik at some point or X is continuumuwise accessible,
(2) each nondegenerate subcontinuum of X contains an arc.

If f: X — f(X) is a Whitney preserving map, then dim f(X) = 1.

Proof. Assume that dim f(X) > 2. By Theorem 5 of [1]| there exists a
nondegenerate hereditarily indecomposable continuum Y C f(X). By Theo-
rem 2 of |2], f is weakly confluent. So there exists a nondegenerate subcontin-
uum A C X such that f(A) =Y. By (1) and Lemma 3.7, f is a light map.
By (2), A contains an arc. Hence by Theorem 8.18 of [15], f(A) contains
a nondegenerate Peano continuum. Since Y is hereditarily indecomposable,
this is a contradiction. This completes the proof. m

For example, if X is an arc (or a circle, or a sin(1/x)-curve, etc.) and
f: X — f(X) is a Whitney preserving map, then dim f(X) = 1 by Propo-
sition 3.8.

Now, as an application of Theorem 3.5 we prove Theorem 3.9. The proof,
obtained by slightly modifying the proof of Theorem 3.1 of [12], uses 1-
dimensional Bing—Krasinkiewicz—Lelek maps effectively.

THEOREM 3.9. For eachn > 2 and a continuum X with dim X = n there

exists a 1-dimensional subcontinuum T and a monotone Whitney preserving
map q: T — q(T) such that dimq(T') > n.

Proof. First we consider the case when n > 3. By Theorem 5 of [1],
there exists a hereditarily indecomposable subcontinuum Y C X such that
dimY > 2. By Theorem 1.2 of [11], we can see that there exist a 1-dimen-
sional continuum 7" C Y and a monotone open map ¢ : T" — ¢(T') with
nontrivial sufficiently small fibers such that dimq(7) = oco. It is easy to
see that each subcontinuum in a hereditarily indecomposable continuum is
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terminal. Hence by Theorem 3.1, the assertion of Theorem 3.9 holds when
n > 3.

Now we handle the case when n = 2. Let w : C(X) — I be a Whitney
map for X. By Lemmas 2.1 and 2.3, there exists a 1-dimensional Bing—
Krasinkiewicz—Lelek map f : X — I. Let f = h o g be the monotone-light
decomposition of f with ¢ monotone and h light. Then ¢ is a 1-dimensional
Bing—Krasinkiewicz—Lelek map to the 1-dimensional compactum Z = g(X).

Since g is a Bing map, for each a > 0 we can define a decomposition A
of X by

A={g7(2) |w(g™'(2)) < a}
U{A€C(X) | w(A)=a and there exists z € Z such that AC g~1(2)}.

Let ¢ : X — ¢q(X) be the quotient map associated with 4 and F =
U{9~%(2) | w(g~1(2)) > a}. Note that for each sufficiently small a > 0, F is
1-dimensional since g is a 1-dimensional Lelek map.

By arguments in the proof of Theorem 3.1 in [12],

(1) A is upper semicontinuous,
(2) the restriction ¢|p : FF — ¢(F') is an open map.

Choose a > 0 sufficiently small such that dimg(X) > dim X = 2 (cf.
Corollary 9, p. 111 of [9]). As ¢ coincides with g on X\ F', we have dim ¢(X \ F')
= dimg(X \ F) < dimZ = 1. Since F is closed in X, ¢(F) is closed in
q(X). By the inequality 2 < dimg(X) = max{dimgq(F),dimq¢(X \ F)},
dimg(F) > 2.

Pick a subcontinuum K of ¢(F) with dim K > 2 and define T = ¢~ }(K).
Since ¢ is monotone, T is a continuum. Since T' C F, we have dim7T = 1.
The restriction g|p : T'— K is an open map by (2). It is easy to see that
g|r is a Bing map such that q}l(y) is a nondegenerate continuum for each
y € K.

Now we show that ¢|r is a Krasinkiewicz map. Let C' C T. We consider
two cases.

(A) If C C g !(2) for some z € Z, then there exists A € A such that
A C g7!(z) and AN C # . Note that A is a fiber of ¢|7. Since g is a Bing
map, A C C or C C A. So C contains a fiber of g|p or is contained in such
a fiber.

(B) If C is not contained in a fiber of g, then there exists z € Z such that
g Y(2) C C, because g is a monotone Krasinkiewicz map. Since g~ '(z) C F,
g~ 1(2) contains an element A of A. Hence A C C. Note that A is a fiber
of g|7. So C contains a fiber of g|r.

By (A) and (B), ¢|7 is a Krasinkiewicz map. Hence by Theorem 3.5, q|r
is a Whitney preserving map. This completes the proof. =
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