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Summary. A categorical generalization of the notion of movability from inverse systems
and shape theory was given by the first author who defined the notion of movable category
and used it to interpret the movability of topological spaces. In this paper the authors
define the notion of uniformly movable category and prove that a topological space is
uniformly movable in the sense of shape theory if and only if its comma category in the
homotopy category HTop over the subcategory HPol of polyhedra is uniformly movable.
This is a weakened version of the categorical notion of uniform movability introduced by
the second author.

1. Introduction. The notion of movability for metric compacta was in-
troduced by K. Borsuk [1| as an important shape invariant. The movable
spaces are a generalization of spaces having the shape of ANR’s. The mov-
ability assumption allows a series of important results in algebraic topology
(like the Whitehead and Hurewicz theorems) to remain valid with the ho-
motopy pro-groups replaced by the corresponding shape groups. The term
“movability” comes from the geometric interpretation of the definition in the
compact case: if X is a compactum lying in a space M € AR, one says that
X is movable if for every neighborhood U of X in M there exists a neigh-
borhood V' C U of X such that for every neighborhood W C U of X there is
a homotopy H : V x [0,1] — U such that H(z,0) = z and H(z,1) € W for
every x € V. One shows that the choice of M € AR is irrelevant [1|. After
the notion of movability had been expressed in terms of ANR-systems, for
arbitrary topological spaces, [4], it became clear that one could define it in

2000 Mathematics Subject Classification: 54C56, 55P55, 18 A25.
Key words and phrases: shape theory, uniformly movable inverse system (space), uni-
formly movable category.

[229] © Instytut Matematyczny PAN, 2007
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arbitrary pro-categories. The definitions of a movable object in an arbitrary
pro-category and of uniform movability were given by M. Moszyriska [6].
Uniform movability is important in the study of mono- and epi-morphisms
in pro-categories and in the study of the shape of pointed spaces. In the book
of Mardesi¢ & Segal [5] all these approaches and applications of various types
of movability are discussed.

A categorical generalization of the notion of movability from inverse sys-
tems and shape theory was given by the first author of the present paper
who defined the notion of movable category and interpreted the movability
of topological spaces in terms of this property [2].

A concept of uniform movability for a category was introduced by the
second author in [7]. In that paper a category K is called uniformly movable
with respect to a subcategory K’ if there exists a pair (F, ¢) with F: K — K
a covariant functor and ¢ : F' — 1x a natural transformation such that every
morphism f € K(Y, X) with Y € K’ admits a morphism G(f) € K(F(X),Y)
satisfying f o G(f) = ¢(X) and such that the correspondence f — G(f) is
natural in the sense that a commutative diagram

Y—f>X

}L fl;i/

in the category K , with u : Y — Y’ a morphism in K’ , induces the equality
G(f') o F(v) = wo G(f). In the case K' = K the category K was simply
named uniformly movable. The pair (F, ¢) was called a uniform movability
pair of K and the morphism G(f) a uniform movability factor of f.

This definition is good and suggestive from the functorial point of view
but it is too strong if one has in mind movability of topological spaces. The
uniform movability of the comma category of a space X in HTop over HPol
implies the uniform movability of X (|7, Cor. 1]). However, the converse
was proved only under two supplementary conditions on the space X (|7,
Cor. 2|). In the present paper we give a weakened version of this definition
that permits a characterization of the uniform movability of an arbitrary
space X via the uniform movability of the comma category of X.

2. Uniformly movable categories. Let K be an arbitrary category.

DEFINITION 1 ([2], [3]). We say that an object X of K is movable if there
are an object M (X) € K and a morphism mx : M(X) — X in K such that
for any object Y € K and any morphism p : ¥ — X in K there exists a
morphism u(p) : M (X) — Y which makes the diagram
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M(X)

%

X u(p)
X
Y

Diagram 1

commutative, i.e., pou(p) = mx.
A category K is called mowable if any object of IC is movable.

DEFINITION 2. We say that an object X of the category K is uniformly
movable if there are an object M (X) € K and a morphism mx : M(X) — X
in I that satisfy the following conditions:

1. for any object Y € K and any morphism p : ¥ — X in K there
exists a morphism u(p) : M(X) — Y in K which makes Diagram 1
commutative,

2. for all morphisms p:Y — X, ¢: Z - X andr: Z — Y in K such
that p o r = ¢, Diagram 2 below is commutative:

Y
\\ u(p)
p
r X < M(X)
q
/ u(q)
A
Diagram 2

ie., u(p) =rou(q).
A category K is called uniformly mowvable if any object of K is uniformly
movable.
We call mx a (uniform) movability morphism of X and u(p) a (uniform)
movability factor of p.

It is evident that every uniformly movable object is movable. The follow-
ing example shows that the converse is not true.

EXAMPLE 1. Let Set® be the category of nonempty sets. Then each
singleton is a movable object which is not uniformly movable.

Indeed, let {*} be a singleton. Then a movability morphism for {*} can
be any constant map M (x) — {*}. For an arbitrary map ¢ : Z — {*} we can
take for u(q) : M (%) — Z any map. Thus {*} is movable. But if p : ¥ — {x}
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is another map we can write ¢ = por and q = por’ for any mapsr,7’' : Z — Y.
Let . € M(*) and suppose that r(u(q)(zs)) # r'(u(q)(z+)) (suppose that
Y has cardinality at least two). Then the relations u(p) = r o u(q) and
u(p) = r' ou(q) are incompatible. Therefore {} is not uniformly movable.

REMARK 1. If £ is a uniformly movable category in the sense of [7]
(see also the introduction) then K is also uniformly movable in the sense of
Definition 2.

Indeed, let (F, ) be a uniform movability pair of K, and G(f) a uniform
movability factor of a morphism f € K(X,Y) (see introduction or Defini-
tion 1 in [7]). With the notations of Definition 2, if X is an object in K, and
p:Y — X is a morphism in K, we take M (X) = F(X), mx = ¢(X) and
u(p) = G(p). Now the relation po G(p) = ¢(X) translates as pou(p) = mx,
which is condition 1 from Definition 2. Then for some morphismsp : Y — X,
q:7Z — X and r : Z — Y such that por = ¢, we can consider the commu-

tative diagram

.o x

Y
TT 1x
7—1-x

with roG(p) = G(q), which translates as rou(p) = u(g), which is condition 2
from Definition 2.
This remark permits us to take over a series of examples from |[7].

PROPOSITION 1. Every category K with null morphisms is uniformly
mowvable.

Proof. Fix an object Xy € K. For each X € K put M(X) = X and let
mx = 0x,x : Xo — X be the null morphism from X, to X; for an arbitrary
morphism p : Y — X, set u(p) = Ox,y. Now it is not difficult to verify
conditions 1 and 2 of Definition 2. =

In particular, the category Set, of pointed sets is uniformly movable.

PROPOSITION 2. FEwvery category K with an initial object O is uniformly
movable.

Proof. For each object X € IC, put M(X) = 0O and let mx : O — X be
the only element in (O, X); for any morphism p: Y — X, let u(p) : O - Y
be the only element in (O, Y"). Now it is not difficult to verify conditions 1
and 2 of Definition 2. =

In particular, the categories Set of all sets and maps and Gr of all groups
and homomorphisms are uniformly movable.

PROPOSITION 3. An object dominated by a uniformly movable object is
uniformly mouvable.
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Proof. Let X be a uniformly movable object in a category I and Y an
object dominated by X. Let f : X — Y and g : Y — X be morphisms
with fog=1y. Set M(Y) = M(X) and my = f o mx. For any morphism
p: Z — Y define u(p) = u(g o p). Then the relation (gop)ou(gop) =mx
implies (fog)opou(gop) = fomx and thus pou(p) = my, which is condition 1
of Definition 2. Now let morphismsp: Z — Y, q: U — Y, r: U — Z satisfy
g=por. Then goq = (gop)or, which implies u(gop) =rou(goq),ie.,
condition 2 of Definition 2 holds. =

DEFINITION 3 ([3]). We say that a category L is weakly functorially
dominated by a category K if there are functors J : L - K and D : K — L
and a natural transformation v : Do J — 1.

The following proposition is similar to Theorem 2 from [3].

PROPOSITION 4. If a category L is weakly functorially dominated by a
uniformly movable category K then L is also uniformly movable.

Proof. For an object X € L, set M(X) = D(M(J(X))) and mx =
Y(X) o D(myxy) : M(X) - X. If p: Y — X is a morphism in £, put
u(p) =¥(Y)oD(u(J(p))) : M(X) — Y. Now we verify the conditions from
Definition 2. For condition 1 we have

pou(p) =[pov(Y)] o D(u(J(p))) = [¢(X) o D(J(p))] o D(u(J(p)))
= ¢(X) o [J(p) o D(u(J(p)))] = (X) o D(my(x)) = mx.

For condition 2,if p: Y — X, q: Z — X and r : Z — Y are morphisms in
L satisfying por = ¢, then J(p)o J(r) = J(g). This implies J(r)ou(J(q)) =
u(J(p)) and by applying the functor D we deduce D(J(r)) o D(u(J(q))) =
D(u(J(p))), so ¥(Y) o D(J(r)) o D(u(J(q))) = ¢(Y) o D(u(J(p)) and hence
roy(Z)o D(u(J(q))) = u(p), that is, 7 o u(q) = u(p). =

In particular, Proposition 4 applies if £ is functorial dominated by IC,
ie, DoJ=1,:

COROLLARY 1. If a category L is functorial dominated by a uniformly
movable category IC then L is also uniformly movable.

PROPOSITION 5. A product IC = [[;.; K; of categories is uniformly mov-
able if and only if every category IC;, i € I, is uniformly movable.

Proof. Suppose K = [[;c; K; is uniformly movable. For fixed iy € I and
any i € I, i # 1ig, select an object XZQ € K;. Then consider the follow-
ing functors: the projection P;, : K — K;, and J;, : K;, — K defined by
Jio(Xiy) = (X[)ier, where XZ(O = X;, and X = X?, i # ip, and for a mor-
phism f: Xiy — Y, in Ky, Jig (f) = (f))ier : Jig(Xip) — Jip(Yiy) is given
by fl = ].XZQ, if 1 # ip and fi’o = f. Then P, o J;, = 1k, and we can apply
Corollary 1.
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Conversely, suppose that all categories K;,¢ € I, are uniformly movable.
To prove that I = [ [, K; is also uniformly movable, for X = (X;);cr, define
M(X) = (M(X;))ier and myx = (myx,)icr, and if p = (p;i)ier : (Xi)ier —
(Yi)ier, then set u(p) = (u(p;))ier. Then the conditions of Definition 2 are
immediately verified. m

Now let us consider a category K with pull-back diagrams. This means
that for any pair of morphisms f: X — Z and g : Y — Z there exists a
commutative diagram

Xx, V-2 x

F
Yy ——~2
called a pull-back diagram, such that for any morphisms ux : U — X and

uy : U — Y satisfying foux = gouy there is a unique morphism ux X zuy :
U — X xzY such that px o (ux Xz uy) =ux and py o (ux Xz uy) = uy.

PROPOSITION 6. Let IC be a category with pull-back diagrams. If an object

Z € K is uniformly movable then for any morphisms f : X — Z and
g:Y — Z,

(%) u(f) xz u(g) = u(f opx) = u(gopy).

Proof. Consider the morphism u(f) : M(Z) — X with fou(f) = myz and
u(g) : M(Z) — Y with gou(g) = mz (Diagram 3). since fou(f) = gou(g)
we can consider the morphism u(f) xz u(g) : M(Z) — X xz Y. Setting
t = fopx = g o py, we obtain another morphism u(t) : M(Z) - X xz Y.
But by condition 2 of Definition 2, the relations ¢t = f o px = g o py imply
u(f) = px ou(t) and u(g) = py o u. These relations and the uniqueness of
u(f) xz u(g) prove that u(t) = u(f) xz u(g), i.e., (x). =

M(2)

\k

Xx, Y=y

lpy f
Yy —1—~7Z
Diagram 3

u(g)

REMARK 2. The dual notions to movability and uniform movability can
be defined. An object X of a category K is (uniformly) co-movable if there
are an object M(X) € K and a morphism m% : M(X) <« X in K that
satisfy the following condition(s): for any object Y € K and any morphism
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p: X — Y in K there exists a morphism u®(p) : M(X) « Y in K satisfying
m% = u’(p)op (andifp: X - Y, ¢: X — Zand r: Y — Z are morphisms
in K such that ¢ = 7 o p, then u%(p) = u®(q) o r). A category K is called
(uniformly) co-movable if all its objects are (uniformly) co-movable. This is

equivalent to the fact that the dual category of K is (uniformly) movable.

3. Main result. Recall that if 7 is a category with a subcategory P,
and X € 7, then the comma category of X over P, denoted by Xp, has
as objects all morphisms p : X — P in 7 with P € P, and as morphisms
(X & P) — (X & P') all morphisms v : P — P’ in P such that the
following diagram commutes:

Now recall from [5, Ch. II, §6, 7] the notions of movability and uniform
movability in terms of inverse systems.

Let 7 be a category. Then an object X = (X, pav, A) of pro-7 is said
to be movable provided every A € A admits an m(A) > A (called a movability
index of \) such that for any A\” > X there is a morphism r* : Xy — X
of 7 which satisfies

Py o = Pxm(x)s

i.e., makes the following diagram commutative:

Xin(n)

P)\,y

X, A

p:\,x\

X)\//

The essential feature of this condition is that py () factors through Xy~
for X arbitrarily large (note that r* is not a bonding morphism).

Then an object X = (X, pax, A) of pro-7 is uniformly movable if every
A € A admits an m(\) > A (called a uniform movability index of \) such
that there is a morphism r(}) : X,,(») — X in pro-7 satisfying

ProT(A) = Prm(n):
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where py : X — X is the morphism of pro-7 given by 1x,, i.e., py is the
restriction of X to X,. Consequently, py ,(x) factors through X. Note that
r(A) determines for every v € A a morphism

I‘()\)V : Xm()\) — Xy
in 7 such that
Py © r()\)yl = r()\)u if v S V/, and I'()\)A = p)\,m(/\)'

In particular, for any v > X one obtains py ,,(n) = r(A\)* = py, or(A\)Y, so
that uniform movability implies movability.

We also mention that movability and uniform movability for inverse sys-
tems are preserved by isomorphisms of such systems [5, pp. 159-161].

Another notion which we need in this section is that of expansion system
of an object.

If 7 is a category and P a subcategory of 7, then for an object X of 7T,
a P-expansion of X is a morphism in pro-7 of X (as rudimentary system)
to an inverse system X = (X, pay, A4) in P, p: X — X, with the following
universal property:

For any inverse system Y = (Y, quuw, M) in P (called a P-system)
and any morphism h : X — Y in pro-7, there exists a unique morphism
f: X =Y in pro-7 such that h = f o p, i.e., the following diagram com-
mutes:

X —=X
Nk
Y
Ifp: X - Xand p’: X — X’ are two P-expansions of the same object
X, then there is a unique isomorphism i : X — X’ such that iop = p’. This
isomorphism is called the natural isomorphism.
The subcategory P is called a dense subcategory of 7 provided every
object X € T admits a P-expansion p : X — X.
fp: X -X,pp: X=X andq:Y —-Y,q :Y — Y are P-
expansions, then two morphisms f : X — Y, f: X’— Y’ in pro-7 are equiv-
alent, f ~ f’, provided the following diagram in pro-7 commutes:

X —> X/

L
Y—j>Y’

Now if P is a dense subcategory of 7, then the shape category for (7, P),
denoted by Sh(7 p), has as objects all the objects of 7, and morphisms
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F : X — Y are ~ equivalence classes of morphisms f : X — Y in pro-7, for
some P-expansions p: X — Xandq:Y — Y.

Now, an object X € 7 is called movable (uniformly movable) in Sh(r p)
or simply mowvable (uniformly movable) if it has a movable (uniformly mov-
able) P-expansion. This definition is correct since the properties of movabil-
ity and uniform movability for inverse systems are invariant with respect to
isomorphisms in pro-P.

If HTop is the homotopy category of topological spaces, then the homo-
topy category HPol of polyhedra is a dense subcategory of HTop, and a
topological space X is called (uniformly) movable if X is HPol-(uniformly)
movable.

Now we can establish the main theorem.

THEOREM 1. Let T be a category, P a subcategory of T, and let X € T
be any object and p = (py) : X — X = (X, pan, A) a P-expansion of X.
Then X s a uniformly movable inverse system if and only if the comma
category Xp of X in T over P is uniformly movable.

Proof. Suppose that Xp is a uniformly movable category. If A € A, con-
sider py : X — X, as an object of Xp. There are an object M(py) = [ :
X — Q" in Xp and a morphism m,, =n: Q" — X in Xp satisfying the
conditions of Definition 2 (see Diagram 4 below).

By property (AE1) of a P-expansion |5, Ch. I, §2.1, Th. 1|, there is a
NEA N> A, andan!)?’:X;\HQ’suchthat

(1) f=Ffops.
Then

(2) no flopy =no f =px=p,;5op;.

pkf\l pA’T u(pyrr)

X)\//

Diagram 4
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From (2) and property (AE2) [5, Ch. I, §2.1, Th. 1], we deduce the
existence of X' € A, \ > )\, for which

(3) ij\Opj\,\/ZTIOf/Opj\,\/-

Now we show that ) is a uniform movability index of ), i.e., we have to
define a morphism r = (") : Xy — X in pro-T, with " : Xy — Xy,
N € A, satisfying the condition

(4) prOT = Py

Let \” € A be arbitrary, with A” > . For the object py» : X — X~ and
the morphism pyy» : X)» — X of the comma category Xp, there exists a
morphism u(pyy) : Q" — X~ which satisfies the equality

(5) 7= P o u(panr)
(see Definition 2). Observe that if A/ = X\ we get
(6) u(par) = -
Now define
™ P = u(par) o Fopyy : X — X,
By (7), (6) and (3), we have
(8) T)\ = U(pA)\) o f/ OPxy — Mo f, oDy = DPyx ©Pxyv = P

By applying (3), (5) and (7), we get

~ ~ "

PAx =Dy © iy = N0 f'op5, = P o u(panr) o f/ o psy = pawr o1
Thus, for any X" € A, X" > ),
(9) Pav =P o1

Now, for \’ € A with X/ < A < X define " = pyry.
In order to show that r = (") : X» — X is a morphism in pro-7” which
satisfies (4), we have to prove that for any " < X"

1"

(10) p)\//)\/// (@] 7’/\/” = T)\N
Let A < X' < M. In view of (7), we have
(11) 7“)\ = u(p/\)\///) (o] f/ OpX)\/ . X/\/ — X}\///,

Since pyx = paar © pyryr, by condition 2 from Definition 2, we have
(12) U(p)\)\//) = p)\//)\m (o] u(p)\)\m),
By applying (11), (12), (7), we get

" -~ -~ )\//

p>\//>\/// O ’I“)\ = p)\//>\/// (@] ’U,(p)\A///) @] f/ O px/\/ = u(pk)\//) O f, (@] p;\)\/ =17

So, r = (7’>‘//) : X — X is a morphism in pro-7 which satisfies (4), and
thus X is a uniformly movable in the sense of shape theory.
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To prove the converse, suppose X = (X, pay, 4) is a uniformly movable
inverse system. Consider an object f : X — @Q of the comma category Xp
(see Diagram 5). By condition (AE1) there exist A € A and fy : X\ — Q in
P such that

(13) f=17Fxopx

Consider a corresponding uniform movability index X' € A, X > . From
(13) we get

(14) f=1Ixopvopy.
PM'
P>\/// X/\///
)\II
A// )\///
X "
Far A
Diagram 5

Now let us prove that the object M(f) := py : X — X, and the
morphism
(15) my = fropw : Xy — Q
are as required in the definition of the uniform movability for Xp. Indeed, let

f"”: X — Q" be an arbitrary object and 1’ : Q" — @Q an arbitrary morphism
in Xp, i.e.,

(16) f=n0of"
There exist A\ € A, X > X, and fy» : Xy » — Q" such that
(a7) F' = o p

It is clear that
fxopxropyr =n"o famopyr.

Therefore, according to condition (AE2), we can find A" € A, "' > )\ such
that

(18) f)\ o p/\)\// [e) p)\//)\/// = T]/ O f/\// o] p)\//)\m,

By the uniform movability of X = (X, pav,A4), there exists a morphism
r = (") : Xy — X in pro-7 such that py or = pyy, i.e., the mapping
" Xy — X satisfies

"

(19) Pav = paw o



240 P. S. Gevorgyan and 1. Pop

Define

(20) u() = frr oy 0" Xy — Q.

By (18)—(20), and (15) we get

(21)  n'ouly)=n"ofxropyixmor™” = froparopymmor™” = fropyy =my.

Thus, the first condition of uniform movability of Xp is proved. B
To prove the second condition of uniform movability, let f” : X — Q"

be an arbitrary object and 7' : Q" — Q, v : Q" — Q" be some morphisms

of Xp such that

(22) 7 =n0°g.
Since ¢ : Q" — Q" is a morphism in Xp,
(23) f'=pof.
In analogy with the construction of u(n’) (see (20)) w(7’) can be written as
(24) ’U,(ﬁ/) = f}\// % pX//X/// © ’I"/\ .
Moreover, (see (17)),
I

(25) f = f}\// © pj\//-

It remains to show that
(26) u(n’) =@ ou(iy).

Let Mg € A be such that A\g > N\ and Ay > \" (we know that (A,<) is a
directed set). Taking into account (23) and (25) it is not difficult to see that

f)\” O PXINIT O PXII NG O PNy = PO f;\// Op;{//;{/// Op}'\///)\o O Pxg-

Hence, by the property (AE2) of the P-expansion p = (py) : X — X =
(X, pan, A), we can find \; € A, Ay > Ag, such that

(27) f/\” O PN O P NG O Paxghy = P O f;\// o p}\//;\/// o pX///AO O PxoAt -

Since r = (") : Xy — X is a morphism of inverse systems, and A; > N,
A > N’ we have

(28) TXN = DX )y © PxogA1 © 7)\1’
(29) 7)\”, == pX///)\O O Pxor © T)\l‘
By (20), (24) and (27)—(29), we get (26):

j\/// A\

~
@ o U(77 ) =@o fX// o pX//X/// or =@o fX// o pj\//j\/// o p;\m/\o OPxM OT

/

g f/\// Op)\//)\/// Op>\///)\0 Op/\o/\1 O 7“)\1 = f)\// Op>\///\/// O 7“)\ = U(?’]/) [ ]
Now by theorems on dense subcategories (see |5, Th. 2, Ch. I, §4.1; Ths. 6
and 7, Ch. I, §4.3|), we get the following corollaries.
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COROLLARY 2. LetT be a category and P a dense subcategory. An object
X € T is uniformly movable in the sense of shape theory if and only if the
comma category Xp of X in T over P is uniformly movable.

COROLLARY 3. If P is a dense subcategory of a category T then any
object P € P is uniformly movable.

Proof. The comma category Pp has as initial object the identity mor-
phism 1p : P — P. By Proposition 2, this implies that Pp is a uniformly
movable category and we can apply Corollary 2. m

COROLLARY 4. A topological space X is uniformly movable if and only if
its comma category Xygpol in the category HTop over the subcategory HPol
1s uniformly movable.

In particular, polyhedra and ANR’s are uniformly movable spaces.

COROLLARY 5. A pair (X, Xo) of topological spaces is uniformly movable
if and only if its comma category (X, Xo)gpez i the homotopy category of
pairs HTop? over the homotopy subcategory of polyhedral pairs HPol? is
uniformly mouvable.

In particular, a pointed space (X, *) is uniformly movable if and only if its
comma category (X, *)gpol1, in the pointed homotopy category HTop,. over
the pointed homotopy subcategory of polyhedra HPol, is uniformly movable.

All pointed polyhedra and pointed ANR’s are uniformly movable.

REMARK 3. In [2] a theorem similar to Theorem 1 was stated for movable
spaces. Precisely, it was proved that a topological space X is movable if and
only if its comma category Xygpol in HTop over HPol is movable. Now
we can use the fact that there are movable objects which are not uniformly
movable (see |5, p. 255]) to conclude that there are movable categories which
are not uniformly movable.

By our Theorem 1 and Theorem 4 from |4, p. 173] we have the following
particular case.

COROLLARY 6. Let 7 be a category, P a subcategory, and X € T.
Suppose that X has as a P-expansion an inverse sequence p : X — X =
(XnsPnn+1)- Then the comma category Xop is uniformly movable if and only
if it is movable.

REMARK 4. As specified in the introduction, if we take into consideration
the more restrictive definition for the uniform movability of a category given
in [7], in order to prove the uniform movability of the comma category Xp
of an object X, two supplementary conditions were added to the uniform
movability of a P-expansion X =(Xy,pxn,A) of X, namely:
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(G1) If m()) is the uniform movability index of A, then py ,,\) @ Xinn) —
X is a P-monomorphism, that is, if py 1) © ¥ = Prm(n) © v, where
u,v : P — X)) are two morphisms in the subcategory P, then u = v.

(G2) If \,\ € A, then there exists a A* € A with \* > m()\), m()\') such
that the following diagram commutes:

m(X)

pM(V \
pm(m /

m()\’

A space admitting such a P-expansion was called P-global uniformly
movable. An example is the Warsaw circle [7, Ex. 9].
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